Registered Attribute-Based Encryption

Susan Hohenberger, George Lu, Brent Waters, and David Wu

[SW05, GPSW06]

[SW05, GPSW06]

Can decrypt

[SW05, GPSW06]

[SW05, GPSW06]

Users <u>cannot</u> collude to decrypt

[SW05, GPSW06]

[SW05, GPSW06]

Users chooses their <u>own</u> public/secret key

Users chooses their <u>own</u> public/secret key $|mpk_L| = poly(\lambda, log L)$ Public key is *short*

Users chooses their <u>own</u> public/secret key master public key can be used to encrypt to policies, as in vanilla ABE

message

policy: CS and faculty

Users chooses their <u>own</u> public/secret key

Key curator maintains no secrets

Registration-Based Encryption (RBE)

- LWE) all require **non-black-box** use of cryptography
- High concrete efficiency costs: ciphertext is 4.5 TB for supporting 2 billion users [CES21]

This Work

Starting Point: A Slotted Scheme

Let *L* be the number of users

$$pk_1, S_1 pk_2, S_2 pk_3, S_3 pk_4, S_4 \cdots pk_L, S_L$$
 $mpk_1, S_1 pk_2, S_2 pk_3, S_3 pk_4, S_4 \cdots pk_L, S_L$

Each slot associated with a <u>public key</u> pk and a set of attributes S

$$|mpk| = poly(\lambda, |\mathcal{U}|, \log L)$$
$$|hsk_i| = poly(\lambda, |\mathcal{U}|, \log L)$$

- λ : security parameter
- \mathcal{U} : universe of attributes

For special case of IBE with identities of length ℓ , $|\mathcal{U}| = 2\ell$

Δσσregate

Starting Point: A Slotted Scheme

Let *L* be the number of users

Each slot associated with a <u>public key</u> pk and a set of attributes S

$$|mpk| = poly(\lambda, |\mathcal{U}|, \log L)$$
$$|hsk_i| = poly(\lambda, |\mathcal{U}|, \log L)$$

- λ : security parameter
- \mathcal{U} : universe of attributes

Encrypt(mpk, P, m) \rightarrow ct

 $\text{Decrypt}(\text{sk}_i, \text{hsk}_i, \text{ct}) \rightarrow m$

Encryption takes master public key and policy P (no slot)

Aggregate

Decryption takes secret key sk_i for some slot and the helper key hsk_i for that slot

Starting Point: A Slotted Scheme

Let *L* be the number of users

Each slot associated with a public key pk and a set of attributes S

$$|mpk| = poly(\lambda, |\mathcal{U}|, \log L)$$
$$|hsk_i| = poly(\lambda, |\mathcal{U}|, \log L)$$

- λ : security parameter
- \mathcal{U} : universe of attributes

Encrypt(mpk, P, m) \rightarrow ct

 $\text{Decrypt}(\text{sk}_i, \text{hsk}_i, \text{ct}) \rightarrow m$

Main difference with registered ABE: Aggregate takes all *L* keys <u>simultaneously</u>

Aggregate

Constructing Slotted Registered ABE

Construction will rely on composite-order pairing groups

- Let \mathbb{G} be a group of order $N = p_1 p_2 p_3$ (composite order)
- Scheme essentially operates in \mathbb{G}_{p_1} (other subgroups used for randomization and security proof)

Pairing is an <u>efficiently-computable</u> bilinear map on G:

 $e(g^x,g^y) = e(g,g)^{xy}$

Multiplies exponents in the *target group*

Warm-Up: A Single-Slot Scheme

For simplicity: will describe scheme for conjunction policies Generalizes to policies that can be described by linear secret sharing scheme

Scheme will rely on a common reference string (CRS)

General components: $Z = e(g,g)^{\alpha}$ $h = g^{\beta}$ g is generator for \mathbb{G}_1 Slot components: $A = g^t$ $B = g^{\alpha}h^t$ Attribute components: $U_w = g^{u_w}$ for each $w \in \mathcal{U}$

[Scheme described here does <u>not</u> have all the randomization needed for security – see paper for actual scheme]

Single-Slot Aggregation

User's public/secret key: sk = r, $pk = g^r$ (ElGamal key)

