Post-Quantum Designated-Verifier zkSNARKs from Lattices

David Wu
October 2021

Argument Systems

Completeness: $\quad \forall x \in \mathcal{L}_{C}: \operatorname{Pr}[\langle P(x, w), V(x)\rangle=$ accept $]=1$
"Honest prover convinces honest verifier of true statements"
Soundness: $\forall x \notin \mathcal{L}_{C}, \forall$ efficient $P^{*}: \operatorname{Pr}\left[\left\langle P^{*}\left(1^{\lambda}, x\right), V(x)\right\rangle=\operatorname{accept}\right]=\operatorname{negl}(\lambda)$
"Efficient prover cannot convince honest verifier of false

Argument Systems

$x \in\{0,1\}^{n(\lambda)}$

$$
\mathcal{L}_{C}=\left\{x: C_{\lambda}(x, w)=1 \text { for some } w\right\}
$$

prover

accept if

 $x \in \mathcal{L}$

Argument system is succinct if:

- Prover communication is poly $\left(\lambda+\log \left|C_{\lambda}\right|\right)$
- Running time of V is $\operatorname{poly}\left(\lambda+|x|+\log \left|C_{\lambda}\right|\right)$

Both must be smaller than classic NP verification

Succinct Non-Interactive Arguments (SNARGs)

$$
\mathcal{L}_{C}=\left\{x: C_{\lambda}(x, w)=1 \text { for some } w\right\}
$$

$\xrightarrow[\begin{array}{c}\text { Argument consists of a } \\ \text { single message }\end{array}]{\pi=P(x, w)}$

$$
\text { accept if } V(x, \pi)=1
$$

Additional properties of interest:

- Proof of knowledge: succinct non-interactive argument of knowledge (SNARK):
"There exists an efficient extractor that can recover a witness from any prover that convinces an honest verifier"

Succinct Non-Interactive Arguments (SNARGs)

$$
\mathcal{L}_{C}=\left\{x: C_{\lambda}(x, w)=1 \text { for some } w\right\}
$$

Additional properties of interest:

- Zero-knowledge: "Proof does not leak information about the prover's witness"
- zkSNARK: zero-knowledge succinct non-interactive argument of knowledge

Succinct Non-Interactive Arguments (SNARGs)

$$
\mathcal{L}_{C}=\left\{x: C_{\lambda}(x, w)=1 \text { for some } w\right\}
$$

For general NP languages, SNARGs are unlikely to exist in standard model [BPO4, Wee05]

Succinct Non-Interactive Arguments (SNARGs)

Instantiation: "CS proofs" in the

 random oracle model [Mic94]
Succinct Non-Interactive Arguments (SNARGs)

Succinct Non-Interactive Arguments (SNARGs)

Very active area of research (encompassing both theory and practice):

$\mathrm{CHM}^{+} 20, \mathrm{BFS} 20, \mathrm{SL} 20$, Set20, COS20, CY21, GNS21, GMN21, GLS ${ }^{+} 21$, and many, many more...
This talk: post-quantum constructions (specifically, from lattice-based assumptions)

zkSNARK Constructions (with Implementation)

	Prover	Proof Size			
Construction	Complexity	Asymptotic	Concrete	Assumption	
[Gro16]	$N \log N$	1	128 bytes	Pairings	
Marlin [CHM $\left.{ }^{+} 20\right]$	$N \log N$	1	704 bytes	Pairings	
Xiphos [SL20]	N	$\log N$	61 KB	Pairings	Pre-Quantum
Fractal [COS20]	$N \log N$	$\log ^{2} N$	215 KB	Random Oracle	
STARK [BBHR19]	$N \operatorname{polylog} N$	$\log ^{2} N$	127 KB*	Random Oracle	
$\left[\right.$ GMNO18] $^{+}$	$N \log N$	1	640 KB	Lattices Post-Quantum	

Focus is on constructions with a succinct verifier
*for a structured computation N : size of NP relation being verified ($N \approx 2^{20}$ for concrete values) Asymptotic metrics are given up to poly (λ) factors (for a security parameter λ)

zkSNARK Constructions (with Implementation)

