
Private Database Queries Using 
Somewhat Homomorphic 

Encryption

Dan Boneh, Craig Gentry, Shai
Halevi, Frank Wang, David J. Wu



Fully Private Conjunctive Database Queries

database

indices of matching records

Goals:
1. database learns nothing about query or 

response (not even # of matching records)
2. user learns nothing about non-matching records

SELECT * FROM db WHERE

dest = LAX AND age = 25

user



Motivations

Law Enforcement

law enforcement 
officer

local police
department

select records for Bob 
from the last six months

indices of records for Bob

• law enforcement officers should not learn 
information about other clients

• local police department should not learn who is 
currently under investigation



Limitations of the Two-Party Model

Computation Time: Linear in size of database

Otherwise, database learns something about query

query

indices of records



3-Party Protocol (De Cristofaro et al.)

database
no collusion!

client proxy
(“isolated box”)

encrypted 
database

1
oblivious 

computation of 
tokens

2

retrieve records 
corresponding to 

tokens

3



Related Work
• Chor et al. (1998)

• Private information retrieval (PIR) with sublinear
communication complexity

• Not a private database query protocol

• De Cristofaro et al. (2011)
• 3-Party Protocol for fully private disjunctive queries
• Does not support conjunctive queries

• Raykova et al. (2012)
• Multi-party protocol using bloom filters and 

deterministic encryption to support private queries
• Query complexity linear in number of records

Our contribution: Efficient support for fully private 
conjunctive queries



Representing the Database

For each attribute-value pair, there is a set of records 
associated with it:

Represent each set as a polynomial with roots 
corresponding to matching records:

age < 25: (𝑥 − 1)(𝑥 − 2)(𝑥 − 5)
zipcode = 12345: (𝑥 − 1)(𝑥 − 2)(𝑥 − 6)(𝑥 − 7)(𝑥 − 8)

1 2 3 4 5 6 7 8 9 10Database:

age < 25

zipcode = 12345



Conjunctive Queries

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 and 𝑎2 = 𝑣2

𝑆1: 𝑎1 = 𝑣1 𝑆2: 𝑎2 = 𝑣2

𝑨𝟏(𝒙) 𝑨𝟐(𝒙)

𝐴1 𝑥 , 𝐴2 𝑥 ∈ 𝔽𝑝[𝑥]

Kissner-Song Approach: Take 𝐵 ∈ 𝔽𝑝 𝑥 to be random 

linear combination of 𝐴1 𝑥 and 𝐴2(𝑥):

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴2 𝑥 𝑅2(𝑥)

for random polynomials 𝑅1 𝑥 , 𝑅2 𝑥 ∈ 𝔽𝑝 𝑥

Intersection

𝑩(𝒙)

encoding of 
gcd(𝐴1, 𝐴2)



Protocol Description: Setup

database proxy1. For each 𝑎𝑖 = 𝑣𝑖 pair, construct tag 
tg𝑖 = PRF𝑠(𝑎𝑖 = 𝑣𝑖)

2. Send (tg𝑖, Enc 𝑆𝑖 )

Each set 𝑆𝑖 is a polynomial 𝐴𝑖 𝑥 . We use a somewhat homomorphic 
encryption scheme (SWHE) to encrypt the coefficients.



Encrypting a Polynomial

𝑥2 + (−3)𝑥 + 2

Enc(1) Enc(−3) Enc(2)

Polynomial addition: Additive homomorphism

Multiplying by plaintext polynomial: Possible if 
SWHE supports scalar multiplication



Protocol Description: Query

database

proxy

1. Gets 𝐴1 𝑥 ,… , 𝐴𝑛(𝑥)
corresponding to tags

2. Compute 𝐵 𝑥 =  𝑖𝐴𝑖𝑅𝑖
for random 𝑅1, … , 𝑅𝑛

client

𝐵(𝑥)

