A Somewhat Informal Introduction to FHE

David Wu August, 2014

Basic Definitions

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that allows computation on ciphertexts

Comprises of three functions:

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that allows computation on ciphertexts

Comprises of three functions:

$$c_{1} = \operatorname{Enc}_{pk}(m_{1})$$

$$c_{2} = \operatorname{Enc}_{pk}(m_{2})$$

$$e_{k}$$

$$\operatorname{Dec}_{sk}\left(\operatorname{Eval}_{f}(ek, c_{1}, c_{2})\right) = f(m_{1}, m_{2})$$

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:

- ElGamal: $f(m_0, m_1) = m_0 m_1$
- Paillier: $f(m_0, m_1) = m_0 + m_1$
- Goldwasser-Micali: $f(m_0, m_1) = m_0 \oplus m_1$

Fully homomorphic encryption: homomorphic with respect to **two** operations: addition and multiplication

- Can evaluate Boolean and arithmetic circuits
- [BGN05]: one multiplication, many additions
- [Gen09]: first FHE construction from lattices

Fully Homomorphic Encryption

C(f): circuit for some function f

Correctness:
$$\text{Dec}_{sk}\left(\text{Eval}_f(ek, c_1, c_2)\right) = f(m_1, m_2)$$

Circuit Privacy: $\text{Enc}_{pk}(\mathcal{C}(m_1, m_2)) \approx \text{Eval}_f(ek, c_1, c_2)$
Compactness: Decryption circuit has size at most $\text{poly}(\lambda)$

Lattices and LWE

Lattices

All known FHE constructions based on lattice problems

Lattices are discrete additive subgroups

equivalent definition: the set of integer

combination of basis vectors

discrete subgroup: no other lattice point contained in ball of radius $\epsilon > 0$ around each lattice point

Hard Lattice Problems

Finding a short vector in a lattice (SVP)

"Good" basis: easy "Bad" basis: not so easy

Exact SVP is NP-hard. Approximation algorithms try to find a

"good" basis using lattice-reduction techniques

Learning with Errors (LWE) [Reg05]

LWE Assumption: distributions 1 and 2 are computationally indistinguishable

Learning with Errors (LWE)

A gold mine of applications!

- PKC: [Reg05], [KTX07], [Pei09]
- FHE: [BV11], [BGV12], [Bra12], [GSW13]
- IBE: [GPV08], [CHKP10], [ABB10]
- ABE: [GVW13], [BCG+14]
- FE: [AFV11]
- ... and many more!

Public Key Encryption from LWE [Reg05]

secret key s

public key A

secret key is LWE secret, public key consists of LWE samples

Regev Encryption

random subset sum of rows in public key, with message embedded in leading component

Regev Decryption

PKC from LWE: Regev Encryption [Reg05]

- **Private key:** choose $t \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$ and set $s \leftarrow (1, -t)$
- **Public key:** Choose $B \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$, $e \stackrel{\$}{\leftarrow} \chi^m$ and compute

$$A \leftarrow (Bs + e, B) \in \mathbb{Z}_q^{m \times (n+1)}$$

• Encrypt: Choose random 0/1 vector $r \stackrel{\$}{\leftarrow} \{0,1\}^m$ and compute

$$r^{T}A + \left(m \cdot \left\lfloor \frac{q}{2} \right\rfloor, 0^{n}\right) \in \mathbb{Z}_{q}^{n+1}$$

• **Decrypt:** To decrypt ciphertext *c*, compute $\left|\frac{2}{q}\langle c, s \rangle\right|$

PKC from LWE: Regev Encryption [Reg05]

Correctness: if error sufficiently small $\left(<\frac{q}{4}\right)$, then

rounding yields the underlying message.

Security: random subset sum of (a_i, b_i) is statistically close to uniform (argument based on leftover hash lemma). Security follows by LWE assumption.

PKC from LWE: Regev Encryption [Reg05]

Key intuition: hide message by adding some noise; everything works if noise is sufficiently small

Basic observation underlying many FHE constructions

SWHE Construction from LWE

From SWHE to FHE

- Somewhat homomorphic encryption: encryption scheme that supports a *limited* number of operations
- All known constructions based on lattices:
 - Hide messages by adding noise
 - Homomorphic operations increase noise
- Gentry's blueprint [Gen09]: bootstrapping SWHE to FHE
 - Homomorphically evaluate the decryption circuit
 - Provides a way to "refresh" a ciphertext

A Simple SWHE Scheme [GSW13]

- Ciphertext are matrices
- Secret key is a vector $v \in \mathbb{Z}_q^n$
- A ciphertext *C* encrypts a message *m* if the following holds:

$$Cv = mv + e$$

where *e* is a small error term

• Intuition: the message is an *approximate* eigenvalue of the ciphertext

The GSW Scheme

• A ciphertext *C* encrypts a message *m* if the following holds:

$$Cv = mv + e$$

where *e* is a small error term

• Can decrypt if v has a "big" coefficient v_i by rounding:

$$\left|\frac{\langle C_i, v \rangle}{v_i}\right| = \left|\frac{mv_i + e}{v_i}\right|$$

where C_i denotes the i^{th} row of C

The GSW Scheme

• Homomorphic operations very natural – suppose C_1 encrypts m_1 and C_2 encrypts m_2

