Post-Quantum Designated-Verifier zkSNARKs from Lattices

David Wu October 2021

Argument Systems

Completeness:

 $\forall x \in \mathcal{L}_C : \Pr[\langle P(x, w), V(x) \rangle = \operatorname{accept}] = 1$ "Honest prover convinces honest verifier of true statements"

Soundness:

 $\forall x \notin \mathcal{L}_C, \forall \text{ efficient } P^* : \Pr[\langle P^*(1^{\lambda}, x), V(x) \rangle = \operatorname{accept}] = \operatorname{negl}(\lambda)$ "Efficient prover cannot convince honest verifier of false

Argument Systems

Argument system is **succinct** if:

- Prover communication is $poly(\lambda + \log |C_{\lambda}|)$
- Running time of V is $poly(\lambda + |x| + \log |C_{\lambda}|)$

Both must be smaller than classic NP verification

[Kil92, Mic00, GW11]

$$\mathcal{L}_{C} = \{x : C_{\lambda}(x, w) = 1 \text{ for some } w\}$$
prover
$$\pi = P(x, w)$$
Argument consists of a
single message
$$x$$
accept if $V(x, \pi) = 1$

Additional properties of interest:

• **Proof of knowledge**: succinct non-interactive argument of knowledge (SNARK): *"There exists an efficient extractor that can recover a witness from any prover that convinces an honest verifier"*

[Kil92, Mic00, GW11]

accept if $V(x,\pi) = 1$

$$\mathcal{L}_{C} = \{x : C_{\lambda}(x, w) = 1 \text{ for some } w\}$$
prover
$$(x, w) \xrightarrow{} F(x, w) \xrightarrow{} F(x, w)$$
Argument consists of a single message
$$x$$

Additional properties of interest:

- Zero-knowledge: "Proof does not leak information about the prover's witness"
- **zkSNARK:** zero-knowledge succinct non-interactive argument of knowledge

[Kil92, Mic00, GW11]

$$\mathcal{L}_{C} = \{x : C_{\lambda}(x, w) = 1 \text{ for some } w\}$$
prover
$$(x, w) \xrightarrow{} \pi = P(x, w) \xrightarrow{} x$$
accept if $V(x, \pi) = 1$

For general NP languages, SNARGs are <u>unlikely</u> to exist in standard model [BP04, Wee05]

[Kil92, Mic00, GW11]

[Kil92, Mic00, GW11]

[Kil92, Mic00, GW11]

Very active area of research (encompassing both theory and practice):

PHGR13, BCI⁺13, BCC⁺16, Gro16, ZGK⁺17, AHIV17, WTS⁺18, GMNO18, BBB⁺18, BBHR19, BCR⁺19, XZZ⁺19, LM19, CHM⁺20, BFS20, SL20, Set20, COS20, CY21, GNS21, GMN21, GLS⁺21, and *many, many more...*

This talk: post-quantum constructions (specifically, from <u>lattice-based</u> assumptions)

zkSNARK Constructions (with Implementation)

	Prover	Proof Size			
Construction	Complexity	Asymptotic	Concrete	Assumpti	ion
[Gro16]	N log N	1	128 bytes	Pairings	
Marlin [CHM ⁺ 20]	N log N	1	704 bytes	Pairings	
Xiphos [SL20]	N	log N	61 KB	Pairings	Pre-Quantum
Fractal [COS20]	N log N	$\log^2 N$	215 KB	Random	Oracle
STARK [BBHR19]	N polylog N	$\log^2 N$	127 KB*	Random	Oracle
[GMNO18] ⁺	$N \log N$	1	640 KB	Lattices	Post-Quantum

⁺designated-verifier

*for a structured computation

Focus is on constructions with a *succinct* verifier

N: size of NP relation being verified ($N \approx 2^{20}$ for concrete values)

Asymptotic metrics are given up to $poly(\lambda)$ factors (for a security parameter λ)

zkSNARK Constructions (with Implementation)

	Prover	Proof Size			
Construction	Complexity	Asymptotic	Concrete	Assumpt	ion
[Gro16]	N log N	1	128 bytes	Pairings	
Marlin [CHM ⁺ 20]	N log N	1	704 bytes	Pairings	
Xiphos [SL20]	N	log N	61 KB	Pairings	Pre-Quantum
Fractal [COS20]	N log N	$\log^2 N$	215 KB	Random	Oracle
STARK [BBHR19]	N polylog N	$\log^2 N$	127 KB*	Random	Oracle
[GMNO18] ⁺	$N \log N$	1	640 KB	Lattices	Post-Quantum