𝑡1, … , 𝑡𝑛
2

additive 
homomorphism

𝑡1 = PRF𝑠 𝑎1 = 𝑣1
⋮

𝑡𝑛 = PRF𝑠 𝑎𝑛 = 𝑣𝑛

oblivious PRF evaluation
1

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛



Protocol Description: Query

database

client

Factors polynomial to obtain 
roots (record indices) 𝑖1, … , 𝑖𝑘

oblivious decryption
of 𝐵(𝑥)

3

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛



Protocol Description: Query

database

client

𝑖1, … , 𝑖𝑘

4
OT/ORAM
𝑟𝑖1 , … , 𝑟𝑖𝑘

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛



Conserving Bandwidth

Recall computation performed by proxy:

proxy 𝑡1 → 𝐴1 𝑥

𝑡2 → 𝐴2 𝑥

⋮
𝑡𝑛 → 𝐴𝑛(𝑥)

𝐵 𝑥 = 

𝑖=1

𝑛

𝐴𝑖 𝑥 𝑅𝑖(𝑥)

deg 𝐴𝑖 𝑥 = |𝑆𝑖| deg 𝐵 𝑥 ≈ 2 ⋅ max
𝑖
deg 𝐴𝑖(𝑥)

Question: Can we do better?



Conserving Bandwidth

Unbalanced Query: large disparity between size of smallest 
set and size of largest set

Example:

SELECT * FROM db WHERE location = “New York” AND 

name = “John Smith”

𝑆1: 𝑎1 = 𝑣1

𝑆2: 𝑎2 = 𝑣2

𝑆3: 𝑎3 = 𝑣3

≈ 2,000,000 records

≈ 200 records



Conserving Bandwidth

Unbalanced Query: large disparity between size of smallest 
set and size of largest set

𝑆1: 𝑎1 = 𝑣1

𝑆2: 𝑎2 = 𝑣2

𝑆3: 𝑎3 = 𝑣3

Desiderata: Bandwidth proportional to size of smallest set:

min
𝑖
deg 𝐴𝑖(𝑥) rather than max

𝑖
deg 𝐴𝑖(𝑥)



Conserving Bandwidth

Easy to get min
𝑖
deg 𝐴𝑖 𝑥 +max

𝑖
deg 𝐴𝑖(𝑥):

deg𝐴′(𝑥) deg 𝐴1(𝑥)

deg𝐵 𝑥 = max
𝑖
deg𝐴𝑖 𝑥 + min

𝑖
deg𝐴𝑖(𝑥)

Suppose 𝐴1 𝑥 has lowest degree. Construct random linear 
combination of the rest:

𝐴′ 𝑥 = 

𝑖=2

𝑛

𝜌𝑖𝐴𝑖(𝑥)

and 𝜌𝑖 are random scalars.

Then, proxy computes and sends

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′ 𝑥 𝑅′(𝑥)

no extra
homomorphism



Modular Reduction

Recall: intersection of 𝐴1 𝑥 ,… , 𝐴𝑛(𝑥) is given by

𝐺 = gcd 𝐴1 𝑥 ,… , 𝐴𝑛 𝑥 .

Suppose 𝐴1 𝑥 has smallest degree. 

First step of Euclidean algorithm: reduce modulo 𝐴1(𝑥):

𝐺 = gcd 𝐴1 𝑥 , 𝐴2 𝑥 mod 𝐴1 𝑥 … , 𝐴𝑛 𝑥 mod 𝐴1 𝑥 .



Modular Reduction
Instead of computing

𝐴′ 𝑥 = 

𝑖=2

𝑛

𝜌𝑖𝐴𝑖(𝑥) ,

compute

𝐴′′ 𝑥 = 

𝑖=2

𝑛

𝜌𝑖𝐴𝑖 𝑥 mod 𝐴1 𝑥

deg 𝐴′′ 𝑥 = deg 𝐴1 𝑥 − 1

Can be done with quadratic homomorphism.



