Lattice-Based Non-Interactive Arugment Systems

David Wu Stanford University

Based on joint works with Dan Boneh, Yuval Ishai, Sam Kim, and Amit Sahai

Proof Systems and Argument Systems

Completeness:

 $\forall x \in \mathcal{L} : \Pr[\langle P, V \rangle(x) = \operatorname{accept}] = 1$ "Honest prover convinces honest verifier of true statements"

Soundness:

 $\forall x \notin \mathcal{L}, \ \forall P^* : \Pr[\langle P^*, V \rangle(x) = \operatorname{accept}] = 0$ "No prover can convince honest verifier of false statement"

Proof Systems and Argument Systems

The Complexity Class NP

NP – the class of languages that are *efficiently verifiable*

a language \mathcal{L} is in **NP** if there exists a polynomial-time verifier R such that

$$x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\operatorname{poly}(|x|)} R(x,w) = 1$$

Statement Witness

The Complexity Class NP

NP – the class of languages that are *efficiently verifiable*

a language \mathcal{L} is in **NP** if there exists a polynomial-time verifier R such that

$$x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\operatorname{poly}(|x|)} R(x,w) = 1$$

In this talk, will focus on language of Boolean circuit satisfiability:

$$\mathcal{L}_C = \{x : C(x, w) = 1 \text{ for some } w\}$$

Boolean circuit

Non-Interactive Proof Systems for NP

$$\mathcal{L}_{C} = \{x : C(x, w) = 1 \text{ for some } w\}$$
prover
$$(x, w) \xrightarrow{w} x$$

accept if C(x, w) = 1

NP languages have <u>non-interactive</u> proof systems

But what if we want other properties?

Non-Interactive Proof Systems for NP

Zero-Knowledge: The proof reveals nothing more about the statement xother than $x \in \mathcal{L}_C$ [GMR85]

- Fundamental primitive to modern cryptography
- Important building block in many protocols (e.g., identification schemes, digital signatures, multiparty computation)

Succinctness: The proof is significantly shorter than |C| (and correspondingly, |w|) [Kil92, Mic00, GW11]

- Natural complexity-theoretic question: what is the minimal communication complexity for proofs of NP statements?
- Numerous applications to delegating and verifying computations as well as privacypreserving cryptocurrencies

But what if we want other properties?

The Landscape of Modern Cryptography

Cryptography is the study of hardness

[Slide inspired by Amit Sahai]

The Landscape of Modern Cryptography

Which assumptions imply non-interactive zero-knowledge?

The Landscape of Modern Cryptography

Which assumptions imply non-interactive zero-knowledge?

This Work

Which assumptions imply non-interactive zero-knowledge? * In a weaker preprocessing model

This Work

Which assumptions imply non-interactive zero-knowledge?

Non-interactive zero-knowledge arguments from <u>standard lattice assumptions</u> in a *preprocessing* model [Kim-W; CRYPTO 2018]

Which assumptions imply succinct non-interactive arguments?

Succinct non-interactive arguments (SNARGs) from <u>lattice-based assumptions</u> [Boneh-Ishai-Sahai-W; EUROCRYPT 2017]

First construction of a <u>quasi-optimal</u> SNARG from <u>lattice-based assumptions</u> [Boneh-Ishai-Sahai-W; EUROCRYPT 2018]

Why Lattices?

(Conjectured) post-quantum resilience Diversifying cryptographic assumptions Enable new properties (e.g., quasi-optimality)

Succinct Non-Interactive Arguments

[Kil92, Mic00, GW11]

$$\mathcal{L}_{C} = \{x : C(x, w) = 1 \text{ for some } w\}$$
prover
$$(x, w) \xrightarrow{} (x, w) \xrightarrow{} (x,$$

Completeness:

"Honest prover convinces honest verifier of true statements"

[Kil92, Mic00, GW11]

$$\mathcal{L}_{C} = \{x : C(x, w) = 1 \text{ for some } w\}$$
prover
$$(x, w) \xrightarrow{} x = P(x, w)$$

$$(x, w) \xrightarrow{} x = 1$$
if $V(x, \pi) = 1$

Completeness:

$$C(x,w) = 1 \Rightarrow \Pr[V(x,P(x,w)) = 1] = 1$$

Soundness:

"No <u>efficient</u> prover can convince honest verifier of false statement"

