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Attribute-Based Encryption
[SW05, GPSW06]

master secret key
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“faculty”

“math”

“student”

“CS”

What if the key-issuer is 
compromised?

ABE has built-in key escrow

Key issuer can decrypt all
ciphertexts

Users do not have control over keys
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mpk𝐿 = poly(𝜆, log 𝐿)

Public key is short



mpk𝐿

Registered ABE

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

Key issuer replaced 
with key curator

Aggregated key

sk2

“student”

“CS”

“faculty”

“math”

pk2

pk3

sk3

message

policy: CS and faculty

master public key can be used to 
encrypt to policies, as in vanilla ABE



Key curator maintains
no secrets

Registered ABE

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

Key issuer replaced 
with key curator

mpk𝐿

Aggregated key

To decrypt, user periodically
retrieves a helper decryption key hsk

(function of mpk and user’s public key pk1)

hsk1
hsk = poly(𝜆, log 𝐿)

# updates = poly 𝜆, log 𝐿



Registration-Based Encryption (RBE)

Alice

sk1

pk1

hsk1

mpk𝐿

Analog for identity-based encryption (IBE)

[GHMR18]

• Users register their public key along with an identity
• Master public key allows encryption to an arbitrary 

identity

• Existing constructions based on indistinguishability 
obfuscation or “hash garbling” (based on CDH, QR, 
LWE) – all require non-black-box use of cryptography

• High concrete efficiency costs: ciphertext is 4.5 TB for 
supporting 2 billion users [CES21]

Key issuer replaced 
with key curator

Aggregated key



This Work

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

Key issuer replaced 
with key curator

mpk𝐿

Aggregated key

hsk1

• New approach to constructing RBE-type of primitives
• Registered ABE scheme (for Boolean formulas) only 

makes black-box use of cryptography

• Construction will need a (trusted) common 
reference string (CRS) and supports bounded
number of users



Starting Point: A Slotted Scheme

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

mpk = poly 𝜆, 𝒰 , log 𝐿

hsk𝑖 = poly 𝜆, 𝒰 , log 𝐿

For special case of IBE with 
identities of length ℓ, 𝒰 = 2ℓ

𝜆: security parameter

𝒰: universe of attributes
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Starting Point: A Slotted Scheme

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

mpk = poly 𝜆, 𝒰 , log 𝐿

hsk𝑖 = poly 𝜆, 𝒰 , log 𝐿

Encrypt mpk, 𝑃,𝑚 → ct

Decrypt sk𝑖 , hsk𝑖 , ct → 𝑚

Encryption takes master public key and policy 𝑃 (no slot)

Decryption takes secret key sk𝑖 for some slot and the 
helper key hsk𝑖 for that slot

𝜆: security parameter

𝒰: universe of attributes

Main difference with registered ABE: 
Aggregate takes all 𝐿 keys simultaneously



Constructing Slotted Registered ABE

Construction will rely on composite-order pairing groups

Let 𝔾 be a group of order 𝑁 = 𝑝1𝑝2𝑝3 (composite order)

Scheme essentially operates in 𝔾𝑝1

(other subgroups used for randomization and security proof)

Pairing is an efficiently-computable bilinear map on 𝔾:

𝑒 𝑔𝑥 , 𝑔𝑦 = 𝑒 𝑔, 𝑔 𝑥𝑦

Multiplies exponents in the target group



Warm-Up: A Single-Slot Scheme

For simplicity: will describe scheme for conjunction policies
Generalizes to policies that can be described by linear secret sharing scheme

[Scheme described here does not have all the randomization needed for security – see paper for actual scheme]

Scheme will rely on a common reference string (CRS)

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽 𝑔 is generator for 𝔾1

Slot components: 𝐴 = 𝑔𝑡 𝐵 = 𝑔𝛼ℎ𝑡

Attribute components: 𝑈𝑤 = 𝑔𝑢𝑤 for each 𝑤 ∈ 𝒰



Single-Slot Aggregation

Common reference string:

User’s public/secret key: sk = 𝑟,   pk = 𝑔𝑟 (ElGamal key)

Aggregated key: pk1 = 𝑔𝑟

𝑆1 ⊆ 𝒰(for 1 slot)

