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Basic Definitions



Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that 
allows computation on ciphertexts

Comprises of three functions:
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Must satisfy usual notion of semantic security



Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that 
allows computation on ciphertexts

Comprises of three functions:

Dec𝑠𝑘 Eva𝑙𝑓 𝑒𝑘, 𝑐1, 𝑐2 = 𝑓 𝑚1, 𝑚2

𝑐1 = Enc𝑝𝑘(𝑚1)

Eval𝑓
𝑐3

𝑐2 = Enc𝑝𝑘(𝑚2)

𝑒𝑘



Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
• ElGamal: 𝑓 𝑚0, 𝑚1 = 𝑚0𝑚1

• Paillier: 𝑓 𝑚0, 𝑚1 = 𝑚0 + 𝑚1

• Goldwasser-Micali: 𝑓 𝑚0, 𝑚1 = 𝑚0 ⊕ 𝑚1

Fully homomorphic encryption: homomorphic with respect 
to two operations: addition and multiplication

• Can evaluate Boolean and arithmetic circuits
• [BGN05]: one multiplication, many additions
• [Gen09]: first FHE construction from lattices



Fully Homomorphic Encryption

𝑐1 = Enc𝑝𝑘(𝑚1)

Eval
𝑐3

𝑐2 = Enc𝑝𝑘(𝑚2)

𝑒𝑘

𝒞(𝑓)

𝒞 𝑓 : circuit for some function 𝑓

Correctness: Dec𝑠𝑘 Eva𝑙𝑓 𝑒𝑘, 𝑐1, 𝑐2 = 𝑓 𝑚1, 𝑚2

Circuit Privacy: Enc𝑝𝑘 𝒞 𝑚1, 𝑚2 ≈ Eval𝑓(𝑒𝑘, 𝑐1, 𝑐2)

Compactness: Decryption circuit has size at most poly(𝜆)



Lattices and LWE



Lattices

All known FHE constructions based on lattice problems

Lattices are discrete additive subgroups

equivalent definition: the set of integer

combination of basis vectors

basis vectors discrete subgroup: no other lattice point contained 

in ball of radius 𝜖 > 0 around each lattice point 



Hard Lattice Problems

Finding a short vector in a lattice (SVP)

“Good” basis: easy “Bad” basis: not so easy

Exact SVP is NP-hard. Approximation algorithms try to find a 

“good” basis using lattice-reduction techniques



Learning with Errors (LWE) [Reg05]

𝐴 
$

ℤ𝑞
𝑚×𝑛 𝑠 

$
ℤ𝑞

𝑛

× +

𝑒 
$

𝜒𝑚

,
𝐴 𝐴 𝑠 𝑒

𝐴 
$

ℤ𝑞
𝑚×𝑛 𝑏 

$
ℤ𝑞

𝑚

,
𝐴 𝑏

Distribution 1 Distribution 2

LWE Assumption: distributions 1 and 2 are computationally 

indistinguishable



Learning with Errors (LWE)

A gold mine of applications!

• PKC: [Reg05], [KTX07], [Pei09]

• FHE: [BV11], [BGV12], [Bra12], [GSW13]

• IBE: [GPV08], [CHKP10], [ABB10]

• ABE: [GVW13], [BCG+14]

• FE: [AFV11]

• … and many more!



Public Key Encryption from LWE [Reg05]

𝑡  
$

ℤ𝑞
𝑛

−𝑡

1

secret key 𝑠

𝐵  
$

ℤ𝑞
𝑚×𝑛

× +

𝑒 
$

𝜒𝑚

,
𝐵 𝐵𝑒𝑡

public key 𝐴 secret key is LWE secret, 
public key consists of 

LWE samples



Regev Encryption

𝑟𝑇 𝐵

𝐵𝑡 + 𝑒

𝑟  
$

0,1 𝑚 public key

× 0𝑛

𝑚 ⋅
𝑞

2

+

𝑚 ∈ 0,1

random subset sum of 
rows in public key, with 
message embedded in 

leading component



Regev Decryption

𝑟𝑇𝐵

𝑟𝑇 𝐵𝑡 + 𝑒 + 𝑚 ⋅
𝑞

2

ciphertext

−𝑡

1

secret key

× = 𝑟𝑇𝐵𝑡 + 𝑟𝑇𝑒 + 𝑚 ⋅
𝑞

2
− 𝑟𝑇𝐵𝑡

= 𝑚 ⋅
𝑞

2
+ 𝑟𝑇𝑒

multiplying by 
2

𝑞
recovers the 

message if 𝑟𝑇𝑒 is small



PKC from LWE: Regev Encryption [Reg05]