1000× gap between size of pre-quantum zkSNARKs and post-quantum ones

This talk: constructing shorter post-quantum zkSNARKs (via lattice-based assumptions)

zkSNARK Constructions (with Implementation)

	Prover	Proof	Size	
Construction	Complexity	Asymptotic	Concrete	Assumption
[Gro16]	N log N	1	128 bytes	Pairings
Marlin [CHM ⁺ 20]	N log N	1	704 bytes	Pairings
Xiphos [SL20]	N	log N	61 KB	Pairings <i>Pre-Quantum</i>
Fractal [COS20]	N log N	$\log^2 N$	215 KB	Random Oracle
STARK [BBHR19]	N polylog N	$\log^2 N$	127 KB*	Random Oracle
[GMNO18] ⁺	$N \log N$	1	640 KB	Lattices
This work	N log N	1	16 KB	Lattices Post-Quantum

• $\approx 10 \times$ shorter proofs compared to previous post-quantum zkSNARKs for general NP relations

- Prover and verifier are concretely faster compared to most succinct pre-quantum construction [Gro16]
- Construction is designated-verifier (need secret key to check proofs) and has long CRS

Construction Overview

Follows the classic approach of combining an <u>information-theoretic</u> proof system (for NP) with a <u>cryptographic</u> compiler

Construction Overview

Follows the classic approach of combining an <u>information-theoretic</u> proof system (for NP) with a <u>cryptographic</u> compiler

Starting point: the [BCIOP13] compiler from linear PCPs to zkSNARKs

- Yields the most succinct pre-quantum zkSNARKs [GGPR13, Gro16]
- Basis of several lattice-based zkSNARKs [BISW17, GMNO18]

Linear Probabilistically-Checkable Proofs (LPCPs)

Linear Probabilistically-Checkable Proofs (LPCPs)

[IKO07]

Linear Probabilistically-Checkable Proofs (LPCPs)

[IKO07]

Equivalent view (if verifier is oblivious):

[BCIOP13]

t

livious verifier can "commit"
o its queries ahead of time
$$Q = q_1 q_2 q_3 \cdots q_k$$

part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

Two problems:

- Malicious prover can choose π based on queries
- Malicious prover can apply different π to the different columns of ${\it Q}$

[BCIOP13]

$$\mathbf{g} = q_1 q_2 q_3 \cdots q_k$$

part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

Step 1: Encrypt elements of **Q** using additively homomorphic encryption scheme

[BCIOP13]

[BCIOP13]

Designated-verifier SNARK: decryption key needed to verify

If LPCP verification can be performed directly on ciphertexts (e.g., with pairing-based instantiations), then SNARK is **publicly-verifiable**

 $\boldsymbol{q}_1^{\mathrm{T}}\boldsymbol{\pi}$

SNARK proof

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

> homomorphic evaluation

Verifier decrypts to learn $Q^{T}\pi$ and runs linear PCP decision procedure

Oblivious verifier can "commit" to its queries ahead of time $Q = q_1 q_2 q_3 \cdots q_k$

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

[BCIOP13]

Two problems:

- Malicious prover can choose π based on queries
- Malicious prover can apply different π to the different columns of Q

part of the CRS

[BCIOP13]

Oblivious verifier can "commit" to its queries ahead of time

part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

[BCIOP13] approach:

- Add a linear consistency check and view construction as a linear IP (LIP)
- Encrypt the LIP queries using a "linear-only" encryption scheme

[BCIOP13]

$$\mathbf{p} = \mathbf{q}_1 \, \mathbf{q}_2 \, \mathbf{q}_3 \cdots \mathbf{q}_k$$

part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

Intuitively: an encryption scheme that <u>only</u> supports additive homomorphism

 Encrypt the LIP queries using a "linear-only" encryption scheme

Linear-Only Encryption

[BCIOP13]

Requirement: If Decypt(sk, ct) $\neq \bot$, then Decrypt(sk, ct) = $\sum_{i \in [n]} \alpha_i x_i$ **Intuition:** adversary's strategy can be "explained" by a linear function

[BCIOP13]