Aggregated key: $pk_1 = g^r$ (for 1 slot) $S_1 \subseteq |\mathcal{U}|$

General components: $Z = e(g,g)^{\alpha}$ $h = g^{\beta}$ Slot components: $\widehat{T} = g^{r}$ Attribute components: $\widehat{U}_{w} = 1$ if $w \in S_{1}$ $\widehat{U}_{w} = U_{w}$ if $w \notin S_{1}$ mpkSlot components: $A = g^{t}$ $B = g^{\alpha}h^{t}$ hsk_{1}

Single-Slot Ciphertext

Encrypting message μ to policy $\bigwedge_{i \in [\ell]} w_i$:

Sample encryption randomness $s_1, \dots, s_\ell \leftarrow \mathbb{Z}_N$ and let $s = s_1 + \dots + s_\ell$

Sample h_1 , $h_2 \leftarrow \mathbb{G}_{p_1}$ such that $h = h_1 h_2$

Message components: $C_1 = \mu \cdot Z^s$ $C_2 = g^s$ Attribute components: $C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i}$ $C_{4,i} = g^{\gamma_i}$ $\gamma_0, \gamma_1, \dots, \gamma_\ell$ Slot components: $C_5 = h_1^s \widehat{T}^{-\gamma_0}$ $C_6 = g^{\gamma_0}$ additional blinding factors

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = g^r$	$\widehat{U}_w = g^{u_w}$ for $w \notin S_1$
Helper key:		$A = g^t B = g^{\alpha} h^t$	
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Goal: recover $Z^s = e(g,g)^{\alpha s}$

Observe: $e(B, C_2) = e(g^{\alpha}h^t, g^s) = e(g, g)^{\alpha s} e(h, g)^{st}$

Recall: $h = h_1 h_2$ so suffices to compute $e(h_1, g)^{st}$ and $e(h_2, g)^{st}$

Computing this requires knowledge of secret key for the slot Computing this requires that attributes associated with the slot satisfy the policy

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = g^r$	$\widehat{U}_w = g^{u_w}$ for $w \notin S_1$
Helper key:		$A = g^t B = g^{\alpha} h^t$	
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Slot specific check: recover $e(h_1, g)^{st}$

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = g^r$	$\widehat{U}_w = g^{u_w}$ for $w \notin S_1$
Helper key:		$A = g^t B = g^{\alpha} h^t$	
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Slot specific check: recover $e(h_1, g)^{st}$

$$e(C_5, A) = e(h_1^s \widehat{T}^{-\gamma_0}, g^t) = e(h_1, g)^{st} e(\widehat{T}, g)^{-\gamma_0 t} = e(h_1, g)^{st} e(g, g)^{-\gamma_0 rt}$$
$$e(C_6, A)^r = e(g^{\gamma_0}, g^t)^r = e(g, g)^{\gamma_0 rt}$$
Product of three quantities in the

Recall: *r* is the secret key

Product of **three** quantities in the exponent – computing this requires knowledge of one of the exponents (namely, the secret key r)

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = g^r$	$\widehat{U}_w = g^{u_w}$ for $w \notin S_1$
Helper key:		$A = g^t B = g^{\alpha} h^t$	
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Attribute check: recover $e(h_2, g)^{st}$

If
$$w_i \in S$$
, then $U_w = 1$ and $C_{3,i} = h_2^{s_i}$

$$\prod_{i \in [\ell]} C_{3,i} = \prod_{i \in [\ell]} h_2^{s_i} = h_2^{\sum_{i \in [\ell]} s_i} = h_2^s$$

If $w_i \notin S$, then $h_2^{s_i}$ is blinded by $U_{w_i}^{-\gamma_i} = g^{-u_{w_i}\gamma_i}$ and pairing with g^t produces a term $g^{-u_{w_i}\gamma_i t}$

$$e(h_2^s,A) = e\bigl(h_2^s,g^t\bigr) = e(h_2,g)^{st}$$

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = g^r$	$\widehat{U}_w = g^{u_w}$ for $w \notin S_1$
Helper key:		$A = g^t B = g^{\alpha} h^t$	
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Goal: recover $Z^s = e(g,g)^{\alpha s}$

