Registered Attribute-Based Encryption

Susan Hohenberger, George Lu, Brent Waters, and David Wu

Attribute-Based Encryption

policy: CS and faculty

Attribute-Based Encryption

policy: CS and faculty

Attribute-Based Encryption

policy: CS and faculty

Can decrypt

Cannot decrypt
Cannot decrypt

Attribute-Based Encryption

Users cannot collude to decrypt

Attribute-Based Encryption

Attribute-Based Encryption

ABE has built-in key escrow
Key issuer can decrypt all ciphertexts

Users do not have control over keys

Registered ABE

Users chooses their own public/secret key

Registered ABE

Users chooses their own public/secret key

As users join the system, public key is updated

Registered ABE

Users chooses their own public/secret key

As users join the system, public key is updated

Registered ABE

Users chooses their own public/secret key

As users join the system, public key is updated

Registered ABE

Users chooses their own public/secret key

As users join the system, public key is updated

Registered ABE

Users chooses their own public/secret key

$$
\left|\mathrm{mpk}_{L}\right|=\operatorname{poly}(\lambda, \log L)
$$

Public key is short

Registered ABE

Registered ABE

Users chooses their own public/secret key

Key curator maintains no secrets

Registration-Based Encryption (RBE)

This Work

Starting Point: A Slotted Scheme

Let L be the number of users

Each slot associated with a public key pk and a set of attributes S

$$
\begin{aligned}
&|\operatorname{mpk}|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) \\
&\left|\operatorname{hsk}_{i}\right|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) \\
& \mathcal{U}: \text { universe of attributes }
\end{aligned}
$$

For special case of IBE with identities of length $\ell,|\mathcal{U}|=2 \ell$

Starting Point: A Slotted Scheme

Let L be the number of users
Aggregate

pk_{1}, S_{1}	pk_{2}, S_{2}	pk_{3}, S_{3}	pk_{4}, S_{4}	\cdots	pk_{L}, S_{L}

Each slot associated with a public key pk and a set of attributes S

$$
\begin{array}{ll}
|\mathrm{mpk}|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) & \lambda \text { : security parameter } \\
\left|\operatorname{hsk}_{i}\right|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) & \mathcal{U}: \text { universe of attributes }
\end{array}
$$

Encrypt(mpk, $P, m) \rightarrow \mathrm{ct}$
$\operatorname{Decrypt}\left(\mathrm{sk}_{i}, \mathrm{hsk}_{i}, \mathrm{ct}\right) \rightarrow m$

Encryption takes master public key and policy P (no slot)
Decryption takes secret key sk_{i} for some slot and the helper key hsk_{i} for that slot

Starting Point: A Slotted Scheme

Let L be the number of users

mpk $\mathrm{hsk}_{1}, \ldots, \mathrm{hsk}_{L}$

Each slot associated with a public key pk and a set of attributes S

$$
\begin{array}{ll}
|\mathrm{mpk}|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) & \lambda \text { : security parameter } \\
\left|\operatorname{hsk}_{i}\right|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) & \mathcal{U}: \text { universe of attributes }
\end{array}
$$

Encrypt(mpk, $P, m) \rightarrow \mathrm{ct}$
$\operatorname{Decrypt}\left(\mathrm{sk}_{i}, \mathrm{hsk}_{i}, \mathrm{ct}\right) \rightarrow m$

Main difference with registered ABE: Aggregate takes all L keys simultaneously

Constructing Slotted Registered ABE

Construction will rely on composite-order pairing groups
Let \mathbb{G} be a group of order $N=p_{1} p_{2} p_{3}$ (composite order)
Scheme essentially operates in $\mathbb{G}_{p_{1}}$
(other subgroups used for randomization and security proof)
Pairing is an efficiently-computable bilinear map on \mathbb{G} :

$$
e\left(g^{x}, g^{y}\right)=e(g, g)^{x y}
$$

Multiplies exponents in the target group

Warm-Up: A Single-Slot Scheme

For simplicity: will describe scheme for conjunction policies
Generalizes to policies that can be described by linear secret sharing scheme
Scheme will rely on a common reference string (CRS)

$$
\begin{array}{ll}
\text { General components: } & Z=e(g, g)^{\alpha} \quad h=g^{\beta} \\
\text { Slot components: } & A=g^{t} \quad B=g^{\alpha} h^{t} \\
\text { Attribute components: } & U_{w}=g^{u_{w}} \text { for each } w \in \mathcal{U}
\end{array}
$$