• Private key: choose 𝑡  
$

ℤ𝑞
𝑛 and set 𝑠  (1, −𝑡)

• Public key: Choose 𝐵  
$

ℤ𝑞
𝑚×𝑛, 𝑒  

$
𝜒𝑚 and compute

𝐴  𝐵𝑠 + 𝑒, 𝐵 ∈ ℤ𝑞
𝑚×(𝑛+1)

• Encrypt: Choose random 0/1 vector 𝑟 
$

0,1 𝑚 and compute 

𝑟𝑇𝐴 + 𝑚 ⋅
𝑞

2
, 0𝑛 ∈ ℤ𝑞

𝑛+1

• Decrypt: To decrypt ciphertext 𝑐, compute   
2

𝑞
𝑐, 𝑠



PKC from LWE: Regev Encryption [Reg05]

Correctness: if error sufficiently small <
𝑞

4
, then 

rounding yields the underlying message.

Security: random subset sum of (𝑎𝑖 , 𝑏𝑖) is statistically 

close to uniform (argument based on leftover hash 

lemma). Security follows by LWE assumption.



PKC from LWE: Regev Encryption [Reg05]

Key intuition: hide message by adding some noise; 

everything works if noise is sufficiently small

Basic observation underlying many FHE 

constructions 



SWHE Construction from LWE



From SWHE to FHE

• Somewhat homomorphic encryption: encryption scheme that 

supports a limited number of operations

• All known constructions based on lattices:

• Hide messages by adding noise

• Homomorphic operations increase noise

• Gentry’s blueprint [Gen09]: bootstrapping SWHE to FHE

• Homomorphically evaluate the decryption circuit

• Provides a way to “refresh” a ciphertext



A Simple SWHE Scheme [GSW13]

• Ciphertext are matrices

• Secret key is a vector 𝑣 ∈ ℤ𝑞
𝑛

• A ciphertext 𝐶 encrypts a message 𝑚 if the following holds:

𝐶𝑣 = 𝑚𝑣 + 𝑒

where 𝑒 is a small error term

• Intuition: the message is an approximate eigenvalue of the 

ciphertext



The GSW Scheme

• A ciphertext 𝐶 encrypts a message 𝑚 if the following holds:

𝐶𝑣 = 𝑚𝑣 + 𝑒

where 𝑒 is a small error term

• Can decrypt if 𝑣 has a “big” coefficient 𝑣𝑖 by rounding:

  
𝐶𝑖 , 𝑣

𝑣𝑖
=   

𝑚𝑣𝑖 + 𝑒

𝑣𝑖

where 𝐶𝑖 denotes the 𝑖th row of 𝐶



The GSW Scheme

• Homomorphic operations very natural – suppose 𝐶1 encrypts 

𝑚1 and 𝐶2 encrypts 𝑚2

• Homomorphic addition: 𝐶1 + 𝐶2 (almost) encrypts 𝑚1 + 𝑚2:

𝐶1 + 𝐶2 𝑣 = 𝑚1 + 𝑚2 𝑣 + 𝑒1 + 𝑒2

• Homomorphic multiplication: 𝐶1𝐶2 (almost) encrypts 𝑚1𝑚2:

𝐶1𝐶2𝑣 = 𝑚1𝑚2 𝑣 + 𝑚2𝑒1 + 𝐶1𝑒2

• Everything works if noise is small enough



Constraining Noise Growth

• Recall Regev decryption:

𝑚    
2

𝑞
𝑐, 𝑠

• Key operation is inner product

• Want transformation that preserves inner product while 

reducing “size” (norm) of vectors



Bit Decomposition

• Let ℓ = log2 𝑞 + 1 and suppose 𝑧 ∈ ℤ𝑞
𝑛

• BitDecomp 𝑧 = (𝑧1,0, … , 𝑧1,ℓ−1, … , 𝑧𝑛,0, … , 𝑧𝑛,ℓ−1) where 𝑧𝑖,𝑗 is the 

𝑗th bit of the binary decomposition of 𝑧𝑖

• BitDecomp−1 𝑧′ =  𝑗=1
ℓ 2𝑗𝑧1,𝑗

′ , … ,  𝑗=1
ℓ 2𝑗𝑧𝑛,𝑗

′

• PowersOfTwo 𝑧 = (𝑧1, 2𝑧1, … , 2ℓ−1𝑧1, … , 𝑧𝑛, 2𝑧𝑛, … , 2ℓ−1 𝑧𝑛)



