Lattice-Based Non-Interactive Arugment Systems

David Wu

Stanford University

Proof Systems and Argument Systems

Completeness: $\quad \forall x \in \mathcal{L}: \operatorname{Pr}[\langle P, V\rangle(x)=$ accept $]=1$
"Honest prover convinces honest verifier of true statements"
Soundness:
$\forall x \notin \mathcal{L}, \forall P^{*}: \operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=\right.$ accept $]=0$
"No prover can convince honest verifier of false statement"

Proof Systems and Argument Systems

The Complexity Class NP

NP - the class of languages that are efficiently verifiable a language \mathcal{L} is in $\mathbf{N P}$ if there exists a polynomial-time verifier R such that

$$
x \in \mathcal{L} \Leftrightarrow \exists w \in\{0,1\}^{\mathrm{poly}(|x|)} R(x, w)=1
$$

The Complexity Class NP

NP - the class of languages that are efficiently verifiable
a language \mathcal{L} is in NP if there exists a polynomial-time verifier R such that

$$
x \in \mathcal{L} \Leftrightarrow \exists w \in\{0,1\}^{\mathrm{poly}(|x|)} R(x, w)=1
$$

In this talk, will focus on language of Boolean circuit satisfiability:

$$
\mathcal{L}_{C}=\underset{ }{\{x: C(x, w)=1 \text { for some } w\}}
$$

Non-Interactive Proof Systems for NP

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

NP languages have non-interactive proof systems
But what if we want other properties?

Non-Interactive Proof Systems for NP

Zero-Knowledge: The proof reveals nothing more about the statement x other than $x \in \mathcal{L}_{C}$ [GMR85]

- Fundamental primitive to modern cryptography
- Important building block in many protocols (e.g., identification schemes, digital signatures, multiparty computation)

Succinctness: The proof is significantly shorter than $|C|$ (and correspondingly, $|w|)$ [Kil92, Micoo, GW11]

- Natural complexity-theoretic question: what is the minimal communication complexity for proofs of NP statements?
- Numerous applications to delegating and verifying computations as well as privacypreserving cryptocurrencies

But what if we want other properties?

The Landscape of Modern Cryptography

Cryptography is the study of hardness

The Landscape of Modern Cryptography

Number Theory

Bilinear Maps

Lattices

Multilinear Maps

Which assumptions imply non-interactive zero-knowledge?
Which assumptions imply succinct non-interactive arguments?

The Landscape of Modern Cryptography

Number Theory

Bilinear Maps

Lattices

Multilinear Maps

Which assumptions imply non-interactive zero-knowledge?
Which assumptions imply succinct non-interactive arguments?

This Work

Number Theory

Bilinear Maps

Lattices

Multilinear Maps

Which assumptions imply non-interactive zero-knowledge?

* In a weaker preprocessing model Which assumptions imply succinct non-interactive arguments?

This Work

Which assumptions imply non-interactive zero-knowledge?

Non-interactive zero-knowledge arguments from standard lattice assumptions in a preprocessing model [Kim-W; CRYPTO 2018]

Which assumptions imply succinct non-interactive arguments?

Succinct non-interactive arguments (SNARGs) from lattice-based assumptions [Boneh-Ishai-Sahai-W; EUROCRYPT 2017]

First construction of a quasi-optimal SNARG from lattice-based assumptions [Boneh-Ishai-Sahai-W; EUROCRYPT 2018]

Why Lattices?