Single-Slot Aggregation

$$
\begin{aligned}
& \text { general slot-specific } \\
& \text { Common reference string: } Z=e(g, g)^{\alpha} \quad h=g^{\beta} \quad A=g^{t} \quad B=g^{\alpha} h^{t} \\
& \text { attribute } \\
& U_{w}=g^{u_{w}} \\
& \text { User's public/secret key: } \quad \mathrm{sk}=r, \quad \mathrm{pk}=g^{r} \quad \text { (ElGamal key) } \\
& \text { Aggregated key: } \mathrm{pk}_{1}=g^{r} \\
& \text { (for } 1 \text { slot) } \quad S_{1} \subseteq|\mathcal{U}| \\
& \text { General components: } Z=e(g, g)^{\alpha} \quad h=g^{\beta} \\
& \text { Slot components: } \quad \hat{T}=g^{r} \\
& \text { Attribute components: } \widehat{U}_{w}=1 \quad \text { if } w \in S_{1} \\
& \widehat{U}_{w}=U_{w} \quad \text { if } w \notin S_{1} \\
& \text { mpk } \\
& \text { Slot components: } \quad A=g^{t} \quad B=g^{\alpha} h^{t}
\end{aligned}
$$

Single-Slot Ciphertext

general
Master public key: $Z=e(g, g)^{\alpha} \quad h=g^{\beta}$
slot-specific
$\hat{T}=g^{r}$
attribute
$\widehat{U}_{w}=g^{u_{w}}$ for $w \notin S_{1}$

Encrypting message $\boldsymbol{\mu}$ to policy $\Lambda_{\boldsymbol{i} \in[\ell]} \boldsymbol{w}_{\boldsymbol{i}}$:
Sample encryption randomness $s_{1}, \ldots, s_{\ell} \leftarrow \mathbb{Z}_{N}$ and let $s=s_{1}+\cdots+s_{\ell}$
Sample $h_{1}, h_{2} \leftarrow \mathbb{G}_{p_{1}}$ such that $h=h_{1} h_{2}$
Message components: $C_{1}=\mu \cdot Z^{S} \quad C_{2}=g^{s}$
Attribute components: $C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}} \quad C_{4, i}=g^{\gamma_{i}}$

$$
C_{6}=g^{\gamma_{0}}
$$

$\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\ell}$
additional blinding factors

Slot components:

$$
C_{5}=h_{1}^{s} \hat{T}^{-\gamma_{0}}
$$

Single-Slot Decryption

general

slot-specific

attribute

Master public key:	$Z=e(g, g)^{\alpha}$	$h=g^{\beta}$	$\hat{T}=g^{r}$	$\widehat{U}_{w}=g^{u_{w}}$ for $w \notin S_{1}$

Helper key:	$A=g^{t}$	$B=g^{\alpha} h^{t}$				
Ciphertext:	$C_{1}=\mu \cdot Z^{S}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \widehat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$	$C_{4, i}=g^{\gamma_{i}}$

Goal: recover $Z^{s}=e(g, g)^{\alpha s}$
Observe: $e\left(B, C_{2}\right)=e\left(g^{\alpha} h^{t}, g^{s}\right)=e(g, g)^{\alpha s} e(h, g)^{s t}$
Recall: $h=h_{1} h_{2}$ so suffices to compute $e\left(h_{1}, g\right)^{\text {st }}$ and $e\left(h_{2}, g\right)^{\text {st }}$

Computing this requires knowledge of secret key for the slot

Computing this requires that attributes associated with the slot satisfy the policy

