Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis

Hoeteck Wee and David Wu
December 2023

Functional Commitments

Functional Commitments

Commit(crs, $x) \rightarrow(\sigma, \mathrm{st})$
Takes a common reference string and commits to an input x
Outputs commitment σ and commitment state st

Functional Commitments

Open + Verify

Commit(crs, $x) \rightarrow(\sigma$, st)
Open(st, f) $\rightarrow \pi$
Takes the commitment state and a function f and outputs an opening π Verify(crs, $\sigma,(f, y), \pi) \rightarrow 0 / 1$

Checks whether π is valid opening of σ to value y with respect to f

Functional Commitments

Open + Verify

Can also consider the dual notion where user commits to the function f and opens at an input x to the value $f(x)$

Takes the commitment state and an input x and outputs an opening π Verify(crs, $\sigma,(x, y), \pi) \rightarrow 0 / 1$

Checks whether π is valid opening of σ to value y at input x

Functional Commitments

Open + Verify

Commit(crs, $f) \rightarrow(\sigma, \mathrm{st})$
 Open(st, $x) \rightarrow \pi$

Can also consider the dual notion where user commits to the function f and opens at an input x to the value $f(x)$

Takes the commitment state and an input x and outputs an opening π

This talk: will just focus on the first notion (commit to x, open to f)

Functional Commitments

Open + Verify

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Functional Commitments

Open + Verify

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma|=\operatorname{poly}(\lambda, \log |x|)$
- Short opening: $|\pi|=\operatorname{poly}(\lambda, \log |x|,|f(x)|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with depth of the circuit computing f

Fast verification: can preprocess f into a short verification key vk_{f} so that "online" verification runs in time $\operatorname{poly}(\lambda, \log |x|, d)$ where d is the depth of f

Functional Commitments

Open + Verify

Succinctness: co

- Short comm

Note: having short commitments + openings does not imply

- Short openir fast verification (e.g., verification procedure in [WW23] basically evaluates f on the commitment)
Fast verification: can preprocess f into a short verification key vk_{f} so that "online" verification runs in time $\operatorname{poly}(\lambda, \log |x|, d)$ where d is the depth of f

Lattice-Based Functional Commitments

Scheme	Function Class	$\mid \mathrm{crs}$ \|	$\|\sigma\|$	$\|\pi\|$	FV	BB	Assumption
[KLVW23]	Boolean circuits	1	1	1	\checkmark	X	LWE
[BCFL23]	width- w, depth- d circuits	w^{5}	1	1	\checkmark	\checkmark	twin-k-M-ISIS
[WW23]	depth-d circuits	ℓ^{2}	1	1	X	\checkmark	BASIS ${ }_{\text {struct }}$
[ACLMT22]	degree-d polynomials	$\ell^{2 d}$	1	1	\checkmark	\checkmark	k-R-ISIS
[BCFL23]*	degree-d polynomials	$\ell^{5 d}$	1	1	\checkmark	\checkmark	twin-k-R-ISIS
This work	degree-d polynomials	ℓ^{d+1}	1	1	\checkmark	\checkmark	$O\left(\ell^{d}\right)$-succinct SIS

- ℓ is the input length
- FV: scheme supports fast verification
- $B B$: scheme only makes black-box use of cryptography

*can decrease CRS size at the cost of longer openings

- FV: scheme supports fast verification
- BB: scheme only makes black-box use of cryptography

Comparisons ignore all $\operatorname{poly}(\lambda, d, \log \ell)$ terms
This talk: only consider lattice-based functional commitment schemes