Bilinear Maps

Lattices

Multilinear Maps
(Conjectured) post-quantum resilience
Diversifying cryptographic assumptions
Enable new properties (e.g., quasi-optimality)

Succinct Non-Interactive Arguments

Succinct Non-Interactive Arguments (SNARGs)

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

Completeness:
"Honest prover convinces honest verifier of true statements"

Succinct Non-Interactive Arguments (SNARGs)

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

Completeness:

$$
C(x, w)=1 \Rightarrow \operatorname{Pr}[V(x, P(x, w))=1]=1
$$

Soundness:
"No efficient prover can convince honest verifier of false statement"

Succinct Non-Interactive Arguments (SNARGs)

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

Completeness:

$$
C(x, w)=1 \Rightarrow \operatorname{Pr}[V(x, P(x, w))=1]=1
$$

Soundness:
for all provers P^{*} of size 2^{λ} (λ is a security parameter),
$x \notin \mathcal{L}_{C} \Rightarrow \operatorname{Pr}\left[V\left(x, P^{*}(x)\right)=1\right] \leq 2^{-\lambda}$

Succinct Non-Interactive Arguments (SNARGs)

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

Argument system is succinct if:

$$
\text { accept if } V(x, \pi)=1
$$

- Prover communication is poly $(\lambda+\log |C|)$
- V can be implemented by a circuit of size poly $(\lambda+|x|+\log |C|)$ Verifier complexity significantly smaller than classic NP verifier

Succinct Non-Interactive Arguments (SNARGs)

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

Argument system is succinct if:

- Prover communication is poly $(\lambda+\log |C|)$
- V can be implemented by a circuit of size poly $(\lambda+|x|+\log |C|)$

For general NP languages, succinct non-interactive arguments are unlikely to exist in the standard model [BP04, Wee05]

Succinct Non-Interactive Arguments (SNARGs)

Succinct Non-Interactive Arguments (SNARGs)

Complexity Metrics for SNARGs

Soundness: for all provers P^{\star} of size 2^{λ} :

$$
x \notin \mathcal{L}_{C} \Rightarrow \operatorname{Pr}\left[V\left(x, P^{*}(x)\right)=1\right] \leq 2^{-\lambda}
$$

How short can the proofs be?

$$
|\pi|=\Omega(\lambda)<\begin{aligned}
& \text { Even in the designated- } \\
& \text { verifier setting }
\end{aligned}
$$

How much work is needed to generate the proof?

$$
|P|=\Omega(|C|)
$$

Quasi-Optimal SNARGs

Soundness: for all provers P^{\star} of size 2^{λ} :

$$
x \notin \mathcal{L}_{C} \Rightarrow \operatorname{Pr}\left[V\left(x, P^{*}(x)\right)=1\right] \leq 2^{-\lambda}
$$

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it satisfies the following properties:

- Quasi-optimal succinctness:

$$
|\pi|=\lambda \cdot \operatorname{polylog}(\lambda,|C|)=\tilde{O}(\lambda)
$$

- Quasi-optimal prover complexity:

$$
|P|=\tilde{O}(|C|)+\operatorname{poly}(\lambda, \log |C|)
$$

Asymptotic Comparisons

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(\|C\|)$	$\tilde{O}\left(\lambda^{2}\right)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}\left(\lambda\|C\|^{2}+\|C\| \lambda^{2}\right)$	$\tilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Encryption
This work (over integer lattices)	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption
This work (over ideal lattices)	$\tilde{O}(\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption

Constructing (Quasi-Optimal) SNARGs

New framework for building preprocessing SNARGs (following [BCIOP13]):
Step 1 (information-theoretic):

- Identify useful information-theoretic building block (linear PCPs and linear MIPs)
Step 2 (cryptographic):
- Use cryptographic primitives to compile information-theoretic building block into a preprocessing SNARG

Instantiating our framework yields new lattice-based SNARG candidates

Linear PCPs

From Linear PCPs to SNARGs

Oblivious verifier can "commit" to its queries ahead of time

part of the CRS

Prover constructs linear
PCP π from (x, w)

Prover computes responses to linear PCP queries

$\left\langle\pi, q_{1}\right\rangle$	$\left\langle\pi, q_{2}\right\rangle$	\cdots	$\left\langle\pi, q_{k}\right\rangle$
SNARG proof			