Modular Reduction
Goal is to evaluate

𝐴′′ 𝑥 = 

𝑖=2

𝑛

𝜌𝑖𝐴𝑖 𝑥 mod 𝐴1 𝑥

Idea: In addition to 𝐴1 𝑥 , database also gives the proxy
𝑥, 𝑥2, … , 𝑥𝑘 (mod 𝐴1 𝑥 )

encrypted in the same manner, where 𝑘 is the maximum size of a set 
in the database

Computing 𝐴′′ 𝑥 requires one multiplication



Modular Reduction

proxy client

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′ 𝑥 𝑅′(𝑥)

𝐴′ 𝑥 = 

𝑖=2

𝑛

𝜌𝑖𝐴𝑖(𝑥)

deg 𝐵 𝑥 = min
𝑖
deg𝐴𝑖 𝑥 + max

𝑖
deg𝐴𝑖(𝑥)

proxy client

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′′ 𝑥 𝑅′′(𝑥)

𝐴′′ 𝑥 = 

𝑖=2

𝑛

𝜌𝑖𝐴𝑖(𝑥) mod 𝐴1 𝑥

deg 𝐵 𝑥 = 2 ⋅ min
𝑖
deg𝐴𝑖 𝑥 − 1

Big win if max
𝑖
deg 𝐴𝑖 𝑥 ≫ min

𝑖
deg 𝐴𝑖 𝑥



Further Speedup via Batching
Recent fully homomorphic encryption schemes allow “batching” 
(encrypt + process array of values at no extra cost):

1 2 3 4

7 5 3 1

+

8 7 6 5



Further Speedup via Batching
Split database into many smaller databases and run query against all 
databases in parallel:

database

𝑟1, … , 𝑟𝑁
𝑟1, … , 𝑟𝑁/4

𝑟1+𝑁/4, … , 𝑟2𝑁/4

𝑟1+2𝑁/4, … , 𝑟3𝑁/4

𝑟1+3𝑁/4, … , 𝑟𝑁

In practice, arrays have length 5000+, so split into 5000+ databases



Further Speedup via Batching

database

𝑟1, … , 𝑟𝑁 𝑟1, … , 𝑟𝑁/4

𝑟1+𝑁/4, … , 𝑟2𝑁/4

𝑟1+2𝑁/4, … , 𝑟3𝑁/4

𝑟1+3𝑁/4, … , 𝑟𝑁

Runtime depends on size of small “database”:

Faster computation, reduced bandwidth

Crucial for scalability



Implementations

Basic scheme
(only requiring additive 

homomorphism) 

Paillier
cryptosystem

Modular reduction, 
batching

(additive + multiplicative 
homomorphism) 

Brakerski
cryptosystem



Performance Characteristics

Balanced Query: number of records in each tag 
approximately equal

𝑆1: 𝑎1 = 𝑣1 𝑆2: 𝑎2 = 𝑣2

𝑆3: 𝑎3 = 𝑣3

Experimental setup:

• Database of 1,000,000 records

• Queries consist of five tags

• Focus on time to perform set-intersection



Performance Characteristics



Performance Characteristics

Unbalanced Query: large disparity between size of smallest 
set and size of largest set

𝑆1: 𝑎1 = 𝑣1

𝑆2: 𝑎2 = 𝑣2

𝑆3: 𝑎3 = 𝑣3

Experimental setup:

• Database of 1,000,000 records

• Intersection of five sets

• Size of smallest set at most 5% size of largest set



Performance Characteristics

Intersection of five sets of varying size



Performance Characteristics

Intersection of five sets of varying size



Conclusion

query

indices of records

• Fully private database query system for conjunction 
queries

• Query support via polynomial encoding of database, can 
be implemented via SWHE

• Modular reduction + batching optimizations crucial for 
scalability and performance (reduction in time and
space for certain queries)



Thank you!