Lattice-Based Functional Commitments

| Scheme | Function Class | \|crs| | $\|\sigma\|$ | $\|\pi\|$ | FV | BB | Assumption |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [KLVW23] | Boolean circuits | 1 | 1 | 1 | \checkmark | X | LWE |
| [BCFL23] | width-w, depth- d circuits | w^{5} | 1 | 1 | \checkmark | \checkmark | twin-k-M-ISIS |
| [WW23] | depth-d circuits | ℓ^{2} | 1 | 1 | X | \checkmark | BASIS $_{\text {struct }}$ |
| [ACLMT22] | degree-d polynomials | $\ell^{2 d}$ | 1 | 1 | \checkmark | \checkmark | $k-R$-ISIS |
| [BCFL23]* | degree-d polynomials | $\ell^{5 d}$ | 1 | 1 | \checkmark | \checkmark | twin-k-R-ISIS |
| This work | degree-d polynomials | ℓ^{d+1} | 1 | 1 | \checkmark | \checkmark | $O\left(\ell^{d}\right)$-succinct SIS |

Concurrent works:

- [FLV23]: polynomial commitment with linear-size CRS from k - R-ISIS assumption
- [CLM23]: functional commitment for quadratic functions with linear linear-size CRS from vanishing SIS

Lattice-Based Functional Commitments

| Scheme | Function Class | \|crs| | $\|\sigma\|$ | $\|\pi\|$ | FV | BB | Assumption |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [KLVW23] | Boolean circuits | 1 | 1 | 1 | \checkmark | X | LWE |
| [BCFL23] | width-w, depth- d circuits | w^{5} | 1 | 1 | \checkmark | \checkmark | twin-k-M-ISIS |
| [WW23] | depth- d circuits | ℓ^{2} | 1 | 1 | X | \checkmark | BASIS ${ }_{\text {struct }}$ |
| [ACLMT22] | degree-d polynomials | $\ell^{2 d}$ | 1 | 1 | \checkmark | \checkmark | k-R-ISIS |
| [BCFL23]* | degree-d polynomials | $\ell^{5 d}$ | 1 | 1 | \checkmark | \checkmark | twin-k-R-ISIS |
| This work | degree-d polynomials | ℓ^{d+1} | 1 | 1 | \checkmark | \checkmark | $O\left(\ell^{d}\right)$-succinct SIS functional commitments |
| [KLVW23] | Boolean circuits | 1 | 1 | 1 | \checkmark | x | LWE |
| [dCP23] | depth-d circuits | ℓ | 1 | ℓ | x | \checkmark | SIS |
| This work | depth- d circuits | ℓ^{2} | 1 | 1 | \checkmark | \checkmark | ℓ-succinct SIS |
| | | | | | | | dual functional commitments |

This talk: only consider lattice-based functional commitment schemes

This Work

Functional commitments with fast verification (and black-box use of cryptography)

- Functional commitment for degree-d polynomials with $O\left(\ell^{d+1}\right)$-size CRS

Previously: $O\left(\ell^{2 d}\right)$-size CRS

- Dual functional commitment for (bounded-depth) Boolean circuits

First construction to support fast verification (without non-black-box use of cryptography)

Cryptanalysis of knowledge versions of the new lattice assumptions

- Construct oblivious sampler that (heuristically) falsifies the knowledge k - R-ISIS assumption in [ACLMT22]
- Approach breaks extractability of several lattice-based functional commitments (our construction and the [ACLMT22] extractable commitment for linear functions)

Attacks do not break standard binding security of the commitment nor does it (currently) give an attack on the SNARK candidates based on knowledge k - R-ISIS [ACLMT22, CLM23, FLV23] -
but does break the underlying knowledge assumption for these SNARK candidates

Starting Point: the Wee-Wu Functional Commitment

Common reference string (CRS)

$$
\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m} \quad \boldsymbol{W}_{1} \in \mathbb{Z}_{q}^{n \times m} \quad \cdots \boldsymbol{W}_{\ell} \in \mathbb{Z}_{q}^{n \times m}
$$

Commitment relation (for all $i \in[\ell]$)

commitment

gadget matrix
opening
(matrix with short entries)

Trapdoor in CRS allow for joint sampling of ($\boldsymbol{C}, \boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\ell}$)
Structure does not support fast verification for polynomials of degree $d>1$

$$
\text { commitment to } \ell \text {-dimensional vectors } x \in\{0,1\}^{\ell}
$$