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Slot components: 𝑇 = 𝑔𝑟

Attribute components: 𝑈𝑤 = 1 if 𝑤 ∈ 𝑆1
𝑈𝑤 = 𝑈𝑤 if 𝑤 ∉ 𝑆1

mpk

hsk1

Slot components: 𝐴 = 𝑔𝑡 𝐵 = 𝑔𝛼ℎ𝑡

general slot-specific attribute

𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽 𝐴 = 𝑔𝑡 𝐵 = 𝑔𝛼ℎ𝑡 𝑈𝑤 = 𝑔𝑢𝑤



Single-Slot Ciphertext

Master public key:

general slot-specific attribute

𝑈𝑤 = 𝑔𝑢𝑤 for 𝑤 ∉ 𝑆1𝑇 = 𝑔𝑟𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Encrypting message 𝝁 to policy ٿ𝒊∈ ℓ 𝒘𝒊:

Sample encryption randomness 𝑠1, … , 𝑠ℓ ← ℤ𝑁 and let 𝑠 = 𝑠1 +⋯+ 𝑠ℓ

Message components: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠

Slot components: 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0

Attribute components: 𝐶3,𝑖 = ℎ2
𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖 𝛾0, 𝛾1, … , 𝛾ℓ
additional blinding factors

Sample ℎ1, ℎ2 ← 𝔾𝑝1 such that ℎ = ℎ1ℎ2



Single-Slot Decryption

Master public key:

general slot-specific attribute
𝑈𝑤 = 𝑔𝑢𝑤 for 𝑤 ∉ 𝑆1𝑇 = 𝑔𝑟𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Helper key: 𝐴 = 𝑔𝑡 𝐵 = 𝑔𝛼ℎ𝑡

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Goal: recover 𝑍𝑠 = 𝑒 𝑔, 𝑔 𝛼𝑠

Observe: 𝑒 𝐵, 𝐶2

Recall: ℎ = ℎ1ℎ2 so suffices to compute 𝑒 ℎ1, 𝑔
𝑠𝑡 and 𝑒 ℎ2, 𝑔

𝑠𝑡

Computing this requires knowledge 
of secret key for the slot

Computing this requires that 
attributes associated with the slot 

satisfy the policy

= 𝑒 𝑔𝛼ℎ𝑡 , 𝑔𝑠 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 ℎ, 𝑔 𝑠𝑡



Single-Slot Decryption

Master public key:

general slot-specific attribute
𝑈𝑤 = 𝑔𝑢𝑤 for 𝑤 ∉ 𝑆1𝑇 = 𝑔𝑟𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Helper key: 𝐴 = 𝑔𝑡 𝐵 = 𝑔𝛼ℎ𝑡

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Slot specific check: recover 𝑒 ℎ1, 𝑔
𝑠𝑡



Single-Slot Decryption

Master public key:

general slot-specific attribute

𝑇 = 𝑔𝑟

Helper key: 𝐴 = 𝑔𝑡

Ciphertext: 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0

Slot specific check: recover 𝑒 ℎ1, 𝑔
𝑠𝑡

𝑒 𝐶5, 𝐴

𝑒 𝐶6, 𝐴
𝑟 = 𝑒 𝑔𝛾0 , 𝑔𝑡

𝑟
= 𝑒 𝑔, 𝑔 𝛾0𝑟𝑡 Product of three quantities in the 

exponent – computing this requires 
knowledge of one of the exponents 

(namely, the secret key 𝑟)

Recall: 𝑟 is the secret key

= 𝑒 ℎ1
𝑠 𝑇−𝛾0 , 𝑔𝑡 = 𝑒 ℎ1, 𝑔

𝑠𝑡𝑒 𝑇, 𝑔
−𝛾0𝑡

= 𝑒 ℎ1, 𝑔
𝑠𝑡𝑒 𝑔, 𝑔 −𝛾0𝑟𝑡



Single-Slot Decryption

Master public key:

general slot-specific attribute
𝑈𝑤 = 𝑔𝑢𝑤 for 𝑤 ∉ 𝑆1𝑇 = 𝑔𝑟𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Helper key: 𝐴 = 𝑔𝑡 𝐵 = 𝑔𝛼ℎ𝑡

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Attribute check: recover 𝑒 ℎ2, 𝑔
𝑠𝑡

If 𝑤𝑖 ∈ 𝑆, then 𝑈𝑤 = 1 and 𝐶3,𝑖 = ℎ2
𝑠𝑖

ෑ

𝑖∈ ℓ

𝐶3,𝑖 = ෑ

𝑖∈ ℓ

ℎ2
𝑠𝑖 = ℎ2

σ𝑖∈ ℓ 𝑠𝑖
= ℎ2

𝑠
𝑒 ℎ2

𝑠 , 𝐴 = 𝑒 ℎ2
𝑠 , 𝑔𝑡 = 𝑒 ℎ2, 𝑔

𝑠𝑡

If 𝑤𝑖 ∉ 𝑆, then ℎ2
𝑠𝑖 is blinded by 

𝑈𝑤𝑖

−𝛾𝑖 = 𝑔−𝑢𝑤𝑖𝛾𝑖 and pairing with 

𝑔𝑡 produces a term 𝑔−𝑢𝑤𝑖𝛾𝑖𝑡



Single-Slot Decryption

Master public key:

general slot-specific attribute
𝑈𝑤 = 𝑔𝑢𝑤 for 𝑤 ∉ 𝑆1𝑇 = 𝑔𝑟𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Helper key: 𝐴 = 𝑔𝑡 𝐵 = 𝑔𝛼ℎ𝑡