[Kil92, Mic00, GW11]

$$\mathcal{L}_{C} = \{x : C(x, w) = 1 \text{ for some } w\}$$
prover
$$(x, w) \xrightarrow{} x = P(x, w)$$

$$(x, w) \xrightarrow{} x$$
accept if $V(x, \pi) = 2$

Completeness:

$$C(x,w) = 1 \Rightarrow \Pr[V(x,P(x,w)) = 1] = 1$$

Soundness:

for all provers P^* of size 2^{λ} (λ is a security parameter), $x \notin \mathcal{L}_C \Rightarrow \Pr[V(x, P^*(x)) = 1] \leq 2^{-\lambda}$

[Kil92, Mic00, GW11]

$$\mathcal{L}_C = \{x : C(x, w) = 1 \text{ for some } w\}$$

Argument system is **succinct** if:

accept if $V(x, \pi) = 1$

- Prover communication is $poly(\lambda + \log |C|)$
- *V* can be implemented by a circuit of size $poly(\lambda + |x| + \log|C|)$

Verifier complexity significantly smaller than classic NP verifier

[Kil92, Mic00, GW11]

$$\mathcal{L}_C = \{x : C(x, w) = 1 \text{ for some } w\}$$

Argument system is **succinct** if:

accept if $V(x, \pi) = 1$

• Prover communication is $poly(\lambda + log|C|)$

• *V* can be implemented by a circuit of size $poly(\lambda + |x| + log|C|)$ For general NP languages, succinct non-interactive arguments are <u>unlikely</u> to exist in the standard model [BP04, Wee05]

[Kil92, Mic00, GW11]

[Kil92, Mic00, GW11]

Complexity Metrics for SNARGs

Soundness: for all provers P^* of size 2^{λ} : $x \notin \mathcal{L}_C \Longrightarrow \Pr[V(x, P^*(x)) = 1] \le 2^{-\lambda}$

How short can the proofs be?

 $|\pi| = \Omega(\lambda)$ < Even in the designatedverifier setting

How much work is needed to generate the proof? $|P| = \Omega(|C|)$

Quasi-Optimal SNARGs

Soundness: for all provers P^* of size 2^{λ} :

$$x \notin \mathcal{L}_C \Longrightarrow \Pr[V(x, P^*(x)) = 1] \le 2^{-\lambda}$$

A SNARG (for Boolean circuit satisfiability) is <u>quasi-optimal</u> if it satisfies the following properties:

• Quasi-optimal succinctness:

$$|\pi| = \lambda \cdot \operatorname{polylog}(\lambda, |C|) = \tilde{O}(\lambda)$$

• Quasi-optimal prover complexity: $|P| = \tilde{O}(|C|) + \operatorname{poly}(\lambda, \log|C|)$

Asymptotic Comparisons

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(C)$	$ ilde{O}(\lambda^2)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}(\lambda C ^2+ C \lambda^2)$	$ ilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Encryption
This work (over integer lattices)	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption
This work (over ideal lattices)	$\tilde{O}(C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption

For simplicity, we ignore low order terms $poly(\lambda, log|C|)$ in the prover complexity

Constructing (Quasi-Optimal) SNARGs

New framework for building preprocessing SNARGs (following [BCIOP13]):

Step 1 (information-theoretic):

 Identify useful information-theoretic building block (linear PCPs and linear MIPs)

Step 2 (cryptographic):

• Use cryptographic primitives to compile information-theoretic building block into a preprocessing SNARG

Instantiating our framework yields new lattice-based SNARG candidates

Linear PCPs

Oblivious verifier can "commit" to its queries ahead of time

Prover constructs linear PCP π from (x, w)

Prover computes responses to linear PCP queries

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Prover computes responses to linear PCP queries

 $\langle \pi, q_1 \rangle \ \langle \pi, q_2 \rangle \qquad \cdots \qquad \langle \pi, q_k \rangle$

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Prover computes responses to linear PCP queries

 $\langle \pi, q_1 \rangle \ \langle \pi, q_2 \rangle \qquad \cdots \qquad \langle \pi, q_k \rangle$

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Step 1: Verifier encrypts its queries using an additively homomorphic encryption scheme

- Prover homomorphically computes $Q^T \pi$
- Verifier decrypts encrypted response vector and applies linear PCP verification

