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Proof Systems and Argument Systems

Language ℒ ⊆ 0,1 ∗

prover verifier

𝑥 ∈ 0,1 ∗ accept if 
𝑥 ∈ ℒ

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

[GMR85]

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 (𝑥) = accept = 0
“No prover can convince honest verifier of false statement”



Proof Systems and Argument Systems

Language ℒ ⊆ 0,1 ∗

prover

𝑥 ∈ 0,1 ∗ accept if 
𝑥 ∈ ℒ

[GMR85]

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 𝑥 = accept = 0
“No prover can convince honest verifier of false statement”

In an argument system, we relax soundness to 
only consider computationally-bounded (i.e., 

polynomial-time) provers 𝑃∗

verifier



The Complexity Class NP

NP – the class of languages that are efficiently verifiable

a language ℒ is in NP if there exists a 
polynomial-time verifier 𝑅 such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 poly 𝑥 𝑅 𝑥, 𝑤 = 1

Statement Witness



The Complexity Class NP

NP – the class of languages that are efficiently verifiable

a language ℒ is in NP if there exists a 
polynomial-time verifier 𝑅 such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 poly 𝑥 𝑅 𝑥, 𝑤 = 1

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

In this talk, will focus on language of Boolean circuit satisfiability:

Boolean circuit



Non-Interactive Proof Systems for NP

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝐶 𝑥,𝑤 = 1

𝑤

NP languages have non-interactive proof systems

But what if we want other properties?

(𝑥, 𝑤) 𝑥

prover verifier



Non-Interactive Proof Systems for NP

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝐶 𝑥,𝑤 = 1

𝑤

NP languages have non-interactive proof systems

But what if we want other properties?

(𝑥, 𝑤) 𝑥

prover verifier

Zero-Knowledge: The proof reveals 
nothing more about the statement 𝑥

other than 𝑥 ∈ ℒ𝐶 [GMR85]

• Fundamental primitive to modern 
cryptography

• Important building block in many protocols 
(e.g., identification schemes, digital 
signatures, multiparty computation)

Succinctness: The proof is 
significantly shorter than 𝐶 (and 

correspondingly, 𝑤 ) [Kil92, Mic00, GW11]

• Natural complexity-theoretic question: 
what is the minimal communication 
complexity for proofs of NP statements?

• Numerous applications to delegating and 
verifying computations as well as privacy-
preserving cryptocurrencies



The Landscape of Modern Cryptography

[Slide inspired by Amit Sahai]

RSA

Factoring

Discrete Log

Number Theory

PKE
MPC

Signatures

BDDH DLIN

Bilinear Maps

IBE

Short Signatures

SNARKs

Lattices

SIS LWE

FHE

ABE

PE

Multilinear Maps

FE
Obfuscation

Cryptography is the study of hardness

Late 1970s 2001 2005 2013
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Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?
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This Work

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Multilinear MapsLattices

SIS LWE

Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?
* In a weaker preprocessing model



This Work

Which assumptions imply non-interactive zero-knowledge?

Non-interactive zero-knowledge arguments from standard lattice assumptions in a 
preprocessing model [Kim-W; CRYPTO 2018]

Which assumptions imply succinct non-interactive arguments?

Succinct non-interactive arguments (SNARGs) from lattice-based assumptions
[Boneh-Ishai-Sahai-W; EUROCRYPT 2017]

First construction of a quasi-optimal SNARG from lattice-based assumptions
[Boneh-Ishai-Sahai-W; EUROCRYPT 2018]

Focus of this talk



(Conjectured) post-quantum resilience

Why Lattices?

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Lattices

SIS LWE

Multilinear Maps

Diversifying cryptographic assumptions

Enable new properties (e.g., quasi-optimality)



Succinct Non-Interactive Arguments



Succinct Non-Interactive Arguments (SNARGs)

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

𝜋 = 𝑃 𝑥,𝑤

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

Completeness: “Honest prover convinces honest verifier of true statements”
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Succinct Non-Interactive Arguments (SNARGs)
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Completeness: 𝐶 𝑥,𝑤 = 1 ⇒ Pr 𝑉 𝑥, 𝑃 𝑥, 𝑤 = 1 = 1

Soundness: for all provers 𝑃∗ of size 2𝜆 (𝜆 is a security parameter),

𝑥 ∉ ℒ𝐶 ⇒ Pr 𝑉 𝑥, 𝑃∗ 𝑥 = 1 ≤ 2−𝜆



Succinct Non-Interactive Arguments (SNARGs)

Argument system is succinct if:
• Prover communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