Single-Slot Decryption

	general	slot-specific	attribute	
Master public key:	$Z=e(g, g)^{\alpha}$	$h=g^{\beta}$	$\widehat{T}=g^{r}$	$\widehat{U}_{w}=g^{u_{w}}$ for $w \notin S_{1}$
Helper key:			$A=g^{t}$	$B=g^{\alpha} h^{t}$
Ciphertext:	$C_{1}=\mu \cdot Z^{S}$	$C_{2}=g^{S}$	$C_{5}=h_{1}^{S} \hat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$

Slot specific check: recover $e\left(h_{1}, g\right)^{s t}$

Single-Slot Decryption

general

slot-specific
attribute
Master public key:

$$
\widehat{T}=g^{r}
$$

Helper key:

$$
A=g^{t}
$$

Ciphertext:

$$
C_{5}=h_{1}^{s} \hat{T}^{-\gamma_{0}} \quad C_{6}=g^{\gamma_{0}}
$$

Slot specific check: recover $e\left(h_{1}, g\right)^{s t}$

$$
\begin{aligned}
& \qquad e\left(C_{5}, A\right)=e\left(h_{1}^{s} \hat{T}^{-\gamma_{0}}, g^{t}\right)=e\left(h_{1}, g\right)^{s t} e(\widehat{T}, g)^{-\gamma_{0} t}=e\left(h_{1}, g\right)^{s t} e(g, g)^{-\gamma_{0} r t} \\
& \qquad e\left(C_{6}, A\right)^{r}=e\left(g^{\gamma_{0}}, g^{t}\right)^{r}=e(g, g)^{\gamma_{0} r t} \quad \begin{array}{l}
\text { Product of three quantities in the } \\
\text { exponent - computing this requires } \\
\text { knowledge of one of the exponents } \\
\text { (namely, the secret key } r \text {) }
\end{array} \\
& \text { Recall: } r \text { is the secret key }
\end{aligned}
$$

Single-Slot Decryption

general

slot-specific
attribute

Master public key:	$Z=e(g, g)^{\alpha}$	$h=g^{\beta}$	$\hat{T}=g^{r}$	$\widehat{U}_{w}=g^{u_{w}}$ for $w \notin S_{1}$

Helper key:
$A=g^{t} \quad B=g^{\alpha} h^{t}$

Ciphertext:	$C_{1}=\mu \cdot Z^{s}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \widehat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$	$C_{4, i}=g^{\gamma_{i}}$

Attribute check: recover $e\left(h_{2}, g\right)^{s t}$
If $w_{i} \in S$, then $U_{w}=1$ and $C_{3, i}=h_{2}^{s_{i}}$

$$
\prod_{i \in[\ell]} C_{3, i}=\prod_{i \in[\ell]} h_{2}^{s_{i}}=h_{2}^{\sum_{i \in[\ell]} s_{i}}=h_{2}^{s}
$$

If $w_{i} \notin S$, then $h_{2}^{s_{i}}$ is blinded by $U_{w_{i}}^{-\gamma_{i}}=g^{-u_{w_{i}} \gamma_{i}}$ and pairing with g^{t} produces a term $g^{-u_{w_{i}} \gamma_{i} t}$
$e\left(h_{2}^{s}, A\right)=e\left(h_{2}^{s}, g^{t}\right)=e\left(h_{2}, g\right)^{s t}$

Single-Slot Decryption

general

slot-specific

attribute

Master public key:	$Z=e(g, g)^{\alpha}$	$h=g^{\beta}$	$\widehat{T}=g^{r}$	$\widehat{U}_{w}=g^{u_{w}}$ for $w \notin S_{1}$

Helper key: $A=g^{t} \quad B=g^{\alpha} h^{t}$

Ciphertext:	$C_{1}=\mu \cdot Z^{s}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \widehat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$	$C_{4, i}=g^{\gamma_{i}}$