	Prover	Proof Size			
Construction	Complexity	Asymptotic	Concrete	Assumption	
[Gro16]	$N \log N$	1	128 bytes	Pairings	
Marlin [CHM $\left.{ }^{+} 20\right]$	$N \log N$	1	704 bytes	Pairings	
Xiphos [SL20]	N	$\log N$	61 KB	Pairings	Pre-Quantum
Fractal [COS20]	$N \log N$	$\log ^{2} N$	215 KB	Random Oracle	
STARK [BBHR19]	$N \operatorname{polylog} N$	$\log ^{2} N$	127 KB*	Random Oracle	
$\left[\right.$ GMNO18] $^{+}$	$N \log N$	1	640 KB	Lattices Post-Quantum	

$1000 \times$ gap between size of pre-quantum zkSNARKs and post-quantum ones
This talk: constructing shorter post-quantum zkSNARKs (via lattice-based assumptions)

zkSNARK Constructions (with Implementation)

	Prover			Proof Size	
Construction	Complexity	Asymptotic	Concrete	Assumption	
[Gro16]	$N \log N$	1	128 bytes	Pairings	
Marlin [CHM +20$]$	$N \log N$	1	704 bytes	Pairings	
Xiphos [SL20]	N	$\log N$	61 KB	Pairings	Pre-Quantum
Fractal [COS20]	$N \log N$	$\log ^{2} N$	215 KB	Random Oracle	
STARK [BBHR19]	$N \operatorname{polylog} N$	$\log ^{2} N$	$127 \mathrm{~KB} *$	Random Oracle	
[GMNO18] ${ }^{+}$	$N \log N$	1	640 KB	Lattices	
This work	$N \log N$	$\mathbf{1}$	16 KB	Lattices	Post-Quantum

- $\approx 10 \times$ shorter proofs compared to previous post-quantum zkSNARKs for general NP relations
- Prover and verifier are concretely faster compared to most succinct pre-quantum construction [Gro16]
- Construction is designated-verifier (need secret key to check proofs) and has long CRS

Construction Overview

Follows the classic approach of combining an information-theoretic proof system (for NP) with a cryptographic compiler

Examples:

hash function (or
polynomial commitment)
PCP (or IOP) $\underbrace{}_{[M i c 00, ~ B C S 16]}$
linear PCP
linear IP
linear-only encryption
[BCIOP13, GGPR13]

Construction Overview

Follows the classic approach of combining an information-theoretic proof system (for NP) with a cryptographic compiler

Starting point: the [BCIOP13] compiler from linear PCPs to zkSNARKs

- Yields the most succinct pre-quantum zkSNARKs [GGPR13, Gro16]
- Basis of several lattice-based zkSNARKs [BISW17, GMNO18]

Linear Probabilistically-Checkable Proofs (LPCPs)

Linear Probabilistically-Checkable Proofs (LPCPs)

Linear Probabilistically-Checkable Proofs (LPCPs)

Equivalent view (if verifier is oblivious):

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$

Two problems:

- Malicious prover can choose $\boldsymbol{\pi}$ based on queries
- Malicious prover can apply different $\boldsymbol{\pi}$ to the different columns of \boldsymbol{Q}

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$

Step 1: Encrypt elements of \boldsymbol{Q} using additively homomorphic encryption scheme
part of the CRS

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can "commit"
 to its queries ahead of time

From Linear PCPs to Preprocessing SNARGs

Designated-verifier SNARK:
decryption key needed to verify

If LPCP verification can be performed directly on ciphertexts (e.g., with pairing-based instantiations), then SNARK is publicly-verifiable

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$

homomorphic evaluation

Verifier decrypts to learn $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$ and runs linear PCP decision procedure

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$

Two problems:

- Malicious prover can choose $\boldsymbol{\pi}$ based on queries
- Malicious prover can apply different $\boldsymbol{\pi}$ to the different columns of \boldsymbol{Q}
part of the CRS

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can "commit" to its queries ahead of time

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$
[BCIOP13] approach:

- Add a linear consistency check and view construction as a linear IP (LIP)
- Encrypt the LIP queries using a "linear-only" encryption scheme