Verifier complexity significantly 
smaller than classic NP verifier

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

𝜋 = 𝑃 𝑥,𝑤

(𝑥, 𝑤) 𝑥

prover verifier
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Succinct Non-Interactive Arguments (SNARGs)

Argument system is succinct if:
• Prover communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

For general NP languages, succinct non-interactive arguments are unlikely to 
exist in the standard model [BP04, Wee05]

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

𝜋 = 𝑃 𝑥,𝑤



Succinct Non-Interactive Arguments (SNARGs)

Instantiation: “CS proofs” in 
the random oracle model 

[Mic94]

[Kil92, Mic00, GW11]

accept if 𝑉ℛ𝒪(𝑥, 𝜋) = 1

𝜋 = 𝑃ℛ𝒪(𝑥, 𝑤)

𝑥

prover verifier

Argument consists of a 
single message

random oracle ℛ𝒪

(𝑥, 𝑤)



Succinct Non-Interactive Arguments (SNARGs)

common reference 
string (CRS)

verification 
state

𝜎 𝜏

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs: 
allow “expensive” setup

accept if 𝑉 𝜏, 𝑥, 𝜋 = 1

𝜋 = 𝑃(𝜎, 𝑥, 𝑤)

prover verifier

Argument consists of a 
single message(𝑥, 𝑤) 𝑥

[Kil92, Mic00, GW11]

Setup 1𝜆



Complexity Metrics for SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑉 𝑥, 𝑃∗ 𝑥 = 1 ≤ 2−𝜆

How short can the proofs be?

𝜋 = Ω 𝜆

How much work is needed to generate the proof?

𝑃 = Ω 𝐶

Even in the designated-
verifier setting



Quasi-Optimal SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑉 𝑥, 𝑃∗ 𝑥 = 1 ≤ 2−𝜆

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it 
satisfies the following properties:

• Quasi-optimal succinctness: 
𝜋 = 𝜆 ⋅ polylog 𝜆, 𝐶 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity:
𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶 )



Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂( 𝐶 ) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶 )

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of 
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Generic Group

෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

This work
(over integer lattices)

This work
(over ideal lattices)

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity



Constructing (Quasi-Optimal) SNARGs

New framework for building preprocessing SNARGs (following [BCIOP13]):

Step 1 (information-theoretic):
• Identify useful information-theoretic building block (linear 

PCPs and linear MIPs)
Step 2 (cryptographic):

• Use cryptographic primitives to compile information-theoretic 
building block into a preprocessing SNARG

Instantiating our framework yields new lattice-based SNARG candidates



Linear PCPs

𝜋 ∈ 𝔽𝑚

𝑞 ∈ 𝔽𝑚

𝑞, 𝜋 ∈ 𝔽 Several possible instantiations: based on 
the Walsh-Hadamard code [ALMSS92] or 
quadratic span programs [GGPR13]verifier

𝑥, 𝑤PCP where the proof 
oracle implements a 

linear function 𝜋 ∈ 𝔽𝑚

In these instantiations, 
verifier is oblivious (queries 
independent of statement)

[IKO07]

accept/reject



From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries 

SNARG proof

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear 
PCP 𝜋 from (𝑥, 𝑤)

[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time



Two issues:
• Malicious prover can choose 

𝜋 based on the queries
• Malicious prover can apply 

different 𝜋 to each query
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Two issues:
• Malicious prover can choose 

𝜋 based on the queries
• Malicious prover can apply 

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Oblivious verifier can “commit” 
to its queries ahead of time

Step 2: Conjecture that the encryption 
scheme only supports a limited subset of 
homomorphic operations (linear-only vector 
encryption)



• Differs from [BCIOP13] compiler which 
relies on additional consistency checks to 
build a preprocessing SNARG

• Using linear-only vector encryption 
allows for efficient instantiation from 
lattices (resulting SNARG satisfies quasi-
optimal succinctness)

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Oblivious verifier can “commit” 
to its queries ahead of time

Step 2: Conjecture that the encryption 
scheme only supports a limited subset of 
homomorphic operations (linear-only vector 
encryption)



Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

plaintext space is a 
vector space



Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

plaintext space is a 
vector space


𝑖∈[𝑛]

𝛼𝑖𝑣𝑖 ∈ 𝔽𝑘

encryption scheme is 
semantically-secure and 
additively homomorphic 



Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

ct

𝛼1, … , 𝛼𝑚 ∈ 𝔽, 𝑏 ∈ 𝔽𝑘

adversary

extractor

For all adversaries, there is an efficient extractor such that if ct is valid, then 
the extractor is able to produce a vector of coefficients 𝛼1, … , 𝛼𝑚 ∈ 𝔽𝑚

and 𝑏 ∈ 𝔽𝑘 such that Decrypt sk, ct = σ𝑖∈[𝑛]𝛼𝑖𝑣𝑖 + 𝑏

[Weaker property also suffices]