Goal: recover $Z^{s}=e(g, g)^{\alpha s}$
Observe: $e\left(B, C_{2}\right)=e\left(g^{\alpha} h^{t}, g^{s}\right)=e(g, g)^{\alpha s} e(h, g)^{s t}$
Recall: $h=h_{1} h_{2}$ so suffices to compute $e\left(h_{1}, g\right)^{s t}$ and $e\left(h_{2}, g\right)^{s t}$
Slot specific check: recover $e\left(h_{1}, g\right)^{s t}$
Attribute check: recover $e\left(h_{2}, g\right)^{s t}$

Extending to Multiple Slots

$$
\begin{array}{cccc}
& \text { general } & \text { slot-specific } & \text { attribute } \\
\text { Common reference string: } & Z=e(g, g)^{\alpha} & h=g^{\beta} & A=g^{t} \quad B_{1}=g^{\alpha} h^{t}
\end{array} \begin{aligned}
& U_{w}=g^{w}
\end{aligned}
$$

Idea: replicate components for each slot

Extending to Multiple Slots

$$
\begin{aligned}
& \text { general } \\
& \text { slot-specific } \\
& \text { attribute } \\
& \text { Common reference string: } Z=e(g, g)^{\alpha} \quad h=g^{\beta} \\
& A_{1}=g^{t_{1}} \quad B_{1}=g^{\alpha} h^{t_{1}} \quad U_{w, 1}=g^{u_{w, 1}} \\
& A_{2}=g^{t_{2}} \quad B_{2}=g^{\alpha} h^{t_{2}} \quad U_{w, 2}=g^{u_{w, 2}} \\
& \text { : } \\
& A_{L}=g^{t_{L}} \quad B_{L}=g^{\alpha} h^{t_{L}} \quad U_{w, L}=g^{u_{w, L}}
\end{aligned}
$$

Idea: replicate components for each slot

Multi-Slot Aggregation

general
slot-specific
attribute
Common reference string: $Z=e(g, g)^{\alpha} \quad h=g^{\beta} \quad A_{i}=g^{t_{i}} \quad B_{i}=g^{\alpha} h^{t_{i}} \quad U_{w, i}=g^{u_{w, i}}$

User's public/secret keys: $\mathrm{pk}_{1}=g^{r_{1}}, \ldots, \mathrm{pk}_{L}=g^{r_{L}}$

Single slot setting:
Slot components:

$$
\widehat{T}=g^{r}
$$

Attribute components:

$$
\begin{array}{ll}
\widehat{U}_{w}=1 & \text { if } w \in S \\
\widehat{U}_{w}=U_{w} & \text { if } w \notin S
\end{array}
$$

Aggregate by multiplying across slots
(Similar to vector commitments [CF13])

Multi-Slot Decryption

general

slot-specific
attribute
Master public key: $\quad Z=e(g, g)^{\alpha} \quad h=g^{\beta} \quad \hat{T}=\prod_{i \in[L]} g^{r_{i}} \quad \widehat{U}_{w}=\prod_{w \notin S_{i}} g^{u_{w, i}}$

Ciphertext:	$C_{1}=\mu \cdot Z^{s}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \hat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$	$C_{4, i}=g^{\gamma_{i}}$

Ciphertext structure is unchanged
Goal: recover $Z^{s}=e(g, g)^{\alpha s}$
Observe: $e\left(B_{i}, C_{2}\right)=e\left(g^{\alpha} h^{t_{i}}, g^{s}\right)=e(g, g)^{\alpha s} e(h, g)^{s t_{i}}$
Recall: $h=h_{1} h_{2}$ so suffices to compute $e\left(h_{1}, g\right)^{s t_{i}}$ and $e\left(h_{2}, g\right)^{s t_{i}}$

Recall: $B_{i}=g^{\alpha} h^{t_{i}}$

Multi-Slot Decryption

general

slot-specific
attribute
Master public key: $\quad Z=e(g, g)^{\alpha} \quad h=g^{\beta} \quad \hat{T}=\prod_{i \in[L]} g^{r_{i}} \quad \widehat{U}_{w}=\prod_{w \notin S_{i}} g^{u_{w, i}}$