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can "commit"
 to its queries ahead of time

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$

part of the CRS

Intuitively: an encryption scheme that only supports additive homomorphism

- Encrypt the LIP queries using a "linear-only" encryption scheme

Linear-Only Encryption

Requirement: If Decypt(sk, ct) $\neq \perp$, then $\operatorname{Decrypt}(\mathrm{sk}, \mathrm{ct})=\sum_{i \in[n]} \alpha_{i} x_{i}$ Intuition: adversary's strategy can be "explained" by a linear function

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can "commit"
 to its queries ahead of time

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$

All adversarial strategies can be explained by a linear function of the encrypted query components \Rightarrow soundness can now be based on the soundness of the linear PCP
part of the CRS

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can "commit"

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$

For zero-knowledge, require that LPCP is (honest-verifier) ZK and encryption scheme is circuit private (hides linear combination)

Rest of this talk: will not focus on ZK

All adversarial strategies can be explained by a linear function of the encrypted query components \Rightarrow soundness can now be based on the soundness of the linear PCP

Candidate Linear-Only Encryption from Lattices

Conjecture: Regev encryption is linear-only
$\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $\boldsymbol{s} \in \mathbb{Z}_{q}^{n}$
$\operatorname{Encrypt}\left(\boldsymbol{s}, \mu \in \mathbb{Z}_{p}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{s}^{\mathrm{T}} \boldsymbol{a}+p e+\mu\right)
$$

$\operatorname{Decrypt}(\boldsymbol{s}, \mathrm{ct})$: Write ct $=(\boldsymbol{a}, \boldsymbol{b})$ and output

$$
\left(b-\boldsymbol{s}^{\mathrm{T}} \boldsymbol{a} \bmod q\right) \bmod p
$$

Correct as long as $|e| \leq \frac{q}{2 p}$

Candidate Linear-Only Encryption from Lattices

Conjecture: Regev encryption is linear-only
$\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $\boldsymbol{s} \in \mathbb{Z}_{q}^{n}$
$\operatorname{Encrypt}\left(\boldsymbol{s}, \mu \in \mathbb{Z}_{p}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{s}^{\mathrm{T}} \boldsymbol{a}+p e+\mu\right)
$$

$\operatorname{Decrypt}(\boldsymbol{s}, \mathrm{ct}):$ Additive homomorphism:

$$
\begin{aligned}
& \cdot \mathrm{ct}_{1}=\left(\boldsymbol{a}_{1}, \boldsymbol{s}^{\mathrm{T}} \boldsymbol{a}_{1}+p e_{1}+\mu_{1}\right) \\
& \cdot \mathrm{ct}_{2}=\left(\boldsymbol{a}_{2}, \boldsymbol{s}^{\mathrm{T}} \boldsymbol{a}_{\mathbf{2}}+p e_{2}+\mu_{2}\right)
\end{aligned}
$$

Then:

$$
\mathrm{ct}_{1}+\mathrm{ct}_{2}=\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}, \boldsymbol{s}^{\mathrm{T}}\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right)+p\left(e_{1}+e_{2}\right)+\left(\mu_{1}+\mu_{2}\right)\right.
$$

Homomorphic operations increase noise growth

Candidate Linear-Only Encryption from Lattices

Conjecture: Regev encryption is linear-only
$\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $\boldsymbol{s} \in \mathbb{Z}_{q}^{n}$
$\operatorname{Encrypt}\left(\boldsymbol{s}, \mu \in \mathbb{Z}_{p}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{s}^{\mathrm{T}} \boldsymbol{a}+p e+\mu\right)
$$

$\operatorname{Decrypt}(\boldsymbol{s}, \mathrm{ct})$: Write ct $=(\boldsymbol{a}, b)$ and output

$$
\left(b-\boldsymbol{s}^{\mathrm{T}} \boldsymbol{a} \bmod q\right) \bmod p
$$

While Regev encryption can be extended to obtain FHE, existing constructions require additional components or different message embedding

Can we get more homomorphism from vanilla Regev?