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Goal: recover 𝑍𝑠 = 𝑒 𝑔, 𝑔 𝛼𝑠

Observe: 𝑒 𝐵, 𝐶2 = 𝑒 𝑔𝛼ℎ𝑡 , 𝑔𝑠 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 ℎ, 𝑔 𝑠𝑡

Recall: ℎ = ℎ1ℎ2 so suffices to compute 𝑒 ℎ1, 𝑔
𝑠𝑡 and 𝑒 ℎ2, 𝑔

𝑠𝑡

Slot specific check: recover 𝑒 ℎ1, 𝑔
𝑠𝑡

Attribute check: recover 𝑒 ℎ2, 𝑔
𝑠𝑡 Recover 𝑒 ℎ, 𝑔 𝑠𝑡



Extending to Multiple Slots

Common reference string:

general slot-specific attribute

𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽 𝐴 = 𝑔𝑡 𝐵1 = 𝑔𝛼ℎ𝑡 𝑈𝑤 = 𝑔𝑤

Idea: replicate components for each slot



Extending to Multiple Slots

Common reference string:

general slot-specific attribute

𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽 𝐴1 = 𝑔𝑡1 𝐵1 = 𝑔𝛼ℎ𝑡1 𝑈𝑤,1 = 𝑔𝑢𝑤,1

Idea: replicate components for each slot

𝐴2 = 𝑔𝑡2 𝐵2 = 𝑔𝛼ℎ𝑡2 𝑈𝑤,2 = 𝑔𝑢𝑤,2

𝐴𝐿 = 𝑔𝑡𝐿 𝐵𝐿 = 𝑔𝛼ℎ𝑡𝐿 𝑈𝑤,𝐿 = 𝑔𝑢𝑤,𝐿

⋮ ⋮



Multi-Slot Aggregation

Common reference string:

general slot-specific attribute

𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽 𝐴𝑖 = 𝑔𝑡𝑖 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖 𝑈𝑤,𝑖 = 𝑔𝑢𝑤,𝑖

User’s public/secret keys: pk1 = 𝑔𝑟1 , … , pk𝐿 = 𝑔𝑟𝐿

Slot components: 
𝑇 = 𝑔𝑟

Attribute components:
𝑈𝑤 = 1 if 𝑤 ∈ 𝑆
𝑈𝑤 = 𝑈𝑤 if 𝑤 ∉ 𝑆

Single slot setting: 𝑔𝑟1 ⋯ 𝑔𝑟𝐿 𝑇 = ෑ

𝑖∈ 𝐿

𝑔𝑟𝑖

𝑈𝑤,1 ⋯ 𝑈𝑤,𝐿
𝑈 = ෑ

𝑖∈ 𝐿

𝑈𝑤,𝑖

Aggregate by multiplying across slots

(Similar to vector commitments [CF13])



Multi-Slot Decryption

Master public key:

general slot-specific attribute

𝑈𝑤 = ς𝑤∉𝑆𝑖
𝑔𝑢𝑤,𝑖𝑇 = ς𝑖∈ 𝐿 𝑔

𝑟𝑖𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Ciphertext structure is unchanged

Goal: recover 𝑍𝑠 = 𝑒 𝑔, 𝑔 𝛼𝑠

Observe: 𝑒 𝐵𝑖 , 𝐶2 = 𝑒 𝑔𝛼ℎ𝑡𝑖 , 𝑔𝑠 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 ℎ, 𝑔 𝑠𝑡𝑖

Recall: ℎ = ℎ1ℎ2 so suffices to compute 𝑒 ℎ1, 𝑔
𝑠𝑡𝑖 and 𝑒 ℎ2, 𝑔

𝑠𝑡𝑖

Recall: 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖



Multi-Slot Decryption

Master public key:

general slot-specific attribute

𝑈𝑤 = ς𝑤∉𝑆𝑖
𝑔𝑢𝑤,𝑖𝑇 = ς𝑖∈ 𝐿 𝑔

𝑟𝑖𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Ciphertext structure is unchanged
Slot specific check: recover 𝑒 ℎ1, 𝑔