Ciphertext:	$C_{1}=\mu \cdot Z^{s}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \hat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$	$C_{4, i}=g^{\gamma_{i}}$

Ciphertext structure is unchanged
Slot specific check: recover $e\left(h_{1}, g\right)^{s t_{i}}$
Consider previous decryption equation $\left(A_{i}=g^{t_{i}}\right)$:

$$
\begin{aligned}
e\left(C_{5}, A\right)=e\left(h_{1}^{s} \widehat{T}^{-\gamma_{0}}, g^{t_{i}}\right)= & e\left(h_{1}, g\right)^{s t_{i}} e(\widehat{T}, g)^{-\gamma_{0} t_{i}} \\
= & e\left(h_{1}, g\right)^{s t_{i}} e(g, g)^{-\gamma_{0} r_{i} t_{i}} \prod_{j \neq i} e(g, g)^{-\gamma_{0} r_{j} t_{i}} \\
& \text { "single-slot component" "cross-terms" }
\end{aligned}
$$

Multi-Slot Decryption

general slot-specific attribute
Master public key: $\quad Z=e(g, g)^{\alpha} \quad h=g^{\beta} \quad \hat{T}=\prod_{i \in[L]} g^{r_{i}} \quad \widehat{U}_{w}=\prod_{w \notin S_{i}} g^{u_{w, i}}$

Ciphertext:	$C_{1}=\mu \cdot Z^{s}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \widehat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$	$C_{4, i}=g^{\gamma_{i}}$

$$
e\left(h_{1}, g\right)^{s t} \quad e(g, g)^{-\gamma_{0} r_{i} t_{i}} \prod_{j \neq i} e(g, g)^{-\gamma_{0} r_{j} t_{i}}
$$

User computes

$$
e\left(C_{6}, A_{i}\right)^{r_{i}}=e\left(g^{\gamma_{0}}, g^{t_{i}}\right)^{r_{i}}=e(g, g)^{\gamma_{0} r_{i} t_{i}}
$$

User does not know r_{j} for $j \neq i$

Approach: Include "cross term component" as the helper decryption key

$$
\widehat{V}_{i}=\prod_{j \neq i} A_{i}^{r_{j}}=\prod_{j \neq i} g^{r_{j} t_{i}} \Rightarrow e\left(g^{\gamma_{0}}, \widehat{V}_{i}\right)=\prod_{j \neq i} g^{\gamma_{0} r_{j} t_{i}}
$$

Multi-Slot Decryption

general

slot-specific
attribute
Master public key: $\quad Z=e(g, g)^{\alpha} \quad h=g^{\beta} \quad \hat{T}=\prod_{i \in[L]} g^{r_{i}} \quad \widehat{U}_{w}=\prod_{w \notin S_{i}} g^{u_{w, i}}$

Ciphertext:	$C_{1}=\mu \cdot Z^{s}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \widehat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$	$C_{4, i}=g^{\gamma_{i}}$

Approach: Include "cross term component" as the helper decryption key

$$
\hat{V}_{i}=\prod_{j \neq i} A_{i}^{r_{j}}=\prod_{j \neq i} g^{r_{j} t_{i}} \Rightarrow e\left(g^{\gamma_{0}}, \hat{V}_{i}\right)=\prod_{j \neq i} g^{\gamma_{0} r_{j} t_{i}}
$$

At registration time, each user (who knows r_{j}) will additionally compute

$$
V_{j, i}=A_{i}^{r_{j}}=g^{r_{j} t_{i}} \text { for all } i \neq j
$$

Key-curator can then compute cross-term

$$
\widehat{V}_{i}=\prod_{j \neq i} V_{j, i}
$$

Multi-Slot Decryption

general

slot-specific
attribute

Master public key:	$Z=e(g, g)^{\alpha}$	$h=g^{\beta}$	$\widehat{T}=\prod_{i \in[L]} g^{r_{i}}$	$\widehat{U}_{w}=\prod_{w \notin S_{i}} g^{u_{w, i}}$	
Ciphertext:	$C_{1}=\mu \cdot Z^{s}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \widehat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$