From Linear PCPs to SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Prover computes responses
to linear PCP queries

$\left\langle\pi, q_{1}\right\rangle$	$\left\langle\pi, q_{2}\right\rangle$	\cdots	$\left\langle\pi, q_{k}\right\rangle$
SNARG proof			

From Linear PCPs to SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Prover computes responses
to linear PCP queries

$\left\langle\pi, q_{1}\right\rangle$	$\left\langle\pi, q_{2}\right\rangle$	\cdots	$\left\langle\pi, q_{k}\right\rangle$
SNARG proof			

From Linear PCPs to SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Step 1: Verifier encrypts its queries using an additively homomorphic encryption scheme

- Prover homomorphically computes $Q^{T} \pi$
- Verifier decrypts encrypted response vector and applies linear PCP verification

From Linear PCPs to SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Step 1: Verifier encrypts its queries using an additively homomorphic encryption scheme

- Prover homomorphically computes $Q^{T} \pi$
- Verifier decrypts encrypted response vector and applies linear PCP verification

From Linear PCPs to SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Step 2: Conjecture that the encryption scheme only supports a limited subset of homomorphic operations (linear-only vector encryption)

From Linear PCPs to SNARGs

Oblivious verifier can "commit" to its queries ahead of time

- Differs from [BCIOP13] compiler which relies on additional consistency checks to build a preprocessing SNARG
- Using linear-only vector encryption allows for efficient instantiation from lattices (resulting SNARG satisfies quasioptimal succinctness)

Step 2: Conjecture that the encryption scheme only supports a limited subset of homomorphic operations (linear-only vector encryption)

Linear-Only Vector Encryption

$v_{1} \in \mathbb{F}^{k}$
$v_{2} \in \mathbb{F}^{k}$:
$v_{m} \in \mathbb{F}^{k}$
plaintext space is a
vector space

Linear-Only Vector Encryption

plaintext space is a vector space

encryption scheme is semantically-secure and additively homomorphic

Linear-Only Vector Encryption

For all adversaries, there is an efficient extractor such that if ct is valid, then the extractor is able to produce a vector of coefficients $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{F}^{m}$ and $b \in \mathbb{F}^{k}$ such that $\operatorname{Decrypt}($ sk, ct $)=\sum_{i \in[n]} \alpha_{i} v_{i}+b$

From Linear PCPs to SNARGs

Linear-only vector encryption ensures that all prover
strategies can be explained by a linear function \Rightarrow can appeal to soundness of underlying
linear PCP to argue soundness

Prover computes responses
to linear PCP queries

$\left\langle\pi, q_{1}\right\rangle$	$\left\langle\pi, q_{2}\right\rangle$	\cdots	$\left\langle\pi, q_{k}\right\rangle$
SNARG proof			

Instantiating Linear-Only Vector Encryption

Conjecture: Regev encryption (specifically, variant of the [PVW08] scheme) based on lattices is a linear-only vector encryption scheme.

Linear PCPs for Boolean circuit satisfiability

Preprocessing SNARG

Complexity of the Construction

Evaluating inner product requires $\Omega(|C|)$ homomorphic operations; prover complexity:

$$
\Omega(\lambda) \cdot \Omega(|C|)=\Omega(\lambda|C|)
$$

$Q=$

Prover constructs linear PCP π from (x, w)

Prover computes responses
to linear PCP queries

Asymptotic Comparisons

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(\|C\|)$	$\tilde{O}\left(\lambda^{2}\right)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}\left(\lambda\|C\|^{2}+\|C\| \lambda^{2}\right)$	$\tilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Encryption
This work (over integer lattices)	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption

Towards Quasi-Optimality

Evaluating inner product requires $\Omega(|C|)$ homomorphic operations; prover complexity:

$$
\Omega(\lambda) \cdot \Omega(|C|)=\Omega(\lambda|C|)
$$

$$
Q=
$$

Proof consists of a constant number of ciphertexts: total length $O(\lambda)$ bits

