Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis

Hoeteck Wee and David Wu

December 2023

 $Commit(crs, x) \rightarrow (\sigma, st)$

Takes a common reference string and commits to an input xOutputs commitment σ and commitment state st

Commit(crs, x) \rightarrow (σ , st) Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs,
$$\sigma$$
, (f, y) , π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

$$Open + Verify$$

$$\int \sigma f(x) = \int \sigma f(x) f(x) dx$$

$$Commit(crs, f) \to (\sigma, st)$$

$$Open(st, x) \to \pi$$

$$Commit(x) = Commit f(x)$$

$$Can also consider the dual notion where user commits to the function f and opens at an input x to the value f(x)$$

Takes the commitment state and an input x and outputs an opening π

Verify(crs, σ , (x, y), π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y at input x

Takes the commitment state and an input x and outputs an opening π

This talk: will just focus on the first notion (commit to x, open to f)

Binding: efficient adversary cannot open σ to two different values with respect to the same f

$$\pi_{0} (f, y_{0}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{0}), \pi_{0}) = 1$$

$$\pi_{1} (f, y_{1}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{1}), \pi_{1}) = 1$$

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = poly(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|, |f(x)|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with depth of the circuit computing f

Fast verification: can preprocess f into a short verification key vk_f so that "online" verification runs in time $poly(\lambda, log|x|, d)$ where d is the depth of f

Succinctness: commitments and enenings should be short

Short commit Note: having short commitments + openings does not imply
 Short opening fast verification (e.g., verification procedure in [WW23] basically evaluates *f* on the commitment)

Fast verification: can preprocess f into a short verification key vk_f so that "online" verification runs in time $poly(\lambda, log|x|, d)$ where d is the depth of f

Lattice-Based Functional Commitments

Scheme	Function Class	crs	$ \sigma $	$ \pi $	FV	BB	Assumption
[KLVW23]	Boolean circuits	1	1	1	\checkmark	X	LWE
[BCFL23]	width-w, depth-d circuits	<i>w</i> ⁵	1	1	\checkmark	\checkmark	twin- <i>k-M</i> -ISIS
[W <mark>W</mark> 23]	depth-d circuits	ℓ^2	1	1	X	\checkmark	BASIS _{struct}
[ACLMT22]	degree-d polynomials	ℓ^{2d}	1	1	\checkmark	\checkmark	k-R-ISIS
[BCFL23]*	degree-d polynomials	ℓ^{5d}	1	1	\checkmark	\checkmark	twin- <i>k-R</i> -ISIS
This work	degree- d polynomials	ℓ^{d+1}	1	1	\checkmark	\checkmark	$O(\ell^d)$ -succinct SIS

- ℓ is the input length
- **FV:** scheme supports fast verification
- **BB:** scheme only makes black-box use of cryptography

*can decrease CRS size at the cost of longer openings

Comparisons ignore all $poly(\lambda, d, \log \ell)$ terms

This talk: only consider lattice-based functional commitment schemes

Lattice-Based Functional Commitments

Scheme	Function Class	crs	$ \sigma $	$ \pi $	FV	BB	Assumption
[KLVW23]	Boolean circuits	1	1	1	\checkmark	Х	LWE
[BCFL23]	width-w, depth-d circuits	<i>w</i> ⁵	1	1	\checkmark	\checkmark	twin- <i>k-M</i> -ISIS
[WW23]	depth-d circuits	ℓ^2	1	1	Х	\checkmark	BASIS _{struct}
[ACLMT22]	degree-d polynomials	ℓ^{2d}	1	1	\checkmark	\checkmark	k-R-ISIS
[BCFL23]*	degree-d polynomials	ℓ^{5d}	1	1	\checkmark	\checkmark	twin- <i>k-R</i> -ISIS
This work	degree-d polynomials	ℓ^{d+1}	1	1	\checkmark	\checkmark	$O(\ell^d)$ -succinct SIS

Concurrent works:

- [FLV23]: polynomial commitment with linear-size CRS from *k*-*R*-ISIS assumption
- [CLM23]: functional commitment for quadratic functions with linear linear-size CRS from vanishing SIS

