Succinct Vector, Polynomial, and Functional Commitments from Lattices

Hoeteck Wee and David Wu

April 2023

 $Commit(crs, x) \rightarrow (\sigma, st)$

Takes a common reference string and commits to a message Outputs commitment σ and commitment state st

Commit(crs, x) \rightarrow (σ , st) Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs,
$$\sigma$$
, (f, y) , π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

Binding: efficient adversary cannot open σ to two different values with respect to the same f

$$\pi_{0} (f, y_{0}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{0}), \pi_{0}) = 1$$

$$\pi_{1} (f, y_{1}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{1}), \pi_{1}) = 1$$

Hiding: commitment σ and opening π only reveal f(x)

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = \operatorname{poly}(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|, |f(x)|)$

Special cases: vector commitments, polynomial commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs non-falsifiable, non-black

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	<i>k-R-</i> ISIS assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	<i>k-R-</i> ISIS assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)
This work	Boolean circuits	BASIS _{struct} assumption (falsifiable)

BASIS_{struct} assumption less structured than [ACLMT22]

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	<i>k-R-</i> ISIS assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)
This work	Boolean circuits	BASIS _{struct} assumption (falsifiable)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BCFL22]: short openings and supports <i>fast</i> verification with preprocessing; based on (falsifiable) twin- <i>k</i> - <i>M</i> -ISIS assumption		groups of unknown order
		collision-resistant hash functions + SNARKs
		q-type pairing assumptions
[dCP23]: transparent setup from SIS, long openings, selectively-secure (without complexity leveraging)		k-R-ISIS assumption (falsifiable)
		short integer solutions (SIS)
		BASIS_{struct} assumption (falsifiable)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: short preimages u_{ij} where $A_i u_{ij} = t_j$ for $i \neq j$

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: short preimages u_{ij} where $A_i u_{ij} = t_j$ for $i \neq j$

Commitment to $x \in \mathbb{Z}_q^{\ell}$:

Opening to value y at index i:

 $\boldsymbol{c} = \sum_{j \in [\ell]} x_j \boldsymbol{t}_j$

linear combination of target vectors

short \boldsymbol{v}_i such that $\boldsymbol{c} = \boldsymbol{y} \cdot \boldsymbol{t}_i + \boldsymbol{A}_i \boldsymbol{v}_i$

Honest opening:

$$\boldsymbol{v}_i = \sum_{j \neq i} x_j \boldsymbol{u}_{ij} \quad \boldsymbol{c} = x_i \boldsymbol{t}_i + \sum_{j \neq i} x_j \boldsymbol{t}_j = x_i \boldsymbol{t}_i + \sum_{j \neq i} x_j \boldsymbol{A}_i \boldsymbol{u}_{ij} = x_i \boldsymbol{t}_i + \boldsymbol{A}_i \boldsymbol{v}_i$$

Correct as long as x is short

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: short preimages u_{ij} where $A_i u_{ij} = t_j$ for $i \neq j$

 $\begin{array}{c} A_i \\ \downarrow j \end{array} = \begin{array}{c} t_j \\ \downarrow j \end{array}$

[PPS21]: A_i and t_i are random

suffices for vector commitments (from SIS)

[ACLMT22]: A_i and t_i are structured

suffices for functional commitments for constant-degree polynomials (from k-R-ISIS)

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | & -I_n \\ & \ddots & & & & | & \vdots \\ & & A_\ell & & -I_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_\ell \\ c \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_\ell t_\ell \end{bmatrix}$$

I_n denotes the identity matrix

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_{\ell} t_{\ell} \end{bmatrix}$$

Common reference string: matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^n$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j)$

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{bmatrix} A_{1} & & | & -G \\ & \ddots & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_{1} \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_{1}t_{1} \\ \vdots \\ -x_{\ell}t_{\ell} \end{bmatrix}$ Common reference string: matrices $A_{1}, \dots, A_{\ell} \in \mathbb{Z}_{q}^{n \times m}$ target vectors $t_{1}, \dots, t_{\ell} \in \mathbb{Z}_{q}^{n}$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_{i}^{-1}(t_{j})$ trapdoor for B_{ℓ} Trapdoor for B_{ℓ} can be used to sample <u>short</u> solutions *x* to the linear system $B_{\ell}x = y$ (for arbitrary *y*)

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{bmatrix} A_1 & & & -G \\ & \ddots & & & \vdots \\ & & A_{\ell} & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_{\ell} t_{\ell} \end{bmatrix}$ Use trapdoor for B_{ℓ} to jointly sample a solution $v_1, \dots, v_{\ell}, \hat{c}$

Committing to an input *x*:

 $c = G\hat{c}$ is the commitment and $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_\ell$ are the openings