Prover constructs linear PCP π from (x, w)
(x, w)
We pay $\Omega(\lambda)$ for each homomorphic operation. Can we

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring $R_{p}=\mathbb{Z}_{p}[x] / \Phi_{\ell}(x) \cong \mathbb{F}_{p}^{\ell}$

x_{1}
x_{2}
x_{3}
\vdots
x_{l}
:---:
x_{2}^{\prime}
x_{3}^{\prime}
\vdots
x_{l}^{\prime}
:---:
$x_{2}+x_{2}^{\prime}$
$x_{3}+x_{3}^{\prime}$
\vdots
$x_{l}+x_{l}^{\prime}$

Homomorphic operations correspond to component-wise additions and scalar multiplications

Plaintext space can be viewed as a vector of field elements

Using RLWE-based encryption schemes, can encrypt $\ell=\tilde{O}(\lambda)$ field elements $(p=\operatorname{poly}(\lambda))$ with ciphertexts of size $\tilde{O}(\lambda)$

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring $R_{p}=\mathbb{Z}_{p}[x] / \Phi_{\ell}(x) \cong \mathbb{F}_{p}^{\ell}$

Plaintext space can be viewed as a vector of field elements

$x_{1}+x_{1}^{\prime}$	Homomorphic operations
$x_{2}+x_{2}^{\prime}$	
$x_{3}+x_{3}^{\prime}$	zed cost of homomorphic
!	ration on a single field
$x_{\ell}+x_{\ell}^{\prime}$	ment is polylog(λ)

Using RLWE-based encryption schemes, can encrypt $\ell=\tilde{O}(\lambda)$ field elements $(p=\operatorname{poly}(\lambda))$ with ciphertexts of size $\tilde{O}(\lambda)$

Linear-Only Encryption over Rings

Given encrypted set of query vectors, prover can homomorphically apply independent linear functions to each slot

Key idea: Check multiple independent proofs in parallel

Linear Multi-Prover Interactive Proofs (MIPs)

Verifier has oracle access to multiple linear proof oracles
[Proofs may be correlated]
Can convert linear MIP to preprocessing SNARG using linearonly (vector) encryption over rings

Linear Multi-Prover Interactive Proofs (MIPs)

Suppose

- Number of provers $l=\tilde{O}(\lambda)$
- Proofs $\pi_{1}, \ldots, \pi_{\ell} \in \mathbb{F}_{p}^{m}$ where $m=|C| / \ell$
- Number of queries to each π_{i} is polylog(λ) Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

Prover complexity:

$$
\tilde{O}(\ell m)=\tilde{O}(|C|)
$$

Linear MIP size:
$O(\ell \cdot \operatorname{polylog}(\lambda))=\widetilde{O}(\lambda)$

Suppose

- Number of provers $\ell=\tilde{O}(\lambda)$
- Proofs $\pi_{1}, \ldots, \pi_{\ell} \in \mathbb{F}_{p}^{m}$ where $m=|C| / \ell$
- Number of queries to each π_{i} is polylog(λ) Then, linear MIP is quasi-optimal

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability

Robust Decomposition

Robust Decomposition

Robust Decomposition

Robust Decomposition

Robust Decomposition

π_{i} : linear PCP that $f_{i}\left(x^{\prime}, \cdot\right)$ is satisfiable
(instantiated over \mathbb{F}_{p} where $p=\operatorname{poly}(\lambda)$)

Robust Decomposition

π_{i} : linear PCP that $f_{i}\left(x^{\prime}, \cdot\right)$ is satisfiable
(instantiated over \mathbb{F}_{p} where $p=\operatorname{poly}(\lambda)$)