Concrete Efficiency of Basic Instantiation

common reference string

Amount of homomorphism determines scheme parameters

Using quadratic arithmetic programs (for verifying circuit C):

- $k=4$
- $m=O(|C|)$
- soundness $\approx \frac{2|C|}{\left|\mathbb{F}_{p}\right|}=\frac{2|C|}{p}$

Concrete Efficiency of Basic Instantiation

Amount of homomorphism determines scheme parameters
 of length m over \mathbb{F}_{p}

Using quadratic arithmetic programs (for
Need to choose encryption modulus q to support this amount of homomorphism: verifying circuit C):

- $k=4$
- $m=O(|C|)$
- soundness $\approx \frac{2|C|}{\left|F_{p}\right|}=\frac{2|C|}{p}$

Concrete Efficiency of Basic Instantiation

For a circuit with $m=2^{20}$ gates and requiring 128 bits of soundness, we require:

- $p>2^{148}$, so $q>2^{300}$
- At 128 bits of security, lattice dimension $n>10^{4}$, so a single Regev ciphertext is over 350 KB (longer than other post-quantum constructions based on IOPs)
- Proof contains k ciphertexts, so proof is even longer

Alternatively: Use a small plaintext field \mathbb{F}_{p} and amplify soundness via parallel repetition

- $p \approx 2^{20}$ and $q \approx 2^{100}$: single ciphertext is 45 KB
- Need many copies in this case (≈ 128 copies), so proof is again very long
[GMNO18]: use an instantiation where $p=2^{32}$ without soundness amplification
- Proofs are already 640 KB (and provide ≈ 15 bits of provable soundness for verifying computations of size 2^{16})

New techniques needed to reduce proof size

Revisiting the Bitansky et al. Compiler

Oblivious verifier can "commit"
 to its queries ahead of time

Honest prover takes (x, w) and constructs linear PCP $\boldsymbol{\pi} \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$

Key idea: Instead of encrypting each component of \boldsymbol{Q} individually, encrypt rows instead

Linear-Only Vector Encryption

plaintext space is a vector space

Linear-Only Vector Encryption

supports homomorphic vector addition

Linear-only: scheme only supports linear homomorphism

From Linear PCPs to Preprocessing SNARGs

common reference string

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$
homomorphic evaluation

Verifier decrypts to learn $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$ and runs linear PCP decision procedure

$\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$ SNARK proof

From Linear PCPs to Preprocessing SNARGs

common reference string

Honest prover takes (x, w) and constructs linear PCP $\boldsymbol{\pi} \in \mathbb{F}^{m}$ and computes $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$
homomorphic evaluation

- Proof is a single vector encryption ciphertext
- Allows direct compilation from linear PCPs to SNARKs (without extra linearity check from [BCIOP13])
$\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\pi}$
SNARK proof

Candidate Linear-Only Vector Encryption

Conjecture: Regev encryption is linear-only
$\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $\boldsymbol{s} \in \mathbb{Z}_{q}^{n}$
$\operatorname{Encrypt}\left(\boldsymbol{s}, \mu \in \mathbb{Z}_{p}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{s}^{\mathrm{T}} \boldsymbol{a}+p e+\mu\right)
$$

$\operatorname{Decrypt}(\boldsymbol{s}, \mathrm{ct})$: Write ct $=(\boldsymbol{a}, \boldsymbol{b})$ and output

$$
\left(b-\boldsymbol{s}^{\mathrm{T}} \boldsymbol{a} \bmod q\right) \bmod p
$$

Key observation: the same vector $a \in \mathbb{Z}_{q}^{n}$ can be reused with many different secret keys Amortized/vectorized variant of Regev encryption [PVwo8]

Candidate Linear-Only Vector Encryption

Conjecture: Vectorized Regev encryption [PVwo8] is linear-only
$\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $\boldsymbol{s} \in \mathbb{Z}_{q}^{n}$
$\operatorname{Encrypt}\left(\boldsymbol{s}, \mu \in \mathbb{Z}_{p}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{s}^{\mathrm{T}} \boldsymbol{a}+p e+\mu\right)
$$