Our Approach: A "Chaining" Structure

Common reference string (CRS)

More structure in the CRS

[WW23] relation: $\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{\boldsymbol{i}}$
This work: $\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i}$

$$
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
$$

Will also assume require that \boldsymbol{C} be a short matrix

Our Approach: A "Chaining" Structure

$$
\begin{gathered}
\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i} \\
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
\end{gathered}
$$

Given commitment \boldsymbol{C} to $\boldsymbol{x} \in\{0,1\}^{\ell}$, we construct an opening to $x_{i} x_{j}$ as follows:

$$
\begin{gathered}
\boldsymbol{W}_{i j} \boldsymbol{C}^{2} \\
\text { function of commitment } \\
\text { and public parameters }
\end{gathered}
$$

Our Approach: A "Chaining" Structure

$$
\begin{gathered}
\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i} \\
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
\end{gathered}
$$

Given commitment \boldsymbol{C} to $\boldsymbol{x} \in\{0,1\}^{\ell}$, we construct an opening to $x_{i} x_{j}$ as follows:

$$
\boldsymbol{W}_{i j} C^{2} \quad=\left(x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}\right) \boldsymbol{C}
$$

function of commitment
and public parameters

Our Approach: A "Chaining" Structure

$$
\begin{gathered}
\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i} \\
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
\end{gathered}
$$

Given commitment \boldsymbol{C} to $\boldsymbol{x} \in\{0,1\}^{\ell}$, we construct an opening to $x_{i} x_{j}$ as follows:

$$
W_{i j} C^{2}=\left(x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}\right) \boldsymbol{C}
$$

$$
\begin{gathered}
\text { function of commitment } \\
\text { and public parameters }
\end{gathered}=x_{i} \boldsymbol{W}_{j} \boldsymbol{C}-\boldsymbol{A} \boldsymbol{V}_{i j} \boldsymbol{C}
$$

Our Approach: A "Chaining" Structure

$$
\begin{gathered}
\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i} \\
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
\end{gathered}
$$

Given commitment \boldsymbol{C} to $\boldsymbol{x} \in\{0,1\}^{\ell}$, we construct an opening to $x_{i} x_{j}$ as follows:

$$
\begin{aligned}
& \qquad \begin{aligned}
& \boldsymbol{W}_{i j} \boldsymbol{C}^{2}=\left(x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}\right) \boldsymbol{C} \\
& \text { function of commitment } \\
& \text { and public parameters }
\end{aligned}=x_{i} \boldsymbol{W}_{j} \boldsymbol{C}-\boldsymbol{A} \boldsymbol{V}_{i j} \boldsymbol{C} \\
&=x_{i} x_{j} \boldsymbol{G}-\boldsymbol{A}\left(\boldsymbol{V}_{i j} \boldsymbol{C}+x_{i} V_{j}\right) \\
& \text { opening for } x_{i} x_{j} \\
& \text { (short if } C, V_{i}, V_{j}, x_{i} \text { short) }
\end{aligned}
$$

Our Approach: A "Chaining" Structure

$$
\begin{gathered}
\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i} \\
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
\end{gathered}
$$

Given commitment \boldsymbol{C} to $\boldsymbol{x} \in\{0,1\}^{\ell}$, we construct an opening to $x_{i} x_{j}$ as follows:

$$
\begin{aligned}
& \qquad \begin{aligned}
& \boldsymbol{W}_{i j} C^{2}=\left(x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}\right) \boldsymbol{C} \\
& \text { function of commitment } \\
& \text { and public parameters }
\end{aligned}=x_{i} \boldsymbol{W}_{j} \boldsymbol{C}-\boldsymbol{A} \boldsymbol{V}_{i j} \boldsymbol{C} \\
&=x_{i} x_{j} \boldsymbol{G}-\boldsymbol{A}\left(\boldsymbol{V}_{i j} \boldsymbol{C}+x_{i} \boldsymbol{V}_{j}\right) \\
& \text { opening for } x_{i} x_{j} \\
& \text { (short if } C, V_{i}, V_{j}, x_{i} \text { short) }
\end{aligned}
$$