Observe:
$$e(B, C_2) = e(g^{\alpha}h^t, g^s) = e(g, g)^{\alpha s} e(h, g)^{st}$$

Recall: $h = h_1 h_2$ so suffices to compute $e(h_1, g)^{st}$ and $e(h_2, g)^{st}$

Slot specific check: recover $e(h_1, g)^{st}$ Attribute check: recover $e(h_2, g)^{st}$

Recover
$$e(h,g)^{st}$$

Extending to Multiple Slots

generalslot-specificattributeCommon reference string: $Z = e(g,g)^{\alpha}$ $h = g^{\beta}$ $A = g^{t}$ $B_{1} = g^{\alpha}h^{t}$ $U_{w} = g^{w}$

Idea: replicate components for each slot

Extending to Multiple Slots

Idea: replicate components for each slot

Multi-Slot Aggregation

User's public/secret keys: $pk_1 = g^{r_1}, ..., pk_L = g^{r_L}$

Single slot setting:

Slot components: $\widehat{T} = g^r$

Attribute components:

 $\widehat{U}_w = 1 \quad \text{if } w \in S \\ \widehat{U}_w = U_w \quad \text{if } w \notin S$

Aggregate by multiplying across slots

(Similar to vector commitments [CF13])

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = \prod_{i \in [L]} g^{r_i}$	$\widehat{U}_w = \prod_{w \notin S_i} g^{u_{w,i}}$
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Ciphertext structure is **unchanged**

Goal: recover $Z^s = e(g, g)^{\alpha s}$

Observe: $e(B_i, C_2) = e(g^{\alpha}h^{t_i}, g^s) = e(g, g)^{\alpha s}e(h, g)^{st_i}$

Recall: $h = h_1 h_2$ so suffices to compute $e(h_1, g)^{st_i}$ and $e(h_2, g)^{st_i}$

Recall: $B_i = g^{\alpha} h^{t_i}$

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = \prod_{i \in [L]} g^{r_i}$	$\widehat{U}_w = \prod_{w \notin S_i} g^{u_{w,i}}$
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Ciphertext structure is **unchanged**

Slot specific check: recover $e(h_1, g)^{st_i}$

Consider previous decryption equation $(A_i = g^{t_i})$:

$$e(C_5, A) = e(h_1^s \hat{T}^{-\gamma_0}, g^{t_i}) = e(h_1, g)^{st_i} e(\hat{T}, g)^{-\gamma_0 t_i}$$
$$= e(h_1, g)^{st_i} e(g, g)^{-\gamma_0 r_i t_i} \prod_{j \neq i} e(g, g)^{-\gamma_0 r_j t_i}$$
"single-slot component" "cross-terms"

Approach: Include "cross term component" as the helper decryption key $\hat{V}_i = \prod_{i \neq i} A_i^{r_j} = \prod_{i \neq i} g^{r_j t_i} \Longrightarrow e(g^{\gamma_0}, \hat{V}_i) = \prod_{i \neq i} g^{\gamma_0 r_j t_i}$

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = \prod_{i \in [L]} g^{r_i}$	$\widehat{U}_w = \prod_{w \notin S_i} g^{u_{w,i}}$
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Approach: Include "cross term component" as the helper decryption key

$$\widehat{V}_i = \prod_{j \neq i} A_i^{r_j} = \prod_{j \neq i} g^{r_j t_i} \Longrightarrow e(g^{\gamma_0}, \widehat{V}_i) = \prod_{j \neq i} g^{\gamma_0 r_j t_i}$$

At registration time, each user (who knows r_i) will additionally compute

$$V_{j,i} = A_i^{r_j} = g^{r_j t_i}$$
 for all $i \neq j$
Recall: $A_i = g^{t_i}$ is part of the CRS

Key-curator can then compute cross-term $\widehat{V}_i = \prod_{j \neq i} V_{j,i}$

Multi-Slot Decryption

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = \prod_{i \in [L]} g^{r_i}$	$\widehat{U}_w = \prod_{w \notin S_i} g^{u_{w,i}}$
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \widehat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$
		Ciphertext	structure is unchange

Attribute check: recover $e(h_2, g)^{st_i}$

Can use a similar approach: for each $w \in \mathcal{U}$, include a cross-term $\widehat{W}_{i,w}$

