A Somewhat Informal Introduction to FHE

David Wu
August, 2014

Basic Definitions

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that allows computation on ciphertexts

Comprises of three functions:

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that allows computation on ciphertexts

Comprises of three functions:

$$
\begin{aligned}
& c_{1}=\underset{c_{2}=\operatorname{Enc}_{p k}\left(m_{2}\right)}{\operatorname{Enc}_{p k}\left(m_{1}\right)} \\
& \xrightarrow[e k]{\text { Eval }_{f}} \xrightarrow{c_{3}} \\
& \operatorname{Dec}_{s k}\left(\operatorname{Eval}_{f}\left(e k, c_{1}, c_{2}\right)\right)=f\left(m_{1}, m_{2}\right)
\end{aligned}
$$

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:

- ElGamal: $f\left(m_{0}, m_{1}\right)=m_{0} m_{1}$
- Paillier: $f\left(m_{0}, m_{1}\right)=m_{0}+m_{1}$
- Goldwasser-Micali: $f\left(m_{0}, m_{1}\right)=m_{0} \oplus m_{1}$

Fully homomorphic encryption: homomorphic with respect to two operations: addition and multiplication

- Can evaluate Boolean and arithmetic circuits
- [BGN05]: one multiplication, many additions
- [Gen09]: first FHE construction from lattices

Fully Homomorphic Encryption

$\mathcal{C}(f)$: circuit for some function f

Correctness: $\operatorname{Dec}_{s k}\left(\operatorname{Eval}_{f}\left(e k, c_{1}, c_{2}\right)\right)=f\left(m_{1}, m_{2}\right)$
Circuit Privacy: $\operatorname{Enc}_{p k}\left(\mathcal{C}\left(m_{1}, m_{2}\right)\right) \approx \operatorname{Eval}_{f}\left(e k, c_{1}, c_{2}\right)$
Compactness: Decryption circuit has size at most poly (λ)

Lattices and LWE

Lattices

All known FHE constructions based on lattice problems
Lattices are discrete additive subgroups

equivalent definition: the set of integer combination of basis vectors
discrete subgroup: no other lattice point contained in ball of radius $\epsilon>0$ around each lattice point

Hard Lattice Problems

Finding a short vector in a lattice (SVP)

"Good" basis: easy

"Bad" basis: not so easy

Exact SVP is NP-hard. Approximation algorithms try to find a "good" basis using lattice-reduction techniques

Learning with Errors (LWE) [Reg05]

Distribution 2

LWE Assumption: distributions 1 and 2 are computationally indistinguishable

Learning with Errors (LWE)

A gold mine of applications!

- PKC: [Reg05], [KTX07], [Pei09]
- FHE: [BV11], [BGV12], [Bra12], [GSW13]
- IBE: [GPV08], [CHKP10], [ABB10]
- ABE: [GVW13], [BCG+14]
- FE: [AFV11]
- ... and many more!

Public Key Encryption from LWE [Reg05]

secret key S
public key A
secret key is LWE secret, public key consists of LWE samples

Regev Encryption

Regev Decryption

$$
\left.\begin{array}{rl}
r^{T}(B t+e)+m \cdot\left\lfloor\frac{q}{2}\right\rfloor
\end{array}\right] \times\left[\begin{array}{c}
1 \\
r^{T} B \\
-t
\end{array}\right]=r^{T} B t+r^{T} e+m \cdot\left\lfloor\frac{q}{2}\right\rfloor-r^{T} B t
$$

multiplying by $\frac{2}{q}$ recovers the message if $r^{T} e$ is small

PKC from LWE: Regev Encryption [Reg05]

- Private key: choose $t \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n}$ and set $s \leftarrow(1,-t)$
- Public key: Choose $B \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m \times n}, e \stackrel{\$}{\leftarrow} \chi^{m}$ and compute

$$
A \leftarrow(B s+e, B) \in \mathbb{Z}_{q}^{m \times(n+1)}
$$

- Encrypt: Choose random $0 / 1$ vector $r \stackrel{\$}{\leftarrow}\{0,1\}^{m}$ and compute

$$
r^{T} A+\left(m \cdot\left\lfloor\frac{q}{2}\right\rfloor, 0^{n}\right) \in \mathbb{Z}_{q}^{n+1}
$$

- Decrypt: To decrypt ciphertext c, compute $\left[\frac{2}{q}\langle c, s\rangle\right\rceil$

PKC from LWE: Regev Encryption [Reg05]

Correctness: if error sufficiently small $\left(<\frac{q}{4}\right)$, then rounding yields the underlying message.