Lattice-Based Functional Commitments

Scheme	Function Class	crs	$ \sigma $	$ \pi $	FV	BB	Assumption
[KLVW23]	Boolean circuits	1	1	1	\checkmark	Х	LWE
[BCFL23]	width- w , depth- d circuits	<i>w</i> ⁵	1	1	\checkmark	\checkmark	twin- <i>k-M</i> -ISIS
[W <mark>W</mark> 23]	depth-d circuits	ℓ^2	1	1	Х	\checkmark	BASIS _{struct}
[ACLMT22]	degree- <i>d</i> polynomials	ℓ^{2d}	1	1	\checkmark	\checkmark	k-R-ISIS
[BCFL23]*	degree-d polynomials	ℓ^{5d}	1	1	\checkmark	\checkmark	twin- <i>k-R</i> -ISIS
This work	degree-d polynomials	ℓ^{d+1}	1	1	\checkmark	\checkmark	$O(\ell^d)$ -succinct SIS
							functional commitments
[KLVW23]	Boolean circuits	1	1	1	\checkmark	Х	LWE
[dCP23]	depth-d circuits	ł	1	ł	Х	\checkmark	SIS
This work	depth-d circuits	ℓ^2	1	1	\checkmark	\checkmark	ℓ -succinct SIS
							dual functional commitments

This talk: only consider lattice-based functional commitment schemes

This Work

Functional commitments with fast verification (and black-box use of cryptography)

Functional commitment for degree-*d* polynomials with O(l^{d+1})-size CRS
 Previously: O(l^{2d})-size CRS

This talk

Dual functional commitment for (bounded-depth) Boolean circuits
 First construction to support fast verification (without non-black-box use of cryptography)

Cryptanalysis of knowledge versions of the new lattice assumptions

- Construct oblivious sampler that (heuristically) falsifies the knowledge *k*-*R*-ISIS assumption in [ACLMT22]
- Approach breaks extractability of several lattice-based functional commitments (our construction and the [ACLMT22] extractable commitment for linear functions)

This talk

Attacks do <u>not</u> break standard binding security of the commitment nor does it (currently) give an attack on the SNARK candidates based on knowledge k-R-ISIS [ACLMT22, CLM23, FLV23] – but does break the underlying knowledge assumption for these SNARK candidates

Starting Point: the Wee-Wu Functional Commitment

Common reference string (CRS)

$$A \in \mathbb{Z}_q^{n \times m} \qquad W_1 \in \mathbb{Z}_q^{n \times m} \quad \cdots \quad W_\ell \in \mathbb{Z}_q^{n \times m} \qquad \text{trapdoor for matrix} \\ \text{related to } A, W_1, \dots, W_\ell \end{pmatrix}$$

Commitment relation (for all $i \in [\ell]$)

commitment

gadget matrix

opening (matrix with short entries)

Trapdoor in CRS allow for joint sampling of $(C, V_1, ..., V_\ell)$

Structure does not support fast verification for polynomials of degree d>1

commitment to ℓ -dimensional vectors $x \in \{0,1\}^{\ell}$

Common reference string (CRS)

[WW23] relation: $W_i C = x_i G - AV_i$

This work: $W_i C = x_i G - AV_i$ $W_{ij} C = x_i W_j - AV_{ij}$

Will also assume require that *C* be a short matrix

$$W_i C = x_i G - AV_i$$
$$W_{ij} C = x_i W_j - AV_{ij}$$

Given commitment C to $x \in \{0,1\}^{\ell}$, we construct an opening to $x_i x_j$ as follows:

 $W_{ij}C^2$ function of commitment and public parameters

$$W_i C = x_i G - AV_i$$
$$W_{ij} C = x_i W_j - AV_{ij}$$

Given commitment C to $x \in \{0,1\}^{\ell}$, we construct an opening to $x_i x_j$ as follows:

$$\boldsymbol{W}_{ij}\boldsymbol{C}^2 = (x_i\boldsymbol{W}_j - \boldsymbol{A}\boldsymbol{V}_{ij})\boldsymbol{C}$$

function of commitment and public parameters

$$W_i C = x_i G - AV_i$$
$$W_{ij} C = x_i W_j - AV_{ij}$$

Given commitment C to $x \in \{0,1\}^{\ell}$, we construct an opening to $x_i x_j$ as follows:

$$\boldsymbol{W}_{ij}\boldsymbol{C}^2 = (x_i\boldsymbol{W}_j - \boldsymbol{A}\boldsymbol{V}_{ij})\boldsymbol{C}$$

function of commitment

and public parameters $= x_i W_j C - A V_{ij} C$

$$\boldsymbol{W}_i \boldsymbol{C} = \boldsymbol{x}_i \boldsymbol{G} - \boldsymbol{A} \boldsymbol{V}_i$$

$$\boldsymbol{W}_{ij}\boldsymbol{C} = \boldsymbol{x}_i \boldsymbol{W}_j - \boldsymbol{A} \boldsymbol{V}_{ij}$$

