Private Database Queries Using Somewhat Homomorphic Encryption

Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, <u>David J. Wu</u>

Fully Private Conjunctive Database Queries

Goals:

- database learns nothing about query or response (not even # of matching records)
- 2. user learns nothing about non-matching records

Motivations

Law Enforcement

select records for Bob from the last six months

indices of records for Bob

law enforcement officer local police department

- law enforcement officers should not learn information about other clients
- local police department should not learn who is currently under investigation

Limitations of the Two-Party Model

Computation Time: Linear in size of database

Otherwise, database learns something about query

3-Party Protocol (De Cristofaro et al.)

Related Work

- Chor et al. (1998)
 - Private information retrieval (PIR) with sublinear communication complexity
 - Not a private database query protocol
- De Cristofaro et al. (2011)
 - 3-Party Protocol for fully private disjunctive queries
 - Does not support conjunctive queries
- Raykova et al. (2012)
 - Multi-party protocol using bloom filters and deterministic encryption to support private queries
 - Query complexity linear in number of records

Our contribution: Efficient support for fully private <u>conjunctive</u> queries

Representing the Database

For each attribute-value pair, there is a set of records associated with it:

Represent each set as a **polynomial** with roots corresponding to matching records:

age < 25:
$$(x - 1)(x - 2)(x - 5)$$

zipcode = 12345: $(x - 1)(x - 2)(x - 6)(x - 7)(x - 8)$

Conjunctive Queries

Query: SELECT * FROM db WHERE $a_1 = v_1$ and $a_2 = v_2$

Kissner-Song Approach: Take $B \in \mathbb{F}_p[x]$ to be random linear combination of $A_1(x)$ and $A_2(x)$: $B(x) = A_1(x)R_1(x) + A_2(x)R_2(x) = \frac{1}{gcd(A_1, A_2)}$ for random polynomials $R_1(x), R_2(x) \in \mathbb{F}_p[x]$

Protocol Description: Setup

database

- 1. For each $a_i = v_i$ pair, construct tag $tg_i = PRF_s(a_i = v_i)$
- 2. Send $(tg_i, Enc(S_i))$

Each set S_i is a polynomial $A_i(x)$. We use a somewhat homomorphic encryption scheme (SWHE) to encrypt the coefficients.

Encrypting a Polynomial

Polynomial addition: Additive homomorphism

Multiplying by plaintext polynomial: Possible if SWHE supports scalar multiplication

Protocol Description: Query

database

Query: SELECT * FROM db WHERE $a_1 = v_1$ AND \cdots AND $a_n = v_n$

Protocol Description: Query

client

Factors polynomial to obtain roots (record indices) $i_1, ..., i_k$ *oblivious* decryption of B(x)

database

Query: SELECT * FROM db WHERE $a_1 = v_1$ AND \cdots AND $a_n = v_n$

Protocol Description: Query

client

(4) i_1, \dots, i_k (4) OT/ORAM r_{i_1}, \dots, r_{i_k}

database

Query: SELECT * FROM db WHERE $a_1 = v_1$ AND \cdots AND $a_n = v_n$

Recall computation performed by proxy:

proxy

$$t_{1} \rightarrow A_{1}(x)$$

$$t_{2} \rightarrow A_{2}(x)$$

$$\vdots$$

$$t_{n} \rightarrow A_{n}(x)$$

$$B(x) = \sum_{i=1}^{n} A_{i}(x)R_{i}(x)$$

$$\deg A_{i}(x) = |S_{i}| \qquad \deg B(x) \approx 2 \cdot \max_{i} \deg A_{i}(x)$$

Question: Can we do better?