Verification procedure: compute $W_{i j} C^{2}$ and check above relation

Our Approach: A "Chaining" Structure

$$
\begin{gathered}
\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i} \\
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
\end{gathered}
$$

Given commitment \boldsymbol{C} to $\boldsymbol{x} \in\{0,1\}^{\ell}$, we construct an opening to $x_{i} x_{j}$ as follows:
$W_{i j} C^{2}=\left(x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}\right) \boldsymbol{C}$
function of commitment
and public parameters $=x_{i} \boldsymbol{W}_{j} \boldsymbol{C}-\boldsymbol{A} \boldsymbol{V}_{i j} \boldsymbol{C}$
$=x_{i} x_{j} \boldsymbol{G}-\boldsymbol{A}\left(V_{i j} C\right.$ Online verification just computes
Verification procedure: compute $W_{i j} C^{-}$Can precompute
To open to $f(\boldsymbol{x})=\sum_{i, j} \gamma_{i j} x_{i} x_{j}$, verifier computes $\sum_{i, j} \gamma_{i j} W_{i j} C^{2}$

How to Construct $C, V_{i}, V_{i j}$?

$$
\begin{gathered}
\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i} \\
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
\end{gathered}
$$

Approach: sample trapdoor for following matrix
$\left[\begin{array}{lllllll}\boldsymbol{A} & & & & & & \boldsymbol{W}_{1} \\ & \ddots & & & & & \vdots \\ & & \boldsymbol{A} & & & & \boldsymbol{W}_{\ell} \\ & & & \boldsymbol{A} & & & \boldsymbol{W}_{11} \\ & & & & \ddots & & \vdots \\ & & & & & \boldsymbol{A} & \boldsymbol{W}_{\ell \ell}\end{array}\right]\left[\begin{array}{c}\boldsymbol{V}_{1} \\ \vdots \\ \boldsymbol{V}_{\ell} \\ \boldsymbol{V}_{11} \\ \vdots \\ \boldsymbol{V}_{\ell \ell} \\ \boldsymbol{C}\end{array}\right]=\left[\begin{array}{c}x_{1} \boldsymbol{G} \\ \vdots \\ x_{\ell} \boldsymbol{G} \\ x_{1} \boldsymbol{W}_{1} \\ \vdots \\ x_{\ell} \boldsymbol{W}_{\ell}\end{array}\right]$

Size of full trapdoor: $O\left(\ell^{4}\right)$
can use the trapdoor to sample $\boldsymbol{C}, \boldsymbol{V}_{i}, \boldsymbol{V}_{i j}$ that satisfies relation for any \boldsymbol{x}

How to Construct $C, V_{i}, V_{i j}$?

$$
\begin{gathered}
\boldsymbol{W}_{i} \boldsymbol{C}=x_{i} \boldsymbol{G}-\boldsymbol{A} \boldsymbol{V}_{i} \\
\boldsymbol{W}_{i j} \boldsymbol{C}=x_{i} \boldsymbol{W}_{j}-\boldsymbol{A} \boldsymbol{V}_{i j}
\end{gathered}
$$

Approach: sample trapdoor for following matrix

Evaluation Binding

ℓ-succinct SIS [Wee23]: SIS is hard with respect to \boldsymbol{A} even given the trapdoor for the matrix

$$
\left[\begin{array}{ccccc}
\boldsymbol{A} & & & & \\
& \boldsymbol{W}_{1} \\
& \ddots & & & \\
& & \vdots \\
& \boldsymbol{A} & & & \\
& & \boldsymbol{A} & & \\
& & & \ddots & \\
& & & \boldsymbol{W}_{\ell} \\
& & & & \boldsymbol{A} \\
& \boldsymbol{W}_{\ell \ell}
\end{array}\right] \quad \text { The } \boldsymbol{W}_{i}{ }^{\prime} \text { 's and } \boldsymbol{W}_{i j} \text { 's are uniform random } \quad \text { Assumption has less structure than }
$$