Given commitment C to $x \in \{0,1\}^{\ell}$, we construct an opening to $x_i x_j$ as follows:

$$\boldsymbol{W}_{ij}\boldsymbol{C}^2 = (\boldsymbol{x}_i\boldsymbol{W}_j - \boldsymbol{A}\boldsymbol{V}_{ij})\boldsymbol{C}$$

function of commitment

and public parameters _

$$= x_i W_j C - A V_{ij} C$$

$$= x_i x_j \boldsymbol{G} - \boldsymbol{A} \left(\boldsymbol{V}_{ij} \boldsymbol{C} + x_i \boldsymbol{V}_j \right)$$

opening for $x_i x_j$ (short if C, V_i, V_j, x_i short)

$$W_i C = x_i G - AV_i$$
$$W_{ij} C = x_i W_j - AV_{ij}$$

Given commitment C to $x \in \{0,1\}^{\ell}$, we construct an opening to $x_i x_j$ as follows:

$$\boldsymbol{W}_{ij}\boldsymbol{C}^2 = (x_i\boldsymbol{W}_j - \boldsymbol{A}\boldsymbol{V}_{ij})\boldsymbol{C}$$

function of commitment

and public parameters

$$= x_i W_j C - A V_{ij} C$$

$$= x_i x_j \boldsymbol{G} - \boldsymbol{A} \left(\boldsymbol{V}_{ij} \boldsymbol{C} + x_i \boldsymbol{V}_j \right)$$

opening for $x_i x_j$ (short if C, V_i, V_j, x_i short)

Verification procedure: compute $W_{ij}C^2$ and check above relation

$$W_i C = x_i G - AV_i$$
$$W_{ij} C = x_i W_j - AV_{ij}$$

Given commitment C to $x \in \{0,1\}^{\ell}$, we construct an opening to $x_i x_j$ as follows:

$$\boldsymbol{W}_{ij}\boldsymbol{C}^2 = (x_i \boldsymbol{W}_j - \boldsymbol{A} \boldsymbol{V}_{ij})\boldsymbol{C}$$

function of commitment and public parameters

Verification procedure: compute W_{ij}C²

$$= x_i W_j C - A V_{ij} C$$

$$= x_i x_j \boldsymbol{G} - \boldsymbol{A} \big(\boldsymbol{V}_{ij} \boldsymbol{C} \big)$$

Can precompute $W_f = \sum_{i,j} \gamma_{ij} W_{ij}$ Online verification just computes $W_f C^2$, which is independent of input length ℓ

To open to $f(\mathbf{x}) = \sum_{i,j} \gamma_{ij} x_i x_j$, verifier computes $\sum_{i,j} \gamma_{ij} W_{ij} C^2$

How to Construct *C*, *V*_{*i*}, *V*_{*i*}, *P*

$$W_i C = x_i G - AV_i$$
$$W_{ij} C = x_i W_j - AV_{ij}$$

Approach: sample trapdoor for following matrix

$$\begin{bmatrix} A & & W_1 \\ \ddots & & \vdots \\ & A & & W_\ell \\ & & A & & W_{11} \\ & & \ddots & \vdots \\ & & & & A & W_{\ell\ell} \end{bmatrix} \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ V_{11} \\ \vdots \\ V_{\ell\ell} \\ C \end{bmatrix} = \begin{bmatrix} x_1 G \\ \vdots \\ x_\ell G \\ x_1 W_1 \\ \vdots \\ x_\ell W_\ell \end{bmatrix}$$

Size of full trapdoor: $O(\ell^4)$

can use the trapdoor to sample *C*, *V*_{*i*}, *V*_{*ij*} that satisfies relation for any *x*

How to Construct C, V_i, V_{ij} ?

$$W_i C = x_i G - AV_i$$
$$W_{ij} C = x_i W_j - AV_{ij}$$

Approach: sample trapdoor for following matrix

Size of full trapdoor: $O(\ell^4)$

Opening relations are linear: if C_1 is a commitment to x_1 and C_2 is a commitment to x_2 , then $C_1 + C_2$ is a commitment to $x_1 + x_2$

Instead of publishing full trapdoor, publish commitments C and openings $V_1, \ldots, V_\ell, V_{11}, \ldots, V_{\ell\ell}$ to ℓ basis vectors

Shorter CRS: leverage homomorphism **Size of CRS:** $O(\ell^3)$

Evaluation Binding

 ℓ -succinct SIS [Wee23]: SIS is hard with respect to A even given the trapdoor for the matrix

$$\begin{bmatrix} A & & W_1 \\ \ddots & & \vdots \\ A & & W_\ell \\ & A & & W_{11} \\ & \ddots & \vdots \\ & & & A & W_{\ell\ell} \end{bmatrix}$$