Unbalanced Query: large disparity between size of smallest set and size of largest set

Example:

 \approx 2,000,000 records

SELECT * FROM db WHERE location = "New York" AND

name = "John Smith"

 ≈ 200 records

Unbalanced Query: large disparity between size of smallest set and size of largest set

Desiderata: Bandwidth proportional to size of *smallest* set: $\min_{i} \deg A_{i}(x) \text{ rather than } \max_{i} \deg A_{i}(x)$

Easy to get $\min_{i} \deg A_i(x) + \max_{i} \deg A_i(x)$:

Suppose $A_1(x)$ has lowest degree. Construct *random* linear combination of the rest:

$$A'(x) = \sum_{i=2}^{n} \rho_i A_i(x)$$

and ρ_i are random *scalars*.

Then, proxy computes and sends

$$B(x) = A_1(x)R_1(x) + A'(x)R'(x)$$
no extra
homomorphism
deg A'(x)
deg B(x) = max deg A_i(x) + min deg A_i(x)

Recall: intersection of $A_1(x)$, ..., $A_n(x)$ is given by

$$G = \gcd(A_1(x), \dots, A_n(x)).$$

Suppose $A_1(x)$ has smallest degree.

First step of Euclidean algorithm: reduce modulo $A_1(x)$:

$$G = \gcd\left(A_1(x), A_2(x) \left(\mod A_1(x) \right) \dots, A_n(x) \left(\mod A_1(x) \right) \right).$$

Instead of computing

$$A'(x) = \sum_{i=2}^n \rho_i A_i(x) ,$$

compute

$$A''(x) = \sum_{i=2}^{n} \rho_i A_i(x) \left(\text{mod } A_1(x) \right)$$

$$\deg(A''(x)) = \deg(A_1(x)) - 1$$

Can be done with quadratic homomorphism.

Goal is to evaluate

$$A''(x) = \sum_{i=2}^{n} \rho_i A_i(x) \left(\mod A_1(x) \right)$$

Idea: In addition to $A_1(x)$, database also gives the proxy $x, x^2, \dots, x^k \pmod{A_1(x)}$

encrypted in the same manner, where k is the maximum size of a set in the database

Computing A''(x) requires one multiplication

proxy

$$B(x) = A_1(x)R_1(x) + A'(x)R'(x)$$

 $\deg(B(x)) = \min_{i} \deg A_i(x) + \max_{i} \deg A_i(x)$

proxy

$$A''(x) = \sum_{i=2}^{n} \rho_i A_i(x) \pmod{A_1(x)}$$
$$B(x) = A_1(x)R_1(x) + A''(x)R''(x)$$

client

client

 $\deg(B(x)) = 2 \cdot \min_{i} \deg A_i(x) - 1$

Big win if $\max_i \deg A_i(x) \gg \min_i \deg(A_i(x))$

Further Speedup via Batching

Recent fully homomorphic encryption schemes allow "batching" (encrypt + process array of values at no extra cost):

Further Speedup via Batching

Split database into many smaller databases and run query against all databases *in parallel*:

In practice, arrays have length 5000+, so split into 5000+ databases

Further Speedup via Batching

Runtime depends on size of small "database":

Faster computation, reduced bandwidth Crucial for scalability

 $r_1, ..., r_N$

$$r_1, \dots, r_{N/4}$$

 $r_{1+N/4}, \dots, r_{2N}$

$$r_{1+N/4}, \dots, r_{2N/4}$$

$$r_{1+2N/4}, \dots, r_{3N/4}$$

$$r_{1+3N/4}, ..., r_N$$

database

Implementations

Balanced Query: number of records in each tag approximately equal

Experimental setup:

- Database of 1,000,000 records
- Queries consist of *five* tags
- Focus on time to perform set-intersection

Unbalanced Query: large disparity between size of smallest set and size of largest set

Experimental setup:

- Database of 1,000,000 records
- Intersection of *five* sets
- Size of smallest set at most 5% size of largest set

Intersection of five sets of varying size

Intersection of five sets of varying size

Conclusion

- Fully private database query system for conjunction queries
- Query support via polynomial encoding of database, can be implemented via SWHE
- Modular reduction + batching optimizations crucial for scalability and performance (reduction in time and space for certain queries)

Thank you!