Trapdoor for above matrix suffices to simulate CRS
Can show that adversary that breaks evaluation binding solves SIS with respect to \boldsymbol{A}
Conclusion: functional commitment for degree- d polynomials with fast verification and $O\left(\ell^{d+1}\right)$-size CRS from $O\left(\ell^{d}\right)$-succinct SIS

Evaluation Binding

ℓ-succinct SIS [Wee23]: SIS is hard with respect to \boldsymbol{A} even given the trapdoor for the matrix

$$
\left[\begin{array}{cccccc}
\boldsymbol{A} & & & & & \\
& \ddots & & & & \\
& & & & \boldsymbol{W}_{1} \\
& \boldsymbol{A} & & & & \boldsymbol{W}_{\ell} \\
& & \boldsymbol{A} & & & \boldsymbol{W}_{11} \\
& & & \ddots & & \vdots \\
& & & & & \boldsymbol{A} \\
& & & & \boldsymbol{W}_{\ell \ell}
\end{array}\right] \quad \text { Assumption } \boldsymbol{W}_{i} \text { 's and } \boldsymbol{W}_{i j} \text { 's are uniform random } \begin{gathered}
\\
\text { BASIS assumption from [WW23] and } k \text { - } \\
\\
\\
\\
\end{gathered}
$$

Trapdoor for above matrix suffices to simulate CRS
Can show that adversary that breaks evaluation binding solv

Previous (black-box) lattice-based constructions with fast verification:
$O\left(\ell^{2 d}\right)$-size CRS

Conclusion: functional commitment for degree- d polynomials with fast verification and $O\left(\ell^{d+1}\right)$-size CRS from $O\left(\ell^{d}\right)$-succinct SIS

Cryptanalysis of Lattice-Based Knowledge Assumptions

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitment / SNARK):

given (tall) matrices $\boldsymbol{A}, \boldsymbol{D}$ and short preimages \mathbf{Z} of a random target \boldsymbol{T} the only way an adversary can produce a short vector \boldsymbol{v} such that $\boldsymbol{A v}$ is in the image of \boldsymbol{D} (i.e., $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$) is by setting $\boldsymbol{v}=\boldsymbol{Z x}$

Observe: $\boldsymbol{A} \boldsymbol{v}$ for a random (short) \boldsymbol{v} is outside the image of \boldsymbol{D} (since \boldsymbol{D} is tall)

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitment / SNARK):

This work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[A \mid D G] \cdot\left[\begin{array}{c}
Z \\
-G^{-1}(T)
\end{array}\right]=\mathbf{0}
$$

If \boldsymbol{Z} and \boldsymbol{T} are wide enough, we (heuristically) obtain a basis for $[\boldsymbol{A} \mid \boldsymbol{D G}]$

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[A \mid D G] \cdot \underbrace{\left[\begin{array}{c}
Z \\
-G^{-1}(T)
\end{array}\right]}_{B^{*}}=0
$$

If \boldsymbol{Z} and \boldsymbol{T} are wide enough, we (heuristically) obtain a basis for $[\boldsymbol{A} \mid \boldsymbol{D G}]$

Oblivious sampler (Babai rounding):

1. Take a long integer solution \boldsymbol{y} where $[\boldsymbol{A} \mid \boldsymbol{D} \boldsymbol{G}] \boldsymbol{y}=\mathbf{0} \bmod q$
2. Assuming \boldsymbol{B}^{*} is full-rank over \mathbb{Q}, find \boldsymbol{z} such that $\boldsymbol{B}^{*} \boldsymbol{z}=\boldsymbol{y}$ (over \mathbb{Q})
3. Set $\boldsymbol{y}^{*}=\boldsymbol{y}-\boldsymbol{B}^{*}[\boldsymbol{z}\rceil=\boldsymbol{B}^{*}(\boldsymbol{z}-\lfloor\boldsymbol{z}\rceil)$ and parse into $\boldsymbol{v}, \boldsymbol{c}$