𝑠𝑡𝑖

𝑒 𝐶5, 𝐴 = 𝑒 ℎ1
𝑠 𝑇−𝛾0 , 𝑔𝑡𝑖

Consider previous decryption equation (𝐴𝑖 = 𝑔𝑡𝑖):

= 𝑒 ℎ1, 𝑔
𝑠𝑡𝑖𝑒 𝑇, 𝑔

−𝛾0𝑡𝑖

= 𝑒 ℎ1, 𝑔
𝑠𝑡𝑖𝑒 𝑔, 𝑔 −𝛾0𝑟𝑖𝑡𝑖ς𝑗≠𝑖 𝑒 𝑔, 𝑔 −𝛾0𝑟𝑗𝑡𝑖

“single-slot component” “cross-terms”



𝑒 ℎ1, 𝑔
𝑠𝑡 𝑒 𝑔, 𝑔 −𝛾0𝑟𝑖𝑡𝑖 ς𝑗≠𝑖 𝑒 𝑔, 𝑔 −𝛾0𝑟𝑗𝑡𝑖

Multi-Slot Decryption

Master public key:

general slot-specific attribute

𝑈𝑤 = ς𝑤∉𝑆𝑖
𝑔𝑢𝑤,𝑖𝑇 = ς𝑖∈ 𝐿 𝑔

𝑟𝑖𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

User computes

𝑒 𝐶6, 𝐴𝑖
𝑟𝑖 = 𝑒 𝑔𝛾0 , 𝑔𝑡𝑖

𝑟𝑖
= 𝑒 𝑔, 𝑔 𝛾0𝑟𝑖𝑡𝑖

User does not know 𝑟𝑗 for 𝑗 ≠ 𝑖

Approach: Include “cross term component” as the helper decryption key

𝑉𝑖 = ς𝑗≠𝑖 𝐴𝑖
𝑟𝑗
= ς𝑗≠𝑖 𝑔

𝑟𝑗𝑡𝑖 ⟹ 𝑒 𝑔𝛾0 , 𝑉𝑖 = ς𝑗≠𝑖 𝑔
𝛾0𝑟𝑗𝑡𝑖



Multi-Slot Decryption

Master public key:

general slot-specific attribute

𝑈𝑤 = ς𝑤∉𝑆𝑖
𝑔𝑢𝑤,𝑖𝑇 = ς𝑖∈ 𝐿 𝑔

𝑟𝑖𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Approach: Include “cross term component” as the helper decryption key

𝑉𝑖 = ς𝑗≠𝑖 𝐴𝑖
𝑟𝑗 = ς𝑗≠𝑖 𝑔

𝑟𝑗𝑡𝑖 ⟹ 𝑒 𝑔𝛾0 , 𝑉𝑖 = ς𝑗≠𝑖 𝑔
𝛾0𝑟𝑗𝑡𝑖

At registration time, each user (who knows 𝑟𝑗) will additionally compute

𝑉𝑗,𝑖 = 𝐴
𝑖

𝑟𝑗 = 𝑔𝑟𝑗𝑡𝑖 for all   𝑖 ≠ 𝑗

Recall: 𝐴𝑖 = 𝑔𝑡𝑖 is part of the CRS

Key-curator can then compute cross-term
𝑉𝑖 = ς𝑗≠𝑖 𝑉𝑗,𝑖



Multi-Slot Decryption

Master public key:

general slot-specific attribute

𝑈𝑤 = ς𝑤∉𝑆𝑖
𝑔𝑢𝑤,𝑖𝑇 = ς𝑖∈ 𝐿 𝑔

𝑟𝑖𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Ciphertext structure is unchanged
Attribute check: recover 𝑒 ℎ2, 𝑔

𝑠𝑡𝑖

Can use a similar approach: for each 𝑤 ∈ 𝒰, include a cross-term 𝑊𝑖,𝑤



Multi-Slot Decryption

Master public key:

general slot-specific attribute

𝑈𝑤 = ς𝑤∉𝑆𝑖
𝑔𝑢𝑤,𝑖𝑇 = ς𝑖∈ 𝐿 𝑔

𝑟𝑖𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ = 𝑔𝛽

Ciphertext: 𝐶1 = 𝜇 ⋅ 𝑍𝑠 𝐶2 = 𝑔𝑠 𝐶5 = ℎ1
𝑠 𝑇−𝛾0 𝐶6 = 𝑔𝛾0 𝐶3,𝑖 = ℎ2

𝑠𝑖 𝑈𝑤𝑖

−𝛾𝑖 𝐶4,𝑖 = 𝑔𝛾𝑖

Helper decryption key 𝐡𝐬𝐤𝒊 (for slot 𝒊):