Security: random subset sum of $\left(a_{i}, b_{i}\right)$ is statistically close to uniform (argument based on leftover hash lemma). Security follows by LWE assumption.

PKC from LWE: Regev Encryption [Reg05]

Key intuition: hide message by adding some noise; everything works if noise is sufficiently small

Basic observation underlying many FHE

 constructionsSWHE Construction from LWE

From SWHE to FHE

- Somewhat homomorphic encryption: encryption scheme that supports a limited number of operations
- All known constructions based on lattices:
- Hide messages by adding noise
- Homomorphic operations increase noise
- Gentry's blueprint [Gen09]: bootstrapping SWHE to FHE
- Homomorphically evaluate the decryption circuit
- Provides a way to "refresh" a ciphertext

A Simple SWHE Scheme [GSW13]

- Ciphertext are matrices
- Secret key is a vector $v \in \mathbb{Z}_{q}^{n}$
- A ciphertext C encrypts a message m if the following holds:

$$
C v=m v+e
$$

where e is a small error term

- Intuition: the message is an approximate eigenvalue of the ciphertext

The GSW Scheme

- A ciphertext C encrypts a message m if the following holds:

$$
C v=m v+e
$$

where e is a small error term

- Can decrypt if v has a "big" coefficient v_{i} by rounding:

$$
\left\lfloor\frac{\left\langle C_{i}, v\right\rangle}{v_{i}}\right\rceil=\left\lfloor\frac{m v_{i}+e}{v_{i}}\right\rceil
$$

where C_{i} denotes the $i^{\text {th }}$ row of C

The GSW Scheme

- Homomorphic operations very natural - suppose C_{1} encrypts m_{1} and C_{2} encrypts m_{2}
- Homomorphic addition: $C_{1}+C_{2}$ (almost) encrypts $m_{1}+m_{2}$:

$$
\left(C_{1}+C_{2}\right) v=\left(m_{1}+m_{2}\right) v+e_{1}+e_{2}
$$

- Homomorphic multiplication: $C_{1} C_{2}$ (almost) encrypts $m_{1} m_{2}$:

$$
C_{1} C_{2} v=\left(m_{1} m_{2}\right) v+m_{2} e_{1}+C_{1} e_{2}
$$

- Everything works if noise is small enough

Constraining Noise Growth

- Recall Regev decryption:

$$
m \leftarrow\left\lfloor\frac{2}{q}\langle c, s\rangle\right\rceil
$$

- Key operation is inner product
- Want transformation that preserves inner product while reducing "size" (norm) of vectors

Bit Decomposition

- Let $\ell=\left\lfloor\log _{2} q\right\rfloor+1$ and suppose $z \in \mathbb{Z}_{q}^{n}$
- $\operatorname{BitDecomp}(z)=\left(z_{1,0}, \ldots, z_{1, \ell-1}, \ldots, z_{n, 0}, \ldots, z_{n, \ell-1}\right)$ where $z_{i, j}$ is the $j^{\text {th }}$ bit of the binary decomposition of z_{i}
- BitDecomp $^{-1}\left(z^{\prime}\right)=\left(\sum_{j=1}^{\ell} 2^{j} z_{1, j}^{\prime}, \ldots, \sum_{j=1}^{\ell} 2^{j} z_{n, j}^{\prime}\right)$
- PowersOfTwo $(z)=\left(z_{1}, 2 z_{1}, \ldots, 2^{\ell-1} z_{1}, \ldots, z_{n}, 2 z_{n}, \ldots, 2^{\ell-1} z_{n}\right)$