Correctness: $\left.[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{y}^{*}=[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{B}^{*}(\mathbf{z}-\mid \mathbf{z}]\right)=\mathbf{0} \bmod q$ and \boldsymbol{y}^{*} is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot\left[\begin{array}{c}
\boldsymbol{Z} \\
\end{array}\right]=\mathbf{\text { If } \boldsymbol { Z } \text { and } \boldsymbol { T } \text { are wide enough, we }}
$$

Oblivious sampler (Babai roun

1. Take a long integer solut
2. Assuming \boldsymbol{B}^{*} is full-rank
3. Set $\boldsymbol{y}^{*}=\boldsymbol{y}-\boldsymbol{B}^{*}[\boldsymbol{z}\rceil=\boldsymbol{B}$

This solution is obtained by "rounding" off a long solution
Question: Can we explain such solutions as taking a short linear combination of Z (i.e., what the knowledge assumption asserts)

Correctness: $[\boldsymbol{A} \mid \boldsymbol{D} \boldsymbol{G}] \cdot \boldsymbol{y}^{*}=[\boldsymbol{A} \mid \boldsymbol{D} \boldsymbol{G}] \cdot \boldsymbol{B}^{*}(\mathbf{z}-[\mathbf{z}])=\mathbf{0} \bmod q$ and \boldsymbol{y}^{*} is short

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (ie., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice
(1)

$$
A v=D c
$$

(2)

$$
[A \mid D G]\left[\begin{array}{c}
\boldsymbol{v} \\
-\boldsymbol{G}^{-1}(\boldsymbol{c})
\end{array}\right]=\mathbf{0}
$$

(3)

$$
[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot\left[\begin{array}{c}
\mathbb{Z} \\
-G^{-1}(T)
\end{array}\right]=\mathbf{0}
$$

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge $k-R$-ISIS assumption from [ACLMT22] Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of our functional commitment scheme for quadratic functions (i.e., obliviously sample a commitment \boldsymbol{c} and openings to $x_{1}^{2}=0, x_{1} x_{2}=1$)
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)
Open question: Can we extend the attacks to break soundness of the SNARK?

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge $k-R$-ISIS assumption from [ACLMT22] Implementation by Martin Albrech+
- Breaks extractability of our obliviously sample a commi
- Breaks extractability of the [ACLMT22] assuming hardn

The SNARK considers extractable commitment for quadratic functions while our current oblivious sampler only works for linear functions in the case of [ACLMT22] for oblivious sampler implies algorithm for inhomogeneous SIS)
Open question: Can we extend the attacks to break soundness of the SNARK?

This Work

Functional commitments with fast verification (and black-box use of cryptography)

- Functional commitment for degree-d polynomials with $O\left(\ell^{d+1}\right)$-size CRS

Previously: $O\left(\ell^{2 d}\right)$-size CRS

- Dual functional commitment for (bounded-depth) Boolean circuits

First construction to support fast verification (without non-black-box use of cryptography)

Cryptanalysis of knowledge versions of the new lattice assumptions

- Construct oblivious sampler that (heuristically) falsifies the knowledge k - R-ISIS assumption in [ACLMT22]
- Approach breaks extractability of several lattice-based functional commitments (our construction and the [ACLMT22] extractable commitment for linear functions)

Open Questions

(Black-box) functional commitments with fast verification from standard SIS?
Cryptanalysis of lattice-based SNARKs based on knowledge k - R-ISIS [ACLMT22, CLM23, FLV23]
Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions
Formulation of new lattice-based knowledge assumptions that avoids our attacks

Thank you!