$\operatorname{Decrypt}(\boldsymbol{s}, \mathrm{ct})$: Write ct $=(\boldsymbol{a}, \boldsymbol{b})$ and output

$$
\left(b-\boldsymbol{s}^{\mathrm{T}} \boldsymbol{a} \bmod q\right) \bmod p
$$

Candidate Linear-Only Vector Encryption

Conjecture: Vectorized Regev encryption [PVwo8] is linear-only
$\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $S \in \mathbb{Z}_{q}^{n \times k}$
$\operatorname{Encrypt}\left(\boldsymbol{s}, \mu \in \mathbb{Z}_{p}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{s}^{\mathrm{T}} \boldsymbol{a}+p e+\mu\right)
$$

$\operatorname{Decrypt}(\boldsymbol{s}, \mathrm{ct})$: Write ct $=(\boldsymbol{a}, \boldsymbol{b})$ and output

$$
\left(b-\boldsymbol{s}^{\mathrm{T}} \boldsymbol{a} \bmod q\right) \bmod p
$$

Candidate Linear-Only Vector Encryption

Conjecture: Vectorized Regev encryption [PVwo8] is linear-only $\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $S \in \mathbb{Z}_{q}^{n \times k}$
$\operatorname{Encrypt}\left(S, \mu \in \mathbb{Z}_{p}^{k}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi^{k}$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{S}^{\mathrm{T}} \boldsymbol{a}+p \boldsymbol{e}+\boldsymbol{\mu}\right)
$$

$\operatorname{Decrypt}(\boldsymbol{s}, \mathrm{ct})$: Write $\mathrm{ct}=(\boldsymbol{a}, b)$ and output

$$
\left(b-\boldsymbol{s}^{\mathrm{T}} \boldsymbol{a} \bmod q\right) \bmod p
$$

Candidate Linear-Only Vector Encryption

Conjecture: Vectorized Regev encryption [PVwo8] is linear-only
$\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $S \in \mathbb{Z}_{q}^{n \times k}$
$\operatorname{Encrypt}\left(S, \mu \in \mathbb{Z}_{p}^{k}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi^{k}$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{S}^{\mathrm{T}} \boldsymbol{a}+p \boldsymbol{e}+\boldsymbol{\mu}\right)
$$

$\operatorname{Decrypt}(S, \mathrm{ct}):$ Write ct $=(\boldsymbol{a}, v)$ and output

$$
\left(v-S^{\mathrm{T}} a \bmod q\right) \bmod p
$$

$$
|c t|=(n+k) \log q
$$

Would be $k(n+1) \log q$ using vanilla Regev
Ciphertext size is additive in the vector dimension

Candidate Linear-Only Vector Encryption

Conjecture: Vectorized Regev encryption [PVwo8] is linear-only
$\operatorname{KeyGen}\left(1^{\lambda}\right)$: Outputs a secret key $S \in \mathbb{Z}_{q}^{n \times k}$
$\operatorname{Encrypt}\left(S, \mu \in \mathbb{Z}_{p}^{k}\right)$: Sample random $\boldsymbol{a} \leftarrow \mathbb{Z}_{q}^{n}$, error $e \leftarrow \chi^{k}$ and output

$$
\mathrm{ct}=\left(\boldsymbol{a}, \boldsymbol{S}^{\mathrm{T}} \boldsymbol{a}+p \boldsymbol{e}+\boldsymbol{\mu}\right)
$$

$\operatorname{Decrypt}(S, \mathrm{ct}):$ Write ct $=(\boldsymbol{a}, v)$ and output

$$
\left(v-S^{\mathrm{T}} a \bmod q\right) \bmod p
$$

Can use modulus switching [BV11, BGV12] to reduce ciphertext size
$|c t|=\left(n+\quad\right.$ after homomorphic evaluation: $(n+k) \log q \rightarrow(n+k) \log q^{\prime}$
Ciphertext size is additive in the vector dimension

Lattice-Based zkSNARKs using Vector Encryption

common reference string
homomorphic evaluation
linear combinations
 of length m over \mathbb{F}_{p}

Using quadratic arithmetic programs (for verifying circuit C):

- $k=4$
- $m=O(|C|)$
- soundness $\approx \frac{2|C|}{\left|F_{p}\right|}=\frac{2|C|}{p}$