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Step 1: Verifier encrypts its queries using an additively homomorphic encryption scheme

- Prover homomorphically computes $Q^T \pi$
- Verifier decrypts encrypted response vector and applies linear PCP verification

Oblivious verifier can "commit" to its queries ahead of time

Two issues:

- Malicious prover can choose π based on the queries
- Malicious prover can apply different π to each query

Step 2: Conjecture that the encryption scheme only supports a limited subset of homomorphic operations (linear-only vector encryption)

Oblivious verifier can "commit" to its queries ahead of time

- Differs from [BCIOP13] compiler which relies on additional consistency checks to build a preprocessing SNARG
- Using linear-only vector encryption allows for efficient instantiation from lattices (resulting SNARG satisfies quasioptimal succinctness)

Step 2: Conjecture that the encryption scheme only supports a limited subset of homomorphic operations (linear-only vector encryption)

Linear-Only Vector Encryption

plaintext space is a vector space

Linear-Only Vector Encryption

encryption scheme is semantically-secure and additively homomorphic

plaintext space is a vector space

Linear-Only Vector Encryption

For all adversaries, there is an efficient extractor such that if ct is valid, then the extractor is able to produce a vector of coefficients $(\alpha_1, ..., \alpha_m) \in \mathbb{F}^m$ and $b \in \mathbb{F}^k$ such that $\text{Decrypt}(\text{sk}, \text{ct}) = \sum_{i \in [n]} \alpha_i v_i + b$

[Weaker property also suffices]

Oblivious verifier can "commit" to its queries ahead of time

encrypt row by row Linear-only vector encryption ensures that all prover strategies can be explained by a *linear* function ⇒ can appeal to soundness of underlying linear PCP to argue soundness

Prover computes responses to linear PCP queries

 $\langle \pi, q_1 \rangle \ \langle \pi, q_2 \rangle \qquad \cdots \qquad \langle \pi, q_k \rangle$

Instantiating Linear-Only Vector Encryption

<u>Conjecture</u>: Regev encryption (specifically, variant of the [PVW08] scheme) based on lattices is a linear-only vector encryption scheme.

Linear PCPs for Boolean circuit satisfiability Linear-Only Vector Encryption

Preprocessing SNARG

Complexity of the Construction

Prover constructs linear Evaluating inner product requires PCP π from (x, w) $\Omega(|C|)$ homomorphic operations; prover complexity: (x,w) $\Omega(\lambda) \cdot \Omega(|C|) = \Omega(\lambda|C|)$ W $q_1 q_2 q_3 \cdots q_k$ $\pi \in \mathbb{F}^m$ Proof consists of a single

 (π, q)

ciphertext: total length $O(\lambda)$ bits

Prover computes responses to linear PCP queries

 π, q_2

 $\langle \pi, q \rangle$

SNARG proof

• • •

Asymptotic Comparisons

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(C)$	$\tilde{O}(\lambda^2)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}(\lambda C ^2+ C \lambda^2)$	$ ilde{O}(\lambda)$	Knowledge of Exponent
GGPR [GGPR12]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Encryption
This work (over integer lattices)	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption

For simplicity, we ignore low order terms $poly(\lambda, log|C|)$ in the prover complexity

Towards Quasi-Optimality

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring $R_p = \mathbb{Z}_p[x]/\Phi_\ell(x) \cong \mathbb{F}_p^\ell$

Homomorphic operations correspond to <u>component-wise</u> additions and scalar multiplications

Plaintext space can be viewed as a vector of field elements

Using RLWE-based encryption schemes, can encrypt $\ell = \tilde{O}(\lambda)$ field elements ($p = \text{poly}(\lambda)$) with ciphertexts of size $\tilde{O}(\lambda)$

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring $R_p = \mathbb{Z}_p[x]/\Phi_\ell(x) \cong \mathbb{F}_p^\ell$

Plaintext space can be viewed as a vector of field elements

Using RLWE-based encryption schemes, can encrypt $\ell = \tilde{O}(\lambda)$ field elements ($p = \text{poly}(\lambda)$) with ciphertexts of size $\tilde{O}(\lambda)$

Linear-Only Encryption over Rings

Given encrypted set of query vectors, prover can homomorphically apply independent linear functions to each slot

Key idea: Check multiple independent proofs in parallel

Linear Multi-Prover Interactive Proofs (MIPs)