From Linear PCPs to SNARGs

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear 
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries 

SNARG proof

Oblivious verifier can “commit” 
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt 
row by row

Linear-only vector encryption 
ensures that all prover 

strategies can be explained by 
a linear function ⇒ can appeal 

to soundness of underlying 
linear PCP to argue soundness



Instantiating Linear-Only Vector Encryption

Conjecture: Regev encryption (specifically, variant of the [PVW08] 
scheme) based on lattices is a linear-only vector encryption scheme.

Linear PCPs for 
Boolean circuit 

satisfiability
Preprocessing SNARG

Linear-Only Vector 
Encryption



Complexity of the Construction

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear 
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries 

SNARG proof

Oblivious verifier can “commit” 
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt 
row by row

Evaluating inner product requires 
Ω 𝐶 homomorphic operations; 

prover complexity:
Ω 𝜆 ⋅ Ω 𝐶 = Ω 𝜆 𝐶

Proof consists of a single 
ciphertext: total length 𝑂(𝜆) bits



Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂( 𝐶 ) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶 )

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of 
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Generic Group

This work
(over integer lattices)

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity



Towards Quasi-Optimality

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear 
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries 

SNARG proof

Oblivious verifier can “commit” 
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt 
row by row

Evaluating inner product requires 
Ω 𝐶 homomorphic operations; 

prover complexity:
Ω 𝜆 ⋅ Ω 𝐶 = Ω 𝜆 𝐶

Proof consists of a constant
number of ciphertexts: total length 

𝑂(𝜆) bits

We pay Ω(𝜆) for each 
homomorphic 

operation. Can we 
reduce this?



Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed 
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations 
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can 
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆 ) 

with ciphertexts of size ෨𝑂(𝜆)



Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed 
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations 
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can 
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆 ) 

with ciphertexts of size ෨𝑂(𝜆)

Amortized cost of homomorphic 
operation on a single field 

element is polylog(𝜆)



Linear-Only Encryption over Rings

𝑞1 ∈ 𝔽𝑝
𝑚

𝑞2 ∈ 𝔽𝑝
𝑚

𝑞3 ∈ 𝔽𝑝
𝑚

⋮

𝑞ℓ ∈ 𝔽𝑝
𝑚

⟨𝜋1, 𝑞1⟩

⟨𝜋2, 𝑞2⟩

⟨𝜋3, 𝑞3⟩

⋮

⟨𝜋ℓ, 𝑞ℓ⟩

Given encrypted set of query vectors, prover can 
homomorphically apply independent linear functions to each slot

Key idea: Check multiple independent proofs in parallel



Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Verifier has oracle access to 
multiple linear proof oracles

[Proofs may be correlated]

Can convert linear MIP to 
preprocessing SNARG using linear-
only (vector) encryption over rings



Suppose 
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries to each 𝜋𝑖 is polylog(𝜆)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ



Suppose 
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries to each 𝜋𝑖 is polylog(𝜆)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Prover complexity:
෨𝑂 ℓ𝑚 = ෨𝑂 𝐶

Linear MIP size:

𝑂 ℓ ⋅ polylog 𝜆 = ෨𝑂(𝜆)



Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit 
satisfiability

Robust 
Decomposition

Consistency 
Check

Quasi-Optimal 
Linear MIP



Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness 
for 𝑓1, … , 𝑓ℓ

Decompose 𝐶 into constraint 
functions 𝑓1, … , 𝑓ℓ, where each 
constraint can be computed by 

a circuit of size 𝑠/ℓ

Only depends on 𝑥

Each constraint only needs to 
read a subset of the input bits
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′ ⋯ 𝑥𝑛
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′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯
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𝑓ℓ

Statement-
witness for 𝐶
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for 𝑓1, … , 𝑓ℓ

Only depends on 𝑥

Decompose 𝐶 into constraint 
functions 𝑓1, … , 𝑓ℓ, where each 
constraint can be computed by 
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read a subset of the input bits



Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness 
for 𝑓1, … , 𝑓ℓ

Only depends on 𝑥

Decompose 𝐶 into constraint 
functions 𝑓1, … , 𝑓ℓ, where each 
constraint can be computed by 

a circuit of size 𝑠/ℓ

Each constraint only needs to 
read a subset of the input bits



Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness 
for 𝑓1, … , 𝑓ℓ

Completeness: If 𝐶 𝑥,𝑤 = 1, 
then 𝑓𝑖 𝑥

′, 𝑤′ = 1 for all 𝑖

Robustness: If 𝑥 ∉ ℒ, then for all 
𝑤′, at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