- Homomorphic addition: $C_1 + C_2$ (almost) encrypts $m_1 + m_2$: $(C_1 + C_2)v = (m_1 + m_2)v + e_1 + e_2$
- Homomorphic multiplication: C_1C_2 (almost) encrypts m_1m_2 :

$$C_1 C_2 v = (m_1 m_2) v + m_2 e_1 + C_1 e_2$$

• Everything works if noise is small enough

Constraining Noise Growth

• Recall Regev decryption:

$$m \leftarrow \left\lfloor \frac{2}{q} \langle c, s \rangle \right\rfloor$$

• Key operation is inner product

• Want transformation that preserves inner product while reducing "size" (norm) of vectors

Bit Decomposition

• Let $\ell = \lfloor \log_2 q \rfloor + 1$ and suppose $z \in \mathbb{Z}_q^n$

• BitDecomp $(z) = (z_{1,0}, \dots, z_{1,\ell-1}, \dots, z_{n,0}, \dots, z_{n,\ell-1})$ where $z_{i,j}$ is the j^{th} bit of the binary decomposition of z_i

- BitDecomp⁻¹(z') = $\left(\sum_{j=1}^{\ell} 2^{j} z'_{1,j}, \dots, \sum_{j=1}^{\ell} 2^{j} z'_{n,j}\right)$
- PowersOfTwo(z) = $(z_1, 2z_1, ..., 2^{\ell-1}z_1, ..., z_n, 2z_n, ..., 2^{\ell-1}z_n)$

Bit Decomposition

- BitDecomp $(z) = (z_{1,0}, \dots, z_{1,\ell-1}, \dots, z_{n,0}, \dots, z_{n,\ell-1})$
- PowersOfTwo(z) = $(z_1, 2z_1, ..., 2^{\ell-1}z_1, ..., z_n, 2z_n, ..., 2^{\ell-1}z_n)$

 $\langle BitDecomp(x), PowersOfTwo(y) \rangle = \langle x, y \rangle$

Flattening a Vector

- Flatten(z) = BitDecomp(BitDecomp⁻¹(z))
- Flatten(z) is a 0/1 vector even though z need not be a 0/1 vector

$$\langle x, \text{PowersOfTwo}(y) \rangle = \sum_{i=1}^{n} \sum_{j=0}^{\ell-1} x_{i,j} \cdot 2^{j} y_{i}$$

Preserves inner product with PowersOfTwo(·)

$$= \sum_{i=1}^{n} y_i \sum_{j=0}^{\ell-1} 2^j x_{i,j}$$
$$= \langle \text{BitDecomp}^{-1}(x), y \rangle$$

= \langle Flatten(x), PowersOfTwo(y) \rangle

GSW Key Generation

Regev-like, but where we apply PowersOfTwo to the secret

 $B \times t + e$ B PowersOfTwo $e \stackrel{\$}{\leftarrow} \chi^m$ $B \stackrel{\$}{\leftarrow} \mathbb{Z}_a^{m \times n}$ $t \stackrel{\$}{\leftarrow} \mathbb{Z}_a^n$

secret key
PowersOfTwo(s)

public key A

Note: As = Bt + e - Bt = e

GSW Encryption

• Recall Regev decryption:

$$m \leftarrow \left\lfloor \frac{2}{q} \langle c, s \rangle \right\rfloor$$

 So far, replaced s with PowersOfTwo(s), so to preserve inner product, we apply BitDecomp to the ciphertext c

GSW Encryption

Constrains norm of ciphertext, but preserves inner product (*c*, PowersOfTwo(*s*))

Approximate Eigenvalues

• Secret key is

 $v \leftarrow \text{PowersOfTwo}(s)$

• Encryption of a message $m \in \{0,1\}$ given by

$$C \leftarrow \text{Flatten}(m \cdot I_N + \text{BitDecomp}(R \cdot A))$$

• Observe:

$$Cv = mv + RAs = mv + Re$$

Small since R is 0/1 matrix

Revisiting Homomorphic Operations

• Homomorphic operations very natural – suppose C_1 encrypts m_1 and C_2 encrypts m_2

• Homomorphic addition: $C_1 + C_2$ encrypts $m_1 + m_2$: $(C_1 + C_2)v = (m_1 + m_2)v + e_1 + e_2$

• If e_1 and e_2 are small, then is $e_1 + e_2$ is small

Revisiting Homomorphic Operations

• Homomorphic operations very natural – suppose C_1 encrypts m_1 and C_2 encrypts m_2

- Homomorphic multiplication: C_1C_2 (almost) encrypts m_1m_2 : $C_1C_2v = (m_1m_2)v + m_2e_1 + C_1e_2$
- Noise increases based on
 - $|m_2|$: OK since $m_2 \in \{0,1\}$
 - $||C_1||$: OK since C_1 is 0/1 matrix

Revisiting Homomorphic Operations

- But homomorphic operations might produce matrix that is not 0/1
- Can use the Flatten operation again!

- Homomorphic addition: $Flatten(C_1 + C_2)$
- Homomorphic multiplication: $Flatten(C_1C_2)$

• Ciphertext always consist of 0/1 matrices

Brief Note on Security [High-Level]

• Public key components are simply LWE samples

 Ciphertext components are very similar to Regev encryptions (omitting a few small details, but a very similar proof carries through), and hardness derives from LWE

Questions?