Bit Decomposition

• BitDecomp 𝑧 = (𝑧1,0, … , 𝑧1,ℓ−1, … , 𝑧𝑛,0, … , 𝑧𝑛,ℓ−1)

• PowersOfTwo 𝑧 = 𝑧1, 2𝑧1, … , 2ℓ−1𝑧1, … , 𝑧𝑛, 2𝑧𝑛, … , 2ℓ−1 𝑧𝑛

BitDecomp 𝑥 , PowersOfTwo(𝑦) = 𝑥, 𝑦



Flattening a Vector

• Flatten 𝑧 = BitDecomp BitDecomp−1 𝑧

• Flatten(𝑧) is a 0/1 vector even though 𝑧 need not be a 0/1 vector

𝑥, PowersOfTwo(𝑦) =  

𝑖=1

𝑛

 

𝑗=0

ℓ−1

𝑥𝑖,𝑗 ⋅ 2𝑗𝑦𝑖

=  

𝑖=1

𝑛

𝑦𝑖  

𝑗=0

ℓ−1

2𝑗𝑥𝑖,𝑗

= BitDecomp−1 𝑥 , 𝑦

= Flatten 𝑥 , PowersOfTwo(𝑦)

Preserves inner 

product with 

PowersOfTwo(⋅)



GSW Key Generation

𝐵  
$

ℤ𝑞
𝑚×𝑛

× +

𝑒 
$

𝜒𝑚

,
𝐵 𝐵𝑒𝑡

public key 𝐴

𝑡  
$

ℤ𝑞
𝑛

−𝑡

1

secret key 
PowersOfTwo(𝑠)

PowersOfTwo

Regev-like, but where we apply 
PowersOfTwo to the secret

Note: 𝐴𝑠 = 𝐵𝑡 + 𝑒 − 𝐵𝑡 = 𝑒



GSW Encryption

• Recall Regev decryption:

𝑚    
2

𝑞
𝑐, 𝑠

• So far, replaced 𝑠 with PowersOfTwo 𝑠 , so to preserve inner 

product, we apply BitDecomp to the ciphertext 𝑐



GSW Encryption

𝑅 𝐵

𝐵𝑡 + 𝑒

𝑅  
$

0,1 𝑁×𝑚 public key

× +

𝑚 ∈ 0,1

𝑚 ⋅ 𝐼𝑁BitDecompFlatten

Constrains norm of ciphertext, but preserves 
inner product 𝑐, PowersOfTwo(𝑠)



Approximate Eigenvalues

• Secret key is

𝑣  PowersOfTwo(𝑠)

• Encryption of a message 𝑚 ∈ 0,1 given by

𝐶  Flatten 𝑚 ⋅ 𝐼𝑁 + BitDecomp 𝑅 ⋅ 𝐴

• Observe:

𝐶𝑣 = 𝑚𝑣 + 𝑅𝐴𝑠 = 𝑚𝑣 + 𝑅𝑒

Small since 𝑅 is 0/1 
matrix



Revisiting Homomorphic Operations

• Homomorphic operations very natural – suppose 𝐶1 encrypts 

𝑚1 and 𝐶2 encrypts 𝑚2

• Homomorphic addition: 𝐶1 + 𝐶2 encrypts 𝑚1 + 𝑚2:

𝐶1 + 𝐶2 𝑣 = 𝑚1 + 𝑚2 𝑣 + 𝑒1 + 𝑒2

• If 𝑒1 and 𝑒2 are small, then is 𝑒1 + 𝑒2 is small



Revisiting Homomorphic Operations

• Homomorphic operations very natural – suppose 𝐶1 encrypts 

𝑚1 and 𝐶2 encrypts 𝑚2

• Homomorphic multiplication: 𝐶1𝐶2 (almost) encrypts 𝑚1𝑚2:

𝐶1𝐶2𝑣 = 𝑚1𝑚2 𝑣 + 𝑚2𝑒1 + 𝐶1𝑒2

• Noise increases based on 

• 𝑚2 : OK since 𝑚2 ∈ 0,1

• 𝐶1 : OK since 𝐶1 is 0/1 matrix



Revisiting Homomorphic Operations

• But homomorphic operations might produce matrix that is 

not 0/1

• Can use the Flatten operation again!

• Homomorphic addition: Flatten(𝐶1 + 𝐶2)

• Homomorphic multiplication: Flatten(𝐶1𝐶2)

• Ciphertext always consist of 0/1 matrices



Brief Note on Security [High-Level]

• Public key components are simply LWE samples

• Ciphertext components are very similar to Regev encryptions 

(omitting a few small details, but a very similar proof carries 

through), and hardness derives from LWE



Questions?