Verifier has oracle access to <u>multiple</u> linear proof oracles [Proofs may be correlated]

Can convert linear MIP to preprocessing SNARG using linearonly (vector) encryption over rings

Linear Multi-Prover Interactive Proofs (MIPs)

 π_1

(x,w)

• • •

 π_{ℓ}

 π_2

Suppose

- Number of provers $\ell = \tilde{O}(\lambda)$
- Proofs $\pi_1, \ldots, \pi_\ell \in \mathbb{F}_p^m$ where $m = |C|/\ell$
- Number of queries to each π_i is $polylog(\lambda)$

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

 π_{ℓ}

• • •

(x,w)**Prover complexity:** $\tilde{O}(\ell m) = \tilde{O}(|C|)$ π_1 π_2 Linear MIP size: $O(\ell \cdot \operatorname{polylog}(\lambda)) = \tilde{O}(\lambda)$ Suppose Number of provers $\ell = \tilde{O}(\lambda)$ Proofs $\pi_1, \ldots, \pi_\ell \in \mathbb{F}_p^m$ where $m = |C|/\ell$

• Number of queries to each π_i is polylog(λ)

Then, linear MIP is quasi-optimal

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability

a circuit of size s/ℓ

Boolean circuit C of size s

a circuit of size s/ℓ

Boolean circuit C of size s

constraint can be computed by

a circuit of size s/ℓ

Boolean circuit *C* of size *s*

computed by a circuit of size $\tilde{O}(s)$

 π_i : linear PCP that $f_i(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

 π_i : linear PCP that $f_i(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

<u>Completeness</u>: Follows by completeness of decomposition and linear PCPs

Soundness: Each linear PCP provides $1/\text{poly}(\lambda)$ soundness and for false statement, at least 1/3 of the statements are false, so if $\ell = \Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$

 π_i : linear PCP that $f_i(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

Robustness: If $x \notin \mathcal{L}$, then for all w', at most 2/3 of $f_i(x', w') = 1$

For false x, no single w' can simultaneously satisfy $f_i(x', \cdot)$; however, all of the $f_i(x', \cdot)$ could individually be satisfiable <u>Completeness</u>: Follows by completeness of decomposition and linear PCPs

Soundness: Each linear PCP provides $1/\text{poly}(\lambda)$ soundness and for false statement, at least 1/3 of the statements are false, so if $\ell = \Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$

Problematic however if prover uses different (x', w') to construct proofs for different f_i 's

Consistency Checking

Require that linear PCPs are <u>systematic</u>: linear PCP π contains a copy of the witness:

Goal: check that assignments to w' are consistent via linear queries to π_i

First few components of proof correspond to witness associated with the statement

Each proof induces an assignment to a few bits of the common witness w'

Quasi-Optimal Linear MIP

- of which can be checked by a circuit of size $|C|/\ell$
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_i

Robust decomposition can be instantiated by combining "MPC-in-the-head" paradigm [IKOS07] with a robust MPC protocol with polylogarithmic overhead [DIK10]

Quasi-Optimal Linear MIP

For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_i

- Check that consistent witness is used to prove satisfiability of each f_i
- Relies on pairwise consistency checks and permuting the entries to obtain a "nice" replication structure

Asymptotic Comparisons

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(C)$	$ ilde{O}(\lambda^2)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}(\lambda C ^2+ C \lambda^2)$	$ ilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Encryption
This work (over integer lattices)	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption
This work (over ideal lattices)	$\tilde{O}(C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption

For simplicity, we ignore low order terms $poly(\lambda, log|C|)$ in the prover complexity

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

- Quasi-optimal succinctness: $|\pi| = \tilde{O}(\lambda)$
- Quasi-optimal prover complexity: $|P| = \tilde{O}(|C|) + \text{poly}(\lambda, \log|C|)$

New framework for building SNARGs by combining linear PCPs (and linear MIPs) with linear-only vector encryption

Framework yields first quasi-optimal SNARG by combining quasi-optimal linear MIP with linear-only vector encryption

 Construction of a quasi-optimal linear MIP possible by combining robust decomposition and consistency check

Summary

Which assumptions imply non-interactive zero-knowledge?

Summary

Which assumptions imply non-interactive zero-knowledge? * In a weaker preprocessing model

Acknowledgments

Special thanks to all of my amazing collaborators!