Lattice-Based zkSNARKs using Vector Encryption

Previously techniques to achieve small soundness:

1. Use large p (to ensure LPCP soundness); or
2. Use small p and parallel repetition to amplify soundness

Our approach: parallel repetition of LPCP to amplify soundness:

- Define LPCP to be t independent sets of queries

SNARK proof

- Accept only if all t sets accept
- Requires $k t$ LPCP queries and provides soundness $\left(\frac{|C|}{2 p}\right)^{t}$

With vanilla [BCIOP13], same proof size as parallel repetition

With vector encryption, proof is always a single vector encryption ciphertext and |ct| is additive in vector dimension (not multiplicative)

Setting $p \approx 2^{28}$, proof size is 29 KB (with a CRS of size 2.7 GB) for verifying circuit of size 2^{20}

Further Compression via Extensions Fields

linear combinations
 of length m over \mathbb{F}_{p}

Recall: Noise growth in ciphertexts scales with
Can we further reduce p ?

- Length m of linear combination
- Magnitude of coefficients in linear combination p

Soundness of linear PCP: $\frac{2|C|}{|\mathbb{F}|}$

Further Compression via Extensions Fields

\square
$\pi \in \mathbb{F}^{m}$
linear PCP

Suppose $\mathbb{F}=\mathbb{F}_{p^{k}}$ where $k>1$
Can still instantiate using quadratic arithmetic programs
Two approaches to compile to a SNARK:

- Compile LPCP over $\mathbb{F}_{p^{k}}$ to a LPCP over \mathbb{F}_{p}, apply linear-only vector encryption over \mathbb{F}_{p} Recall that $\mathbb{F}_{p^{k}} \cong \mathbb{F}_{p}^{k}$; field operations in $\mathbb{F}_{p^{k}}$ are linear transformations over \mathbb{F}_{p}^{k} Transformation increases number of queries and query dimension by k
- Apply linear-only vector encryption over $\mathbb{F}_{p^{k}}$

Further Compression via Extensions Fields

$(x, w) \quad \pi \in \mathbb{F}^{m}$
 linear PCP

Suppose $\mathbb{F}=\mathbb{F}_{p^{k}}$ where $k>1$
Can still instantiate using quadratic arithmetic programs
Two approaches to compile to a SNARK:

- Compile LPCP over $\mathbb{F}_{p^{k}}$ to a LPCP over

Recall that $\mathbb{F}_{p^{k}} \cong \mathbb{F}_{p}^{k}$; field operations in \mathbb{F} Transformation increases number of querie

- Apply linear-only vector encryption ove

Work over a polynomial ring $R=\mathbb{Z}[x] / \Phi_{m}$

In both settings: coefficients of prover's linear combination have magnitude $\approx p$ while field has size p^{k}

Further Compression via Extensions Fields

(x, w)
 \square
 $\pi \in \mathbb{F}^{m}$
 linear PCP

This work: consider quadratic extension fields

- $R=\mathbb{Z}[x] /\left(x^{2}+1\right)$ and set $p=3 \bmod 4$ so $R_{p}=R / p R \cong \mathbb{F}_{p^{2}}$
- Choose ciphertext modulus q to be a power of 2
- All arithmetic operations can be implemented using 128-bit arithmetic
- Low degree means polynomial arithmetic only slightly more expensive

Further Compression via Extensions Fields

(x, w)

 \square
 $\pi \in \mathbb{F}^{m}$

linear PCP
This work: consider quadratic extension fields

- $R=\mathbb{Z}[x] /\left(x^{2}+1\right)$ and set $p=3 \bmod 4$ so
- Choose ciphertext modulus q to be a power or r
- All arithmetic operations can be implemented using 128-bit arithmetic
- Low degree means polynomial arithmetic only slightly more expensive
- Choose $p=2^{t} \pm 1$ so $\mathbb{F}_{p^{2}}$ has 2^{t+1}-th roots of unity (for efficient implementation of LPCP prover)