Ciphertext structure is unchanged
Attribute check: recover $e\left(h_{2}, g\right)^{s t_{i}}$
Can use a similar approach: for each $w \in \mathcal{U}$, include a cross-term $\widehat{W}_{i, w}$

Multi-Slot Decryption

general

slot-specific
attribute
Master public key: $Z=e(g, g)^{\alpha} \quad h=g^{\beta} \quad \hat{T}=\prod_{i \in[L]} g^{r_{i}} \quad \widehat{U}_{w}=\prod_{w \notin S_{i}} g^{u_{w, i}}$

Ciphertext:	$C_{1}=\mu \cdot Z^{s}$	$C_{2}=g^{s}$	$C_{5}=h_{1}^{s} \widehat{T}^{-\gamma_{0}}$	$C_{6}=g^{\gamma_{0}}$	$C_{3, i}=h_{2}^{s_{i}} \widehat{U}_{w_{i}}^{-\gamma_{i}}$	$C_{4, i}=g^{\gamma_{i}}$

Helper decryption key $\mathbf{h s k}_{\boldsymbol{i}}$ (for slot \boldsymbol{i}):

$$
\begin{aligned}
& A_{i}=g^{t_{i}} \quad B_{i}=g^{\alpha} h^{t_{i}} \\
& \widehat{V}_{i}
\end{aligned}
$$

$$
\widehat{W}_{i, w} \text { for each } w \in \mathcal{U}
$$

(same as single-slot setting)
(cross-terms for slot-specific components)
(cross-terms for attribute components)
$\left|\operatorname{hsk}_{i}\right|=\operatorname{poly}(\lambda,|\mathcal{U}|) \quad$ independent of L

Slotted Scheme from Pairings

Let L be the number of users

mpk

hsk $_{1}, \ldots$, hsk $_{L}$
Each slot associated with a public key pk and a set of attributes S

$$
\begin{array}{ll}
|\mathrm{mpk}|=\operatorname{poly}(\lambda,|\mathcal{U}|) & \lambda \text { : security parameter } \\
\left|\operatorname{hsk}_{i}\right|=\operatorname{poly}(\lambda,|\mathcal{U}|) & \mathcal{U}: \text { universe of attributes }
\end{array}
$$

Encrypt $(\mathrm{mpk}, P, m) \rightarrow \mathrm{ct}$
$\operatorname{Decrypt}\left(\mathrm{sk}_{i}, \mathrm{hsk}_{i}, \mathrm{ct}\right) \rightarrow m$

Security relies on assumptions over composite-order pairing groups [see paper for details]

Slotted Registered ABE to Registered ABE

Let L be the number of users

Aggregate
 $\mathrm{hsk}_{1}, \ldots, \mathrm{hsk}_{L}$

Slotted scheme does not support online registration

Solution: use "powers-of-two" approach (like [GHMR18])

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1
$$

\square

$$
2^{1}=2
$$

$m p k=\perp$

Initially: all slots are empty $m p k=\perp$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $\operatorname{mpk}=\perp$

Add key to each scheme with available slot

$$
\mathrm{pk}_{1}, S_{1}
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $m p k=\perp$

pk_{1}, S_{1}

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{1}=2 \quad \mathrm{pk}_{1}, S_{1}
$$