Bit Decomposition

- $\operatorname{BitDecomp}(z)=\left(z_{1,0}, \ldots, z_{1, \ell-1}, \ldots, z_{n, 0}, \ldots, z_{n, \ell-1}\right)$
- PowersOfTwo $(z)=\left(z_{1}, 2 z_{1}, \ldots, 2^{\ell-1} z_{1}, \ldots, z_{n}, 2 z_{n}, \ldots, 2^{\ell-1} z_{n}\right)$
$\langle\operatorname{BitDecomp}(x), \operatorname{PowersOfTwo}(y)\rangle=\langle x, y\rangle$

Flattening a Vector

- $\operatorname{Flatten}(z)=\operatorname{BitDecomp}\left(\operatorname{BitDecomp}^{-1}(z)\right)$
- Flatten (z) is a $0 / 1$ vector even though z need not be a $0 / 1$ vector

$$
\langle x, \text { PowersOfTwo }(y)\rangle=\sum_{i=1}^{n} \sum_{j=0}^{\ell-1} x_{i, j} \cdot 2^{j} y_{i}
$$

Preserves inner
product with
PowersOfTwo(\cdot)

$$
\begin{aligned}
& =\sum_{i=1}^{n} y_{i} \sum_{j=0}^{\ell-1} 2^{j} x_{i, j} \\
& =\left\langle\operatorname{BitDecomp}{ }^{-1}(x), y\right\rangle \\
& =\langle\operatorname{Flatten}(x), \operatorname{PowersOfTwo}(y)\rangle
\end{aligned}
$$

GSW Key Generation

Regev-like, but where we apply PowersOfTwo to the secret

Note: $A s=B t+e-B t=e$

GSW Encryption

- Recall Regev decryption:

$$
m \leftarrow\left\lfloor\frac{2}{q}\langle c, s\rangle\right\rceil
$$

- So far, replaced s with PowersOfTwo(s), so to preserve inner product, we apply BitDecomp to the ciphertext c

GSW Encryption

Constrains norm of ciphertext, but preserves inner product $\langle c$, PowersOfTwo $(s)\rangle$

Approximate Eigenvalues

- Secret key is

$$
v \leftarrow \text { PowersOfTwo }(s)
$$

- Encryption of a message $m \in\{0,1\}$ given by

$$
C \leftarrow \operatorname{Flatten}\left(m \cdot I_{N}+\operatorname{BitDecomp}(R \cdot A)\right)
$$

- Observe:

$$
C v=m v+R A s=m v+R e
$$

Small since R is $0 / 1$ matrix

Revisiting Homomorphic Operations

- Homomorphic operations very natural - suppose C_{1} encrypts m_{1} and C_{2} encrypts m_{2}
- Homomorphic addition: $C_{1}+C_{2}$ encrypts $m_{1}+m_{2}$:

$$
\left(C_{1}+C_{2}\right) v=\left(m_{1}+m_{2}\right) v+e_{1}+e_{2}
$$

- If e_{1} and e_{2} are small, then is $e_{1}+e_{2}$ is small

Revisiting Homomorphic Operations

- Homomorphic operations very natural - suppose C_{1} encrypts m_{1} and C_{2} encrypts m_{2}
- Homomorphic multiplication: $C_{1} C_{2}$ (almost) encrypts $m_{1} m_{2}$:

$$
C_{1} C_{2} v=\left(m_{1} m_{2}\right) v+m_{2} e_{1}+C_{1} e_{2}
$$

- Noise increases based on
- $\left|m_{2}\right|:$ OK since $m_{2} \in\{0,1\}$
- $\left\|C_{1}\right\|$: OK since C_{1} is $0 / 1$ matrix

Revisiting Homomorphic Operations

- But homomorphic operations might produce matrix that is not 0/1
- Can use the Flatten operation again!
- Homomorphic addition: Flatten $\left(C_{1}+C_{2}\right)$
- Homomorphic multiplication: Flatten $\left(C_{1} C_{2}\right)$
- Ciphertext always consist of $0 / 1$ matrices

Brief Note on Security [High-Level]

- Public key components are simply LWE samples
- Ciphertext components are very similar to Regev encryptions (omitting a few small details, but a very similar proof carries through), and hardness derives from LWE

Questions?