Robust Decomposition

흐․

Completeness: Follows by
completeness of decomposition and linear PCPs

Soundness: Each linear PCP provides $1 / \operatorname{poly}(\lambda)$ soundness and for false statement, at least $1 / 3$ of the statements are false, so if $\ell=\Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$
π_{i} : linear PCP that $f_{i}\left(x^{\prime}, \cdot\right)$ is satisfiable (instantiated over \mathbb{F}_{p} where $p=\operatorname{poly}(\lambda)$)

Robust Decomposition

Robustness: If $x \notin \mathcal{L}$, then for all w^{\prime}, at most $2 / 3$ of $f_{i}\left(x^{\prime}, w^{\prime}\right)=1$

For false x, no single w^{\prime} can simultaneously satisfy $f_{i}\left(x^{\prime},\right)$; however, all of the $f_{i}\left(x^{\prime}, \cdot\right)$ could individually be satisfiable

Completeness: Follows by completeness of decomposition and linear PCPs

Soundness: Each linear PCP provides $1 / \operatorname{poly}(\lambda)$ soundness and for false statement, at least $1 / 3$ of the statements are false, so if $\ell=\Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$

Problematic however if prover uses different (x^{\prime}, w^{\prime}) to construct proofs for different f_{i}^{\prime} 's

Consistency Checking

Require that linear PCPs are systematic: linear PCP π contains a copy of the witness:

π_{1}	w_{1}^{\prime}	w_{3}^{\prime}	other components
π_{2}	w_{1}^{\prime}	w_{2}^{\prime}	other components
π_{3}	w_{2}^{\prime}	w_{3}^{\prime}	other components

Goal: check that assignments to w^{\prime} are consistent via linear queries to π_{i}

First few components of proof correspond to witness associated with the statement

Each proof induces an assignment to a few bits of the common witness w^{\prime}

Quasi-Optimal Linear MIP

Robust Decomposition

- Checking satisfiability of C corresponds to checking satisfiability of f_{1}, \ldots, f_{ℓ} (each of which can be checked by a circuit of size $|C| / \ell)$
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_{i}

Robust decomposition can be instantiated by combining "MPC-in-the-head" paradigm [IKOSO7] with a robust MPC protocol with polylogarithmic overhead [DIK10]

Quasi-Optimal Linear MIP

Robust Decomposition

- Checking satisfiability of C corresponds to checking satisfiability of f_{1}, \ldots, f_{ℓ} (each of which can be checked by a circuit of size $|C| / \ell$)
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_{i}

Consistency Check

- Check that consistent witness is used to prove satisfiability of each f_{i}
- Relies on pairwise consistency checks and permuting the entries to obtain a "nice" replication structure

Asymptotic Comparisons

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(\|C\|)$	$\tilde{O}\left(\lambda^{2}\right)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}\left(\lambda\|C\|^{2}+\|C\| \lambda^{2}\right)$	$\tilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Encryption
This work (over integer lattices)	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption
This work (over ideal lattices)	$\tilde{O}(\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

- Quasi-optimal succinctness: $|\pi|=\tilde{O}(\lambda)$
- Quasi-optimal prover complexity: $|P|=\tilde{O}(|C|)+\operatorname{poly}(\lambda, \log |C|)$

New framework for building SNARGs by combining linear PCPs (and linear MIPs) with linear-only vector encryption

Framework yields first quasi-optimal SNARG by combining quasi-optimal linear MIP with linear-only vector encryption

- Construction of a quasi-optimal linear MIP possible by combining robust decomposition and consistency check

Summary

Number Theory

Bilinear Maps

Lattices

Multilinear Maps

Which assumptions imply non-interactive zero-knowledge?
Which assumptions imply succinct non-interactive arguments?

Summary

Number Theory

Bilinear Maps

Lattices

Multilinear Maps

Which assumptions imply non-interactive zero-knowledge?

* In a weaker preprocessing model Which assumptions imply succinct non-interactive arguments?

Acknowledgments

Special thanks to all of my amazing collaborators!

