
Lattice-Based Succinct
Non-Interactive Arguments

David Wu
Stanford University

based on joint works with Dan Boneh, Yuval Ishai, and Amit Sahai

Proof Systems and Argument Systems

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

[GMR85]

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 𝑥 = accept ≤ 𝜀
“No prover can convince honest verifier of false statement”

prover

𝑥 ∈ 0,1 ∗ accept if
𝑥 ∈ ℒ

verifier

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Proof Systems and Argument Systems
[GMR85]

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 𝑥 = accept ≤ 𝜀
“No prover can convince honest verifier of false statement”

prover

𝑥 ∈ 0,1 ∗ accept if
𝑥 ∈ ℒ

verifier

In an argument system, we relax soundness to
only consider computationally-bounded (i.e.,

polynomial-time) provers 𝑃∗

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Succinct Arguments

prover

𝑥 ∈ 0,1 ∗ accept if
𝑥 ∈ ℒ

[Kil92]

verifier

Argument system is succinct if:
• Communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

Verifier complexity significantly
smaller than classic NP verifier

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Succinct Non-Interactive Arguments (SNARGs)

prover

𝑥 ∈ 0,1 ∗ accept if
𝑥 ∈ ℒ

[Mic94, GW11]

verifier

Argument system is succinct if:
• Communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

For general NP languages, succinct non-interactive arguments are unlikely to
exist in the standard model [BP04, Wee05]

𝜋 = 𝑃 𝑥,𝑤

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Succinct Non-Interactive Arguments (SNARGs)

Instantiation: “CS proofs” in
the random oracle model

[Mic94]

[Mic94, GW11]

accept if 𝑉ℛ𝒪(𝑥, 𝜋) = 1

𝜋 = 𝑃ℛ𝒪(𝑥, 𝑤)

𝑥

prover verifier

Argument consists of a
single message

random oracle ℛ𝒪

(𝑥, 𝑤)

Succinct Non-Interactive Arguments (SNARGs)

common reference
string (CRS)

verification
state

𝜎 𝜏

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs:
allow “expensive” setup

accept if 𝑉 𝜏, 𝑥, 𝜋 = 1

𝜋 = 𝑃(𝜎, 𝑥, 𝑤)

prover verifier

Argument consists of a
single message(𝑥, 𝑤) 𝑥

[Mic94, GW11]

Setup 1𝜆

Complexity Metrics for SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑉 𝑥, 𝑃∗ 𝑥 = 1 ≤ 2−𝜆

How short can the proofs be?

𝜋 = Ω 𝜆

How much work is needed to generate the proof?

𝑃 = Ω 𝐶

Even in the designated-
verifier setting

Quasi-Optimal SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑉 𝑥, 𝑃∗ 𝑥 = 1 ≤ 2−𝜆

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it
satisfies the following properties:

• Quasi-optimal succinctness:
𝜋 = 𝜆 ⋅ polylog 𝜆, 𝐶 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity:
𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶)

Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

BISW (integer lattices) [BISW17]

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity

BISW (ideal lattices) [BISW18]

Constructing (Quasi-Optimal) SNARGs

New framework for building preprocessing SNARGs (following [BCIOP13]):

Step 1 (information-theoretic):
• Identify useful information-theoretic building block (linear

PCPs and linear MIPs)
Step 2 (cryptographic):

• Use cryptographic primitives to compile information-theoretic
building block into a preprocessing SNARG

Instantiating our framework yields new lattice-based SNARG candidates

Linear PCPs

𝜋 ∈ 𝔽𝑚

𝑞 ∈ 𝔽𝑚

𝑞, 𝜋 ∈ 𝔽 Several possible instantiations: based on
the Walsh-Hadamard code [ALMSS92] or
quadratic span programs [GGPR13]verifier

𝑥, 𝑤PCP where the proof
oracle implements a

linear function 𝜋 ∈ 𝔽𝑚

In these instantiations,
verifier is oblivious (queries
independent of statement)

[IKO07]

accept/reject

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

Step 1: Verifier encrypts its queries using an
additively homomorphic encryption scheme
• Prover homomorphically computes 𝑄𝑇𝜋
• Verifier decrypts encrypted response

vector and applies linear PCP verification

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Oblivious verifier can “commit”
to its queries ahead of time

[BCIOP13]