Oblivious verifier can "commit" to its queries ahead of time

 $q_1 q_2 q_3$

part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

All adversarial strategies can be explained by a linear function of the encrypted query components ⇒ soundness can now be based on the soundness of the linear PCP

[BCIOP13]

to its queries ahead of time

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

For zero-knowledge, require that LPCP is (honest-verifier) ZK and encryption scheme is circuit private (hides linear combination)

Rest of this talk: will <u>not</u> focus on ZK

All adversarial strategies can be explained by a linear function of the encrypted query components ⇒ soundness can now be based on the soundness of the linear PCP

part of the CRS

Candidate Linear-Only Encryption from Lattices

[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen (1^{λ}) : Outputs a secret key $s \in \mathbb{Z}_q^n$

Encrypt $(s, \mu \in \mathbb{Z}_p)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi$ and output ct = $(a, s^T a + pe + \mu)$

Correct as long as $|e| \leq \frac{q}{2n}$

Decrypt(\boldsymbol{s} , ct): Write ct = (\boldsymbol{a} , \boldsymbol{b}) and output ($\boldsymbol{b} - \boldsymbol{s}^{\mathrm{T}}\boldsymbol{a} \mod q$) mod p

Candidate Linear-Only Encryption from Lattices

[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen (1^{λ}) : Outputs a secret key $s \in \mathbb{Z}_q^n$

Encrypt $(s, \mu \in \mathbb{Z}_p)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi$ and output ct = $(a, s^T a + pe + \mu)$

Decrypt(s, ct): Additive homomorphism: • $ct_1 = (a_1, s^T a_1 + pe_1 + \mu_1)$ • $ct_2 = (a_2, s^T a_2 + pe_2 + \mu_2)$ Then: • $ct_1 + ct_2 = (a_1 + a_2, s^T (a_1 + a_2) + p(e_1 + e_2) + (\mu_1 + \mu_2))$ Homomorphic operations increase noise growth

Candidate Linear-Only Encryption from Lattices

[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen (1^{λ}) : Outputs a secret key $s \in \mathbb{Z}_q^n$

Encrypt $(s, \mu \in \mathbb{Z}_p)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi$ and output ct = $(a, s^T a + pe + \mu)$

Decrypt(\boldsymbol{s} , ct): Write ct = (\boldsymbol{a} , \boldsymbol{b}) and output ($\boldsymbol{b} - \boldsymbol{s}^{\mathrm{T}}\boldsymbol{a} \mod q$) mod p

While Regev encryption can be extended to obtain FHE, existing constructions require additional components or different message embedding

Can we get more homomorphism from <u>vanilla</u> Regev?

Concrete Efficiency of Basic Instantiation

Amount of homomorphism determines scheme parameters

common reference string

Using quadratic arithmetic programs (for verifying circuit *C*):

• *k* = 4

•
$$m = O(|C|)$$

• soundness $\approx \frac{2|C|}{|\mathbb{F}_p|} = \frac{2|C|}{p}$

Concrete Efficiency of Basic Instantiation

Amount of homomorphism determines scheme parameters

Need to choose encryption modulus q to support this amount of homomorphism: $q/2p > p \cdot m \cdot B$ where B is the initial noise term Using quadratic arithmetic programs (for verifying circuit *C*):

• *k* = 4

•
$$m = O(|C|)$$

• soundness
$$\approx \frac{2|C|}{|\mathbb{F}_p|} = \frac{2|C|}{p}$$

Concrete Efficiency of Basic Instantiation

For a circuit with $m = 2^{20}$ gates and requiring 128 bits of soundness, we require:

- $p > 2^{148}$, so $q > 2^{300}$
- At 128 bits of security, lattice dimension $n > 10^4$, so a single Regev ciphertext is <u>over 350 KB</u> (longer than other post-quantum constructions based on IOPs)
- Proof contains k ciphertexts, so proof is even longer

Alternatively: Use a small plaintext field \mathbb{F}_p and amplify soundness via parallel repetition

- $p \approx 2^{20}$ and $q \approx 2^{100}$: single ciphertext is 45 KB
- Need many copies in this case (≈ 128 copies), so proof is again very long

[GMNO18]: use an instantiation where $p = 2^{32}$ without soundness amplification

• Proofs are already 640 KB (and provide ≈ 15 bits of provable soundness for verifying computations of size 2^{16})

New techniques needed to reduce proof size

Revisiting the Bitansky et al. Compiler

Oblivious verifier can "commit" to its queries ahead of time

part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

[BISW17]