Efficiency: (𝑥′, 𝑤′) can be 
computed by a circuit of size ෨𝑂(𝑠)

Only depends on 𝑥



Robust Decomposition

Boolean 
circuit 𝐶 of 

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable 

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Using linear PCP based on QSPs 
[GGPR13], 𝜋𝑖 = 𝑂( Τ𝐶 ℓ) and 
provides soundness 1/poly 𝜆

(𝑥, 𝑤)
Statement-witness 

for 𝐶
Statement-witness 

for 𝑓1, … , 𝑓ℓ

Encode (𝑥′, 𝑤′)



Robust Decomposition

Boolean 
circuit 𝐶 of 

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable 

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Verifier invokes linear PCP verifier 
for each instance

(𝑥, 𝑤)
Statement-witness 

for 𝐶
Statement-witness 

for 𝑓1, … , 𝑓ℓ

Encode (𝑥′, 𝑤′)



Robust Decomposition

Boolean 
circuit 𝐶 of 

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable 

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Completeness: Follows by 
completeness of decomposition and 
linear PCPs

Soundness: Each linear PCP provides 
Τ1 poly 𝜆 soundness and for false 

statement, at least 1/3 of the 
statements are false, so if ℓ = Ω(𝜆), 
verifier accepts with probability 

2−Ω 𝜆



Robust Decomposition

Completeness: Follows by 
completeness of decomposition and 
linear PCPs

Soundness: Each linear PCP provides 
Τ1 poly 𝜆 soundness and for false 

statement, at least 1/3 of the 
statements are false, so if ℓ = Ω(𝜆), 
verifier accepts with probability 

2−Ω 𝜆

Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′, 
at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

For false 𝑥, no single 𝑤′ can 
simultaneously satisfy 𝑓𝑖 𝑥

′,⋅ ; 
however, all of the 𝑓𝑖(𝑥

′,⋅) could 
individually be satisfiable

Problematic however if prover 
uses different 𝑥′, 𝑤′ to 

construct proofs for different 𝑓𝑖’s



Consistency Checking

Require that linear PCPs are systematic: linear PCP 𝜋 contains a copy of the witness:

𝜋1

𝜋2

𝜋3

𝑤1
′ 𝑤3

′

𝑤1
′ 𝑤2

′

𝑤2
′ 𝑤3

′

other components

other components

other components

First few components of proof 
correspond to witness associated 

with the statement

Goal: check that assignments 
to 𝑤′ are consistent via 

linear queries to 𝜋𝑖

Each proof induces an 
assignment to a few bits of 

the common witness 𝑤′



Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking 
satisfiability of 𝑓1, … , 𝑓ℓ (each 
of which can be checked by a 
circuit of size Τ𝐶 ℓ)

• For a false statement, no 
single witness can 
simultaneously satisfy more 
than a constant fraction of 𝑓𝑖

Quasi-Optimal Linear MIP

Robust decomposition can be instantiated by 
combining “MPC-in-the-head” paradigm 
[IKOS07] with a robust MPC protocol with 
polylogarithmic overhead [DIK10]



Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking 
satisfiability of 𝑓1, … , 𝑓ℓ (each 
of which can be checked by a 
circuit of size Τ𝐶 ℓ)

• For a false statement, no 
single witness can 
simultaneously satisfy more 
than a constant fraction of 𝑓𝑖

Consistency Check

• Check that consistent witness is 
used to prove satisfiability of 
each 𝑓𝑖

• Relies on pairwise consistency 
checks and permuting the 
entries to obtain a “nice” 
replication structure

Quasi-Optimal Linear MIP



Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂( 𝐶 ) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶 )

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of 
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶 ) ෨𝑂(𝜆) Generic Group

෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

This work
(over integer lattices)

This work
(over ideal lattices)

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity



Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

• Quasi-optimal succinctness: 𝜋 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity: 𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶 )

New framework for building SNARGs by combining linear PCPs (and linear MIPs) 
with linear-only vector encryption

Framework yields first quasi-optimal SNARG by combining quasi-optimal linear MIP 
with linear-only vector encryption

• Construction of a quasi-optimal linear MIP possible by combining robust 
decomposition and consistency check



Summary

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Lattices

SIS LWE

Multilinear Maps

Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?



Summary

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Multilinear MapsLattices

SIS LWE

Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?
* In a weaker preprocessing model
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