The W_i 's and W_{ij} 's are **uniform random**

Assumption has less structure than BASIS assumption from [WW23] and k-*R*-ISIS assumption from [ACLMT22]

Trapdoor for above matrix suffices to simulate CRS

Can show that adversary that breaks evaluation binding solves SIS with respect to A

[see paper for details]

Conclusion: functional commitment for degree-*d* polynomials with fast verification and $O(\ell^{d+1})$ -size CRS from $O(\ell^d)$ -succinct SIS

Evaluation Binding

 ℓ -succinct SIS [Wee23]: SIS is hard with respect to A even given the trapdoor for the matrix

The W_i 's and W_{ij} 's are **uniform random**

Assumption has less structure than BASIS assumption from [WW23] and k-R-ISIS assumption from [ACLMT22]

Trapdoor for above matrix suffices to simulate CRS

Can show that adversary that breaks evaluation binding solv

Previous (black-box) lattice-based constructions with fast verification: $O(\ell^{2d})$ -size CRS

Conclusion: functional commitment for degree-*d* polynomials with fast verification and $O(\ell^{d+1})$ -size CRS from $O(\ell^d)$ -succinct SIS

Cryptanalysis of Lattice-Based Knowledge Assumptions

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitment / SNARK):

given (tall) matrices A, D and short preimages Z of a random target T

the only way an adversary can produce a short vector v such that Avis in the image of D (i.e., Av = Dc) is by setting v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitment / SNARK):

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as

$$\begin{bmatrix} A \mid DG \end{bmatrix} \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = \mathbf{0}$$

If Z and T are wide enough, we (heuristically) obtain a basis for [A | DG]

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite
$$AZ = DT$$
 as
$$[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$
()

If Z and T are wide enough, we (heuristically) obtain a basis for [A | DG]

Oblivious sampler (Babai rounding):

- 1. Take a long integer solution y where $[A \mid DG]y = 0 \mod q$
- 2. Assuming B^* is full-rank over \mathbb{Q} , find z such that $B^*z = y$ (over \mathbb{Q})
- 3. Set $y^* = y B^*[z] = B^*(z [z])$ and parse into v, c

Correctness: $[A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rfloor) = 0 \mod q$ and y^* is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as If **Z** and **T** are wide enough, we (heuristically) obtain a basis for [**A** | **DG**] $\begin{bmatrix} A \mid DG \end{bmatrix} \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = \mathbf{0}$ This solution is obtained by "rounding" off a long solution B^* **Oblivious sampler (Babai round Question:** Can we explain such solutions as taking a <u>short</u> 1. Take a long integer solut linear combination of Z (i.e., what the knowledge 2. Assuming B^* is full-rank assumption asserts) 3. Set $y^* = y - B^* |z| = B$

Correctness: $[A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rceil) = 0 \mod q$ and y^* is short

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a **short** solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge *k*-*R*-ISIS assumption from [ACLMT22] Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of our functional commitment scheme for quadratic functions (i.e., obliviously sample a commitment c and openings to $x_1^2 = 0$, $x_1x_2 = 1$)
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)
- **Open question:** Can we extend the attacks to break soundness of the SNARK?

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a **short** solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge *k*-*R*-ISIS assumption from [ACLMT22] Implementation by Martin Albrechter and the second second
- Breaks extractability of our obliviously sample a comminant
- Breaks extractability of the [ACLMT22] assuming hardn

The SNARK considers extractable commitment for quadratic functions while our current oblivious sampler only works for linear functions in the case of [ACLMT22]

for oblivious sampler implies algorithm for inhomogeneous SIS) **Open question:** Can we extend the attacks to break soundness of the SNARK?

This Work

Functional commitments with fast verification (and black-box use of cryptography)

- Functional commitment for degree-*d* polynomials with $O(\ell^{d+1})$ -size CRS **Previously:** $O(\ell^{2d})$ -size CRS
- Dual functional commitment for (bounded-depth) Boolean circuits
 First construction to support fast verification (without non-black-box use of cryptography)

[see paper for details]

Cryptanalysis of knowledge versions of the new lattice assumptions

- Construct oblivious sampler that (heuristically) falsifies the knowledge *k*-*R*-ISIS assumption in [ACLMT22]
- Approach breaks extractability of several lattice-based functional commitments (our construction and the [ACLMT22] extractable commitment for linear functions)

Open Questions

(Black-box) functional commitments with fast verification from standard SIS?

Cryptanalysis of lattice-based SNARKs based on knowledge k-R-ISIS [ACLMT22, CLM23, FLV23] Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids our attacks

Thank you!