Key idea: Instead of encrypting each component of **Q** individually, encrypt rows instead

Linear-Only Vector Encryption

plaintext space is a vector space

Linear-Only Vector Encryption

supports homomorphic vector addition

[BISW17]

Linear-only: scheme only supports linear homomorphism

[BCIOP13, BISW17]

[BCIOP13, BISW17]

[BISW17]

Conjecture: Regev encryption is linear-only

KeyGen (1^{λ}) : Outputs a secret key $s \in \mathbb{Z}_q^n$

Encrypt $(s, \mu \in \mathbb{Z}_p)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi$ and output ct = $(a, s^T a + pe + \mu)$

Decrypt(\boldsymbol{s} , ct): Write ct = (\boldsymbol{a} , \boldsymbol{b}) and output ($\boldsymbol{b} - \boldsymbol{s}^{\mathrm{T}}\boldsymbol{a} \mod q$) mod p

Key observation: the same vector $a \in \mathbb{Z}_q^n$ can be reused with many different secret keys Amortized/vectorized variant of Regev encryption [PVW08]

[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen (1^{λ}) : Outputs a secret key $s \in \mathbb{Z}_q^n$

Encrypt $(s, \mu \in \mathbb{Z}_p)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi$ and output ct = $(a, s^T a + pe + \mu)$

Decrypt(\boldsymbol{s} , ct): Write ct = (\boldsymbol{a} , \boldsymbol{b}) and output ($\boldsymbol{b} - \boldsymbol{s}^{\mathrm{T}}\boldsymbol{a} \mod q$) mod p

[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen (1^{λ}) : Outputs a secret key $S \in \mathbb{Z}_q^{n \times k}$

Encrypt $(s, \mu \in \mathbb{Z}_p)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi$ and output ct = $(a, s^T a + pe + \mu)$

Decrypt(\boldsymbol{s} , ct): Write ct = (\boldsymbol{a} , \boldsymbol{b}) and output $(\boldsymbol{b} - \boldsymbol{s}^{\mathrm{T}}\boldsymbol{a} \mod q) \mod p$

[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen (1^{λ}) : Outputs a secret key $S \in \mathbb{Z}_q^{n \times k}$

Encrypt $(S, \mu \in \mathbb{Z}_p^k)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi^k$ and output ct = $(a, S^T a + pe + \mu)$

Decrypt(\boldsymbol{s} , ct): Write ct = (\boldsymbol{a} , \boldsymbol{b}) and output $(\boldsymbol{b} - \boldsymbol{s}^{\mathrm{T}}\boldsymbol{a} \mod q) \mod p$

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen (1^{λ}) : Outputs a secret key $S \in \mathbb{Z}_q^{n \times k}$

Encrypt $(S, \mu \in \mathbb{Z}_p^k)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi^k$ and output ct = $(a, S^T a + pe + \mu)$

Decrypt(**S**, ct): Write ct = $(\boldsymbol{a}, \boldsymbol{v})$ and output $(\boldsymbol{v} - \boldsymbol{S}^{T} \boldsymbol{a} \mod q) \mod p$

 $|\mathsf{ct}| = (n+k)\log q$

Would be $k(n + 1) \log q$ using vanilla Regev

[BISW17]

Ciphertext size is *additive* in the vector dimension

[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen (1^{λ}) : Outputs a secret key $S \in \mathbb{Z}_q^{n \times k}$

Encrypt $(S, \mu \in \mathbb{Z}_p^k)$: Sample random $a \leftarrow \mathbb{Z}_q^n$, error $e \leftarrow \chi^k$ and output ct = $(a, S^Ta + pe + \mu)$

Decrypt(**S**, ct): Write ct = ($\boldsymbol{a}, \boldsymbol{v}$) and output $(\boldsymbol{v} - \boldsymbol{S}^{T}\boldsymbol{a} \mod q) \mod p$

|ct| = (n + 1)

Can use modulus switching [BV11, BGV12] to reduce ciphertext size <u>after</u> homomorphic evaluation: $(n + k) \log q \rightarrow (n + k) \log q'$

Ciphertext size is *additive* in the vector dimension

Lattice-Based zkSNARKs using Vector Encryption

common reference string

Using quadratic arithmetic programs (for verifying circuit *C*):