Step 1: Verifier encrypts its queries using an
additively homomorphic encryption scheme
• Prover homomorphically computes 𝑄𝑇𝜋
• Verifier decrypts encrypted response

vector and applies linear PCP verification

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Oblivious verifier can “commit”
to its queries ahead of time

Step 2: Conjecture that the encryption
scheme only supports a limited subset of
homomorphic operations (linear-only vector
encryption)

• Differs from [BCIOP13] compiler which
relies on additional consistency checks to
build a preprocessing SNARG

• Using linear-only vector encryption
allows for efficient instantiation from
lattices (resulting SNARG satisfies quasi-
optimal succinctness)

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Oblivious verifier can “commit”
to its queries ahead of time

Step 2: Conjecture that the encryption
scheme only supports a limited subset of
homomorphic operations (linear-only vector
encryption)

Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

plaintext space is a
vector space

Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

plaintext space is a
vector space

𝑖∈[𝑛]

𝛼𝑖𝑣𝑖 ∈ 𝔽𝑘

encryption scheme is
semantically-secure and
additively homomorphic

Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

ct

𝛼1, … , 𝛼𝑚 ∈ 𝔽, 𝑏 ∈ 𝔽𝑘

adversary

extractor

For all adversaries, there is an efficient extractor such that if ct is valid, then
the extractor is able to produce a vector of coefficients 𝛼1, … , 𝛼𝑚 ∈ 𝔽𝑚

and 𝑏 ∈ 𝔽𝑘 such that Decrypt sk, ct = σ𝑖∈[𝑛]𝛼𝑖𝑣𝑖 + 𝑏

[Weaker property also suffices]

From Linear PCPs to SNARGs

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt
row by row

Linear-only vector encryption
ensures that all prover

strategies can be explained by
a linear function ⇒ can appeal

to soundness of underlying
linear PCP to argue soundness

Instantiating Linear-Only Vector Encryption

Conjecture: Regev-based encryption (specifically, the [PVW08] variant)
is a linear-only vector encryption scheme.

PVW decryption (for plaintexts with dimension 𝑘):

𝑆

𝑆 ∈ ℤ𝑞
𝑘×(𝑛+𝑘)

𝑐

𝑐 ∈ ℤ𝑞
𝑛+𝑘

round

Each row of 𝑆 can be viewed as an independent Regev secret key

Complexity of the Construction

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt
row by row

Evaluating inner product requires
Ω 𝐶 homomorphic operations;

prover complexity:
Ω 𝜆 ⋅ Ω 𝐶 = Ω 𝜆 𝐶

Proof consists of a single
ciphertext: total length 𝑂(𝜆) bits

Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

BISW (integer lattices) [BISW17]

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity

Towards Quasi-Optimality

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt
row by row

Evaluating inner product requires
Ω 𝐶 homomorphic operations;

prover complexity:
Ω 𝜆 ⋅ Ω 𝐶 = Ω 𝜆 𝐶

Proof consists of a constant
number of ciphertexts: total length

𝑂(𝜆) bits

We pay Ω(𝜆) for each
homomorphic

operation. Can we
reduce this?

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φ𝑑 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆)

with ciphertexts of size ෨𝑂(𝜆)

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φ𝑑 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆)

with ciphertexts of size ෨𝑂(𝜆)

Amortized cost of homomorphic
operation on a single field

element is polylog(𝜆)

Linear-Only Encryption over Rings

𝑞1 ∈ 𝔽𝑝
𝑚

𝑞2 ∈ 𝔽𝑝
𝑚

𝑞3 ∈ 𝔽𝑝
𝑚

⋮

𝑞ℓ ∈ 𝔽𝑝
𝑚

⟨𝜋1, 𝑞1⟩

⟨𝜋2, 𝑞2⟩

⟨𝜋3, 𝑞3⟩

⋮

⟨𝜋ℓ, 𝑞ℓ⟩

Given encrypted set of query vectors, prover can
homomorphically apply independent linear functions to each slot

Key idea: Check multiple independent proofs in parallel

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Verifier has oracle access to
multiple linear proof oracles

[Proofs may be correlated]

Can convert linear MIP to
preprocessing SNARG using linear-
only (vector) encryption over rings

Suppose
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries to each 𝜋𝑖 is polylog(𝜆)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Suppose
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries to each 𝜋𝑖 is polylog(𝜆)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Prover complexity:
෨𝑂 ℓ𝑚 = ෨𝑂 𝐶

Linear MIP size:

𝑂 ℓ ⋅ polylog 𝜆 = ෨𝑂(𝜆)

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit
satisfiability

Robust
Decomposition

Consistency
Check

Quasi-Optimal
Linear MIP

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Only depends on 𝑥

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Only depends on 𝑥

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Only depends on 𝑥

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Completeness: If 𝐶 𝑥,𝑤 = 1,
then 𝑓𝑖 𝑥

′, 𝑤′ = 1 for all 𝑖

Robustness: If 𝑥 ∉ ℒ, then for all
𝑤′, at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

Efficiency: (𝑥′, 𝑤′) can be
computed by a circuit of size ෨𝑂(𝑠)

Only depends on 𝑥

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Using linear PCP based on QSPs
[GGPR13], 𝜋𝑖 = 𝑂(Τ𝐶 ℓ) and
provides soundness 1/poly 𝜆

(𝑥, 𝑤)
Statement-witness

for 𝐶
Statement-witness

for 𝑓1, … , 𝑓ℓ

Encode (𝑥′, 𝑤′)

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Verifier invokes linear PCP verifier
for each instance

(𝑥, 𝑤)
Statement-witness

for 𝐶
Statement-witness

for 𝑓1, … , 𝑓ℓ

Encode (𝑥′, 𝑤′)

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Completeness: Follows by
completeness of decomposition and
linear PCPs

Soundness: Each linear PCP provides
Τ1 poly 𝜆 soundness and for false

statement, at least 1/3 of the
statements are false, so if ℓ = Ω(𝜆),
verifier accepts with probability

2−Ω 𝜆

Robust Decomposition

Completeness: Follows by
completeness of decomposition and
linear PCPs

Soundness: Each linear PCP provides
Τ1 poly 𝜆 soundness and for false

statement, at least 1/3 of the
statements are false, so if ℓ = Ω(𝜆),
verifier accepts with probability

2−Ω 𝜆

Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′,
at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

For false 𝑥, no single 𝑤′ can
simultaneously satisfy 𝑓𝑖 𝑥

′,⋅ ;
however, all of the 𝑓𝑖(𝑥

′,⋅) could
individually be satisfiable

Problematic however if prover
uses different 𝑥′, 𝑤′ to

construct proofs for different 𝑓𝑖’s

Consistency Checking

Require that linear PCPs are systematic: linear PCP 𝜋 contains a copy of the witness:

𝜋1

𝜋2

𝜋3

𝑤1
′ 𝑤3

′

𝑤1
′ 𝑤2

′

𝑤2
′ 𝑤3

′

other components

other components

other components

First few components of proof
correspond to witness associated

with the statement

Goal: check that assignments
to 𝑤′ are consistent via

linear queries to 𝜋𝑖

Each proof induces an
assignment to a few bits of

the common witness 𝑤′

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking
satisfiability of 𝑓1, … , 𝑓ℓ (each
of which can be checked by a
circuit of size Τ𝐶 ℓ)

• For a false statement, no
single witness can
simultaneously satisfy more
than a constant fraction of 𝑓𝑖

Quasi-Optimal Linear MIP

Robust decomposition can be instantiated by
combining “MPC-in-the-head” paradigm
[IKOS07] with a robust MPC protocol with
polylogarithmic overhead [DIK10]

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking
satisfiability of 𝑓1, … , 𝑓ℓ (each
of which can be checked by a
circuit of size Τ𝐶 ℓ)

• For a false statement, no
single witness can
simultaneously satisfy more
than a constant fraction of 𝑓𝑖

Consistency Check

• Check that consistent witness is
used to prove satisfiability of
each 𝑓𝑖

• Relies on pairwise consistency
checks and permuting the
entries to obtain a “nice”
replication structure

Quasi-Optimal Linear MIP

Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

BISW (integer lattices) [BISW17]

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity

BISW (ideal lattices) [BISW18]

Conclusions

Introduced framework for building SNARGs by combining linear PCPs (and linear
MIPs) with linear-only vector encryption

Framework yields first quasi-optimal SNARG by combining quasi-optimal linear MIP
with linear-only vector encryption

• Construction of a quasi-optimal linear MIP possible by combining robust
decomposition and consistency check

Open Problems

Publicly-verifiable SNARGs from lattices

Quasi-optimal zero-knowledge SNARGs

Concrete efficiency of lattice-based SNARGs

Thank you!
https://cs.stanford.edu/~dwu4/snargs-project.html