Multi-Slot Decryption

	general	slot-specific	attribute
Master public key:	$Z = e(g,g)^{\alpha} h = g^{\beta}$	$\widehat{T} = \prod_{i \in [L]} g^{r_i}$	$\widehat{U}_w = \prod_{w \notin S_i} g^{u_{w,i}}$
Ciphertext:	$C_1 = \mu \cdot Z^s C_2 = g^s$	$C_5 = h_1^s \hat{T}^{-\gamma_0} C_6 = g^{\gamma_0}$	$C_{3,i} = h_2^{s_i} \widehat{U}_{w_i}^{-\gamma_i} C_{4,i} = g^{\gamma_i}$

Helper decryption key hsk_i (for slot *i*):

 \widehat{V}_i

 $A_i = g^{t_i}$ $B_i = g^{\alpha} h^{t_i}$ (same as single-slot setting)

(cross-terms for slot-specific components)

 $\widehat{W}_{i,w}$ for each $w \in \mathcal{U}$ (cross-terms f

(cross-terms for attribute components)

 $|\text{hsk}_i| = \text{poly}(\lambda, |\mathcal{U}|)$ independent of *L*

Slotted Scheme from Pairings

Let *L* be the number of users

$$pk_1, S_1 pk_2, S_2 pk_3, S_3 pk_4, S_4 \cdots pk_L, S_L$$
 mpk
hsk1, ..., hsk1

Each slot associated with a <u>public key</u> pk and a set of attributes S

$$|mpk| = poly(\lambda, |\mathcal{U}|)$$

 $|hsk_i| = poly(\lambda, |\mathcal{U}|)$

- λ : security parameter
- \mathcal{U} : universe of attributes

Encrypt(mpk, P, m) \rightarrow ct

 $\text{Decrypt}(\text{sk}_i, \text{hsk}_i, \text{ct}) \rightarrow m$

Security relies on assumptions over composite-order pairing groups [see paper for details]

Aggregate

Let *L* be the number of users

Aggregate

Slotted scheme does *not* support online registration

Solution: use "powers-of-two" approach (like [GHMR18])

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $mpk = \bot$

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

 $2^0 = 1$ pk₁, S₁ $2^1 = 2 \mid pk_1, S_1$ $2^2 = 4 \mid pk_1, S_1$ $2^{\ell} = 1$

Add key to each scheme with available slot

Initially: all slots are empty

 $mpk = \bot$

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $mpk = \bot$

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty mpk = (mpk₁)

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $mpk = (mpk_1)$

pk₂, *S*₂

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty mpk = (mpk₂)

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty mpk = (mpk₂)

Initially: all slots are empty

 $mpk = (mpk_1, mpk_2)$

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty mpk = (mpk₁, mpk₂)

Solution: use "powers-of-two" approach (like [GHMR18]) **Initially:** all slots are empty $mpk = (mpk_1, mpk_2)$ To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes $2^0 = 1$ pk₃, S₃ all slots are full pk_1 clear out previous $2^1 = 2$ pk_1, S_1 pk_2, S_2 all slots are full schemes \rightarrow mpk₂ $2^2 = 4$ pk_1, S_1 pk_2, S_2 pk_3, S_3 pk_4, S_4 all slots are full pk_3 pk_4, S_4 $2^{\ell} = L \quad pk_1, S_1 \quad pk_2, S_2 \quad pk_3, S_3 \quad pk_4, S_4$

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty mpk = (mpk₁, mpk₂)

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty mpk = (mpk₃)

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $mpk = (mpk_3)$

Ciphertext is an encryption to <u>each</u> public key

log L overhead

Solution: use "powers-of-two" approach (like [GHMR18])

To support $L = 2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $mpk = (mpk_3)$

Update needed whenever user's key moves from scheme *i* to scheme *j* > *i*

At most $\ell = \log L$ updates

Registered ABE Summary

Registered ABE Summary

Summary

This work: registered ABE for policies that can be based on linear secret sharing

Thank you!

- Only needs black-box use of cryptography
- Security based on composite-order bilinear map assumptions
- Supports *a priori* bounded number of users

Open questions:

- Registered ABE for general circuit policies
- Registered ABE for unbounded number of users
- Registered ABE with a *large* universe

Registration-based model for *other* notions?

Possible using indistinguishability obfuscation [see paper]