• *k* = 4

•
$$m = O(|C|)$$

• soundness $\approx \frac{2|C|}{|\mathbb{F}_p|} = \frac{2|C|}{p}$

Lattice-Based zkSNARKs using Vector Encryption

Previously techniques to achieve small soundness:

- 1. Use large p (to ensure LPCP soundness); or
- 2. Use small p and parallel repetition to amplify soundness

Our approach: parallel repetition of LPCP to amplify soundness:

- Define LPCP to be *t* independent sets of queries
- Accept only if all *t* sets accept
- Requires kt LPCP queries and provides soundness $\left(\frac{|C|}{2n}\right)^{t}$

With vanilla [BCIOP13], same proof size as parallel repetition

With vector encryption, proof is always a single vector encryption ciphertext and |ct| is *additive* in vector dimension (<u>not</u> multiplicative)

Q^Tπ SNARK proof

[BISW17, ISW21]

Setting $p \approx 2^{28}$, proof size is 29 KB (with a CRS of size 2.7 GB) for verifying circuit of size 2^{20}

Recall: Noise growth in ciphertexts scales with

- Length *m* of linear combination
- Magnitude of coefficients in linear combination p

Soundness of linear PCP: $\frac{2|C|}{|\mathbb{F}|}$

Can we further reduce p?

[ISW21]

Idea: use an extension field of small characteristic

[ISW21]

Suppose
$$\mathbb{F} = \mathbb{F}_{p^k}$$
 where $k > 1$

Can still instantiate using quadratic arithmetic programs

Two approaches to compile to a SNARK:

- Compile LPCP over \mathbb{F}_{p^k} to a LPCP over \mathbb{F}_p , apply linear-only vector encryption over \mathbb{F}_p Recall that $\mathbb{F}_{p^k} \cong \mathbb{F}_p^k$; field operations in \mathbb{F}_{p^k} are linear transformations over \mathbb{F}_p^k Transformation increases number of queries and query dimension by k
- Apply linear-only vector encryption over \mathbb{F}_{p^k}

Work over a polynomial ring $R = \mathbb{Z}[x]/\Phi_m(x)$ where m is chosen so that $R/pR \cong \mathbb{F}_{p^k}$ Consider Regev encryption over R (using module lattices)

Suppose
$$\mathbb{F} = \mathbb{F}_{p^k}$$
 where $k > 1$

Can still instantiate using quadratic arithmetic programs

Two approaches to compile to a SNARK:

- Compile LPCP over \mathbb{F}_{p^k} to a LPCP over \mathbb{F}_{p^k} Recall that $\mathbb{F}_{p^k} \cong \mathbb{F}_p^k$; field operations in \mathbb{F}_p Transformation increases number of querie
- Apply linear-only vector encryption over

Work over a polynomial ring $R = \mathbb{Z}[x]/\Phi_m$ Consider Regev encryption over R (using mo In both settings: coefficients of prover's linear combination have magnitude $\approx p$ while field has size p^k

This work: consider <u>quadratic</u> extension fields

- $R = \mathbb{Z}[x]/(x^2 + 1)$ and set $p = 3 \mod 4$ so $R_p = R/pR \cong \mathbb{F}_{p^2}$
- Choose ciphertext modulus *q* to be a power of 2
 - All arithmetic operations can be implemented using 128-bit arithmetic
 - Low degree means polynomial arithmetic only slightly more expensive

(x,w)

linear PCP

This work: consider <u>quadratic</u> extension fields

• $R = \mathbb{Z}[x]/(x^2 + 1)$ and set $p = 3 \mod 4$ so

Higher-degree extension makes polynomial arithmetic more costly (or need non-power-oftwo modulus to exploit FFTs)

- Choose ciphertext modulus q to be a power of 2
 - All arithmetic operations can be implemented using 128-bit arithmetic
 - Low degree means polynomial arithmetic only slightly more expensive
- Choose $p = 2^t \pm 1$ so \mathbb{F}_{p^2} has 2^{t+1} -th roots of unity (for efficient implementation of LPCP prover)

Working over extension field reduces noise accumulation ⇒ smaller lattice parameters ⇒ concretely shorter proofs

- Slightly more expensive homomorphic operations over extension field, but smaller lattice parameters
- Smaller field ⇒ more LPCP queries for soundness amplification ⇒ higher prover cost