𝐴𝑖 = 𝑔𝑡𝑖 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖 (same as single-slot setting)

𝑉𝑖 (cross-terms for slot-specific components)

𝑊𝑖,𝑤 for each 𝑤 ∈ 𝒰 (cross-terms for attribute components)

hsk𝑖 = poly 𝜆, 𝒰 independent of 𝐿



Slotted Scheme from Pairings

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

mpk = poly 𝜆, 𝒰

hsk𝑖 = poly 𝜆, 𝒰

Encrypt mpk, 𝑃,𝑚 → ct

Decrypt sk𝑖 , hsk𝑖 , ct → 𝑚

𝜆: security parameter

𝒰: universe of attributes

Security relies on assumptions over 
composite-order pairing groups

[see paper for details]



Slotted Registered ABE to Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Aggregate
mpk

hsk1, … , hsk𝐿

Slotted scheme does not support online registration

Solution: use “powers-of-two” approach (like [GHMR18])



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = ⊥



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4
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⋮

Initially: all slots are empty
mpk = ⊥
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Add key to each 
scheme with 
available slot



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = ⊥

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

all slots are full
mpk1



Initially: all slots are empty
mpk = mpk1

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

all slots are full
mpk1



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1

pk2, 𝑆2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

Add key to each 
scheme with 
available slot

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

all slots are full
mpk1



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1

pk2, 𝑆2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2
all slots are full

all slots are full
mpk1

clear out 
previous 
schemes
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To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1

pk2, 𝑆2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2
all slots are full

clear out 
previous 
schemes



Slotted Registered ABE to Registered ABE
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Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes
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Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2
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2ℓ = 𝐿

⋮
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Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1, mpk2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2
all slots are full

pk3, 𝑆3pk3, 𝑆3

pk3, 𝑆3

pk3, 𝑆3
all slots are full

mpk1

Add key to each 
scheme with 
available slot



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1, mpk2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2
all slots are full

pk3, 𝑆3

pk3, 𝑆3

pk3, 𝑆3
all slots are full

mpk1

pk4, 𝑆4pk4, 𝑆4

pk4, 𝑆4

Add key to each 
scheme with 
available slot



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1, mpk2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2
all slots are full

pk3, 𝑆3

pk3, 𝑆3

pk3, 𝑆3
all slots are full

mpk1

pk4, 𝑆4pk4, 𝑆4

pk4, 𝑆4

mpk3
all slots are full

clear out 
previous 
schemes



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes
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21 = 2
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⋮
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clear out 
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Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk3

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk3, 𝑆3
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pk4, 𝑆4pk4, 𝑆4

pk4, 𝑆4

mpk3
all slots are full

clear out 
previous 
schemes



Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk3

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk3, 𝑆3

pk3, 𝑆3

pk4, 𝑆4

pk4, 𝑆4

Ciphertext is an encryption to 
each public key

log 𝐿 overhead



Update needed whenever 
user’s key moves from 

scheme 𝑖 to scheme 𝑗 > 𝑖

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk3

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk3, 𝑆3

pk3, 𝑆3

pk4, 𝑆4

pk4, 𝑆4

At most ℓ = log 𝐿 updates



Registered ABE Summary

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

Key issuer replaced 
with key curator

mpk𝐿

Aggregated key

hsk1

• New approach to constructing RBE-type of primitives
• Registered ABE scheme (for Boolean formulas) only 

makes black-box use of cryptography

• Construction will need a (trusted) common 
reference string (CRS) and supports bounded
number of users



Registered ABE Summary

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

Key issuer replaced 
with key curator

mpk𝐿

Aggregated key

hsk1

• Size of key curator state: 𝐿2 ⋅ poly 𝜆, 𝒰 , log 𝐿
• Key-generation/registration time: 𝐿 ⋅ poly(𝜆, 𝒰 , log 𝐿)
• Public key, helper key size: 𝒰 ⋅ poly(𝜆, log 𝐿)
• Ciphertext size (for policy 𝑷): 𝑃 ⋅ poly(𝜆, log 𝐿)



Summary

This work: registered ABE for policies that can be based on linear secret sharing
• Only needs black-box use of cryptography
• Security based on composite-order bilinear map assumptions
• Supports a priori bounded number of users

Open questions:
• Registered ABE for general circuit policies
• Registered ABE for unbounded number of users
• Registered ABE with a large universe

Possible using 
indistinguishability 

obfuscation [see paper]

Registration-based model for other notions?

Thank you!