Further Compression via Extensions Fields

Further Compression via Extensions Fields

Effect of Field Size

Using the extension field increases CRS size but decreases proof size

- CRS consists of "compressed" ciphertexts where random component is derived from a PRF (i.e., ct $=(\boldsymbol{a}, \boldsymbol{v})$ where \boldsymbol{a} is random and $v=\boldsymbol{S}^{\mathrm{T}} \boldsymbol{a}+p \boldsymbol{e}+\boldsymbol{\mu}$)
- Proof consists of full ciphertexts

Concrete Comparison with zkSNARKs

	Size		Time			Assumption
Construction	CRS	Proof	Setup	Prover	Verifier	
[Gro16]	199 MB	128 bytes	72 s	79 s	3.4 ms	Pairings Pre-Quantum
Ligero [AHIV17]	-	14 MB	-	38 s	22 s	Random Oracle
Aurora [BCR^{+19}]	-	169 KB	-	304 s	6.3 s	Random Oracle
Fractal [COS20]	11 GB	215 KB	116 s	184 s	9.5 ms	Random Oracle
This work	5.3 GB	16.4 KB	2240 s	68 s	1.2 ms	Lattices
This work	1.9 GB	20.8 KB	877 s	56 s	0.4 ms	Lattices
						Post-Quantum

All benchmarks collected on same hardware for verifying NP relation of size 2^{20}

Concrete Comparison with zkSNARKs

Size			Time			
Construction	CRS	Proof	Setup	Prover	Verifier	Assumption
[Gro16]	199	128 bytes				
Ligero [AHIV17]		14 MB	Still ove	$131 \times$ Ion	than pai	ased SNARKs
Aurora [BCR^{+19}]		169 KB	O	shorter	previous	-based SNA
Fractal [COS20]	GB	215 KB	[GMNO1 circuit of] (based size 2^{16})	reported n	ers for verifying
This work	5.3 GB	16.4 KB				
This work	1.9 GB	20.8 KB	877 s	56 s	0.4 ms	Lattices

All benchmarks collected on same hardware for verifying NP relation of size 2^{20}

Concrete Comparison with zkSNARKs

All benchmarks collected on same hardware for verifying NP relation of size 2^{20}

Concrete Comparison with zkSNARKs

Construction	Size		Time			Assumption
	CRS	Proof	Setup	Prover	Verifier	
[Gro16]					3.4 ms	
Ligero [AHIV17]	light matr	verifica or prod	$\begin{aligned} & \text { omputin } \\ & 200,00 \end{aligned}$		22 s	Rando
Aurora [$\mathrm{BCR}^{+19]}$		Itiplicati	nd round		6.3 s	Random
Fractal [COS20]	Wellcons	for ligh devices	t or ene		9.5 ms	Rancor
This work					1.2 ms	Lattice
This work					0.4 ms	Lattices

All benchmarks collected on same hardware for verifying NP relation of size 2^{20}

Concrete Comparison with zkSNARKs

Size				Time		
Construction	CRS	Proof	Setup	Prover	Verifier	Assumption
[Gro16]	199 MB	128 bytes	72 s			
Ligero [AHIV17]	-	14 MB	-		Resulting const verifier (other	ion is designatedmes are publicly-
Aurora [BCR^{+19}]	-	169 KB	-		Require expe	trusted setup (need to
Fractal [COS20]	11 GB	215 KB	116 s		Resulting CRS	(lattice ciphertexts
This work	5.3 GB	16.4 KB	2240 s			
This work	1.9 GB	20.8 KB	877 s			

All benchmarks collected on same hardware for verifying NP relation of size 2^{20}

Summary

Directly compile linear PCPs to SNARKs using linear-only vector encryption Instantiate linear-only vector encryption from vectorized Regev encryption

 of length m over \mathbb{F}_{p}

Work over extension fields for better concrete efficiency

Open Problems

Concretely-efficient publicly-verifiable SNARKs from lattices

Constructions with short proofs but expensive verifiers are known from lattices [BBC+18, BLNS20]

Concretely-efficient designated-verifier SNARKs with reusable soundness from lattices

Thank you!

https://eprint.iacr.org/2021/977
https://github.com/lattice-based-zkSNARKs/lattice-zksnark