Effect of Field Size

Using the extension field increases CRS size but decreases proof size

- CRS consists of "compressed" ciphertexts where random component is derived from a PRF (i.e., ct = (a, v) where a is random and $v = S^T a + pe + \mu$)
- Proof consists of full ciphertexts

[see paper for more microbenchmarks]

[ISW21]

	Size			Time			
Construction	CRS	Proof	Setup	Prover	Verifier	Assumption	
[Gro16]	199 MB	128 bytes	72 s	79 s	3.4 ms	Pairings <i>Pre-Quantum</i>	
Ligero [AHIV17]	—	14 MB	—	38 s	22 s	Random Oracle	
Aurora [BCR+19]	—	169 KB	—	304 s	6.3 s	Random Oracle	
Fractal [COS20]	11 GB	215 KB	116 s	184 s	9.5 ms	Random Oracle	
This work	5.3 GB	16.4 KB	2240 s	68 s	1.2 ms	Lattices	
This work	1.9 GB	20.8 KB	877 s	56 s	0.4 ms	Lattices Post-Quantum	

	Si	ze		Time				
Construction	CRS	Proof	Setup	Prover	Verifier	Assumption		
[Gro16]	199 MB	128 bytes	Over 10.	3× shorter	than other po	st-quantum SNARKs		
Ligero [AHIV17]		14 MB	Still over $131 imes$ longer than pairing-based SNARKs					
Aurora [BCR+19]		169 KB	Over 42× shorter than previous lattice-based SNARKs					
Fractal [COS20]	11 GB	215 KB	[GMNO18 circuit of	8] (based or f size 2 ¹⁶)	n reported nun	nbers for verifying		
This work		16.4 KB						
This work		20.8 KB						

[ISW21]

	S	ize		Time		
Construction	CRS	Proof	Setup	Prover	Verifier	Assumption
[Gro16]	Prover	cost is essentia	lly cost	79 s	3.4 ms	Pairings <i>Pre-Quantum</i>
Ligero [AHIV17]	of LPCP a linear	prover and co combination	mputing	38 s	22 s	If we consider
Aurora [BCR+19]	1.2× fa	ster than pairir	ng-based	304 s	6.3 s	restricted computations, can
Fractal [COS20]	SNARKs	5		184 s	9.5 ms	have much faster provers (e.g.,
This work	Slower Ligero k	than schemes based on MPC-	like in-the-	68 s	1.2 ms	ethSTARK [BBHR19])
This work	succinc	t verification)	nave	56 s	0.4 ms	

[ISW21]

	S	ize		Time			
Construction	CRS	Proof	Setup	Prover	Verifier	Assumption	
[Gro16]	Lattice-	based SNARKs	have very		3.4 ms	Pairings <i>Pre-Quantum</i>	
Ligero [AHIV17]	<u>lightwe</u> matrix-	<u>ight</u> verificatio vector product	n: computing : (≈ 200,000	22 s			
Aurora [BCR+19]	integer	multiplication	s) and round	6.3 s			
Fractal [COS20]	Well-su constra	ited for lightw ined devices	eight or ener	gy-	9.5 ms	Random Oracle	
This work					1.2 ms		
This work					0.4 ms		

	S	ize		Time					
Construction	CRS	Proof	Setup	Prover	Verifier	Assumption			
[Gro16]	199 MB	128 bytes	72 s	Limita	ations of lattice	e-based SNARKs:			
Ligero [AHIV17]	—	14 MB	—	 Resulting construction is designated- verifier (other schemes are publicly- 					
Aurora [BCR+19]	_	169 KB	_	• R	verifiable)Require expensive trusted setup (need				
Fractal [COS20]	11 GB	215 KB	116 s	e • R s	 encrypt large number of vectors) Resulting CRS is large (lattice cipherte still large, even with compression) 				
This work	5.3 GB	16.4 KB	2240 s						
This work	1.9 GB	20.8 KB	877 s	5					

Summary

Directly compile linear PCPs to SNARKs using linear-only vector encryption

Instantiate linear-only vector encryption from vectorized Regev encryption

Open Problems

Concretely-efficient **publicly-verifiable** SNARKs from lattices

Constructions with short proofs but expensive verifiers are known from lattices [BBC⁺18, BLNS20]

Concretely-efficient designated-verifier SNARKs with reusable soundness from lattices

Thank you!

https://eprint.iacr.org/2021/977

https://github.com/lattice-based-zkSNARKs/lattice-zksnark