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}\right)
$$

pk_{1}, S_{1}

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}\right)
$$

Add key to each scheme with available slot

$$
\left\{\mathrm{pk}_{2}, S_{2}\right.
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}\right)
$$

pk_{2}, S_{2}

$2^{\ell}=L$| | pk_{1}, S_{1} | pk_{2}, S_{2} | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}\right)
$$

pk_{2}, S_{2}

$2^{\ell}=L$| | pk_{1}, S_{1} | pk_{2}, S_{2} | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $m p k=\left(m p k_{2}\right)$

pk_{2}, S_{2}

$$
2^{\ell}=L \begin{array}{|l|l|l|l|l|l|}
\mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & & & & \\
\hline
\end{array}
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1 \quad \mathrm{pk}_{3}, S_{3}
$$

$$
2^{1}=2 \begin{array}{|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} \\
& \text { all slots are full } \\
\mathrm{mpk}_{2}
\end{array}
$$

$$
2^{2}=4 \begin{array}{|l|l|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & \mathrm{pk}_{3}, S_{3} & \\
\hline
\end{array}
$$

Add key to each scheme with

Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{2}\right)
$$ available slot

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Add key to each scheme with
Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{2}\right)
$$

 available slot

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1 \xrightarrow{\mathrm{pk}_{3}, S_{3}} \xrightarrow{\text { all slots are full }} \mathrm{mpk}_{1}
$$

$$
2^{1}=2 \begin{array}{|c|c|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} \\
& \text { all slots are full } \\
\mathrm{mpk}_{2}
\end{array}
$$

$$
2^{2}=4 \begin{array}{|l|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & \mathrm{pk}_{3}, S_{3} \\
\hline
\end{array}
$$

Add key to each scheme with available slot

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}, \mathrm{mpk}_{2}\right)
$$

pk_{3}, S_{3}

$2^{\ell}=L$| pk_{1}, S_{1} | pk_{2}, S_{2} | pk_{3}, S_{3} | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{1}, \mathrm{mpk}_{2}\right)
$$

Add key to each scheme with available slot

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{1}, \mathrm{mpk}_{2}\right)
$$

pk_{4}, S_{4}
$2^{0}=1 \xrightarrow{\mathrm{pk}_{3}, S_{3}} \xrightarrow{\text { all slots are full }} \mathrm{mpk}_{1}$

$2^{1}=2$| pk_{1}, S_{1} | pk_{2}, S_{2} |
| :---: | :---: |
| | all slots are full |
| mpk_{2} | |

$2^{2}=4$| pk_{1}, S_{1} | pk_{2}, S_{2} | pk_{3}, S_{3} | pk_{4}, S_{4} |
| :--- | :--- | :--- | :--- |$\xrightarrow{\text { all slots are full }} \mathrm{mpk}_{3}$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{1}, \mathrm{mpk}_{2}\right)
$$

pk_{4}, S_{4}

$2^{2}=4$| pk_{1}, S_{1} | pk_{2}, S_{2} | pk_{3}, S_{3} | pk_{4}, S_{4} |
| :--- | :--- | :--- | :--- |

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $m p k=\left(\mathrm{mpk}_{3}\right)$

$2^{2}=4$| pk_{1}, S_{1} | pk_{2}, S_{2} | pk_{3}, S_{3} | pk_{4}, S_{4} |
| :--- | :--- | :--- | :--- |

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1 \square
$$

Ciphertext is an encryption to

$$
2^{1}=2 \square
$$ each public key

$$
2^{2}=4 \begin{array}{|l|l|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & \mathrm{pk}_{3}, S_{3} & \mathrm{pk}_{4}, S_{4} \\
\hline
\end{array}
$$

$\log L$ overhead

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{3}\right)
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{3}\right)
$$

Update needed whenever user's key moves from scheme i to scheme $j>i$

At most $\ell=\log L$ updates

$2^{\ell}=L$| | pk_{1}, S_{1} | pk_{2}, S_{2} | pk_{3}, S_{3} | pk_{4}, S_{4} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

Registered ABE Summary

Registered ABE Summary

Summary

This work: registered ABE for policies that can be based on linear secret sharing

- Only needs black-box use of cryptography
- Security based on composite-order bilinear map assumptions
- Supports a priori bounded number of users

Open questions:

- Registered ABE for general circuit policies
- Registered ABE for unbounded number of users
- Registered ABE with a large universe

Possible using
indistinguishability obfuscation [see paper]

Registration-based model for other notions?

Thank you!