Supports commitments to arbitrary (i.e., large) values over \mathbb{Z}_a

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{vmatrix} A_1 & & | -G \\ & \ddots & | & | \\ & A_\ell & | -G \end{vmatrix} \cdot \begin{vmatrix} v_1 \\ \vdots \\ v_\ell \\ \hat{c} \end{vmatrix} = \begin{vmatrix} -x_1 t_1 \\ \vdots \\ -x_\ell t_\ell \end{vmatrix}$ Use trapdoor for B_ℓ to jointly sample a solution $v_1, \dots, v_\ell, \hat{c}$

Committing to an input *x*:

 $c = G\hat{c}$ is the commitment and v_1 , ... v_ℓ are the openings

Supports statistically private openings (commitment + opening *hides* unopened positions)

Computational Binding

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$ for a short v_i

Adversary that breaks binding can solve SIS with respect to A_i

Our scheme

(technically A_i without the first row – which is equivalent to SIS with dimension n - 1)

given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$ for a short v_i

Adversary that breaks binding can solve SIS with respect to A_i

Basis-augmented SIS (BASIS) assumption:

Our scheme

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & | & -\boldsymbol{G} \\ & \ddots & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & | & -\boldsymbol{G} \\ & \ddots & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

When $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)

 $B_{\ell} = \begin{vmatrix} A_1 & & -G \\ A_2 & & -G \\ \vdots & & A_{\ell} \end{vmatrix}$ Sketch for i = 1: Sample A_2, \dots, A_{ℓ} with trapdoors Use trapdoors for A_2, \dots, A_{ℓ} and G to trapdoor for B_{ℓ}

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & & & & \\ & \ddots & & & & \\ & & \boldsymbol{A}_{\ell} & & -\boldsymbol{G} \end{bmatrix}$$

When $A_1, ..., A_{\ell} \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS

Implication: vector commitment that supports committing to *large* values and private openings based on SIS

Previously: could only commit to *small* values and without hiding

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [GSW13, BGGHNSVV14, GVW15]

Let $A \in \mathbb{Z}_q^{n \times m}$ be an arbitrary matrix

 $C_{1} = AV_{1} + x_{1}G$ homomorphic evaluation $C_{f} = AV_{f} + f(x) \cdot G$ $C_{\ell} = AV_{\ell} + x_{\ell}G$ [GVW15]: C_{i} is a commitment to x_{i} with (short) opening V_{i} C_{f} is a commitment to f(x)with (short) opening V_{f}

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [GSW13, BGGHNSVV14, GVW15]

Let $A \in \mathbb{Z}_q^{n \times m}$ be an arbitrary matrix

$$C_1 = AV_1 + x_1G$$

$$\vdots$$

$$C_\ell = AV_\ell + x_\ell G$$

[GVW15]: C_i is a commitment to x_i with (short) opening V_i **[GVW15]:** long commitments (linear in |x|) C_1, \dots, C_ℓ are <u>independent</u>

Our approach: compress C_1 , ..., C_ℓ into a single \widehat{C}

We will define $C_i = W_i^{-1} G \widehat{C}$ where $W_i \in \mathbb{Z}_q^{n \times n}$ is part of the common reference string

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

$$C_{1} = AV_{1} + x_{1}G$$

$$\vdots$$

$$W_{1}^{-1}G\widehat{C} = AV_{1} + x_{1}G$$

$$\vdots$$

$$C_{\ell} = AV_{\ell} + x_{\ell}G$$

$$W_{\ell}^{-1}G\widehat{C} = AV_{\ell} + x_{\ell}G$$

$$G\widehat{C} = W_{\ell}AV_{\ell} + x_{\ell}W_{\ell}G$$

$$\left[\begin{array}{c}A_{1} \\ \vdots \\ A_{\ell} \\ \vdots \\ -G\end{array}\right] \cdot \begin{bmatrix}V_{1} \\ \vdots \\ V_{\ell} \\ \widehat{C}\end{bmatrix} = \begin{bmatrix}-x_{1}W_{1}G \\ \vdots \\ -x_{\ell}W_{\ell}G\end{bmatrix}$$

$$A_{i} = W_{i}A$$

$$A_{i} = W_{i}A$$

$$Our \text{ approach: commitment is } \widehat{C} \text{ and set } C_{i} = W_{i}^{-1}G\widehat{C}$$

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

Homomorphic computation + opening verification now proceed as in [GVW15]

Functional Commitments from Lattices

Security follows from BASIS assumption with a **structured** matrix:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & & & & & \\ & \ddots & & & & & \\ & & \boldsymbol{A}_{\ell} & & -\boldsymbol{G} \end{bmatrix}$$

where $A_i = W_i A$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$ and $A \leftarrow \mathbb{Z}_q^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

$$\ell = 1$$
 case does follow from plain SIS

Open problem: Understanding security or attacks when $\ell > 1$

Extensions

Our functional commitment:

$$\begin{bmatrix} A_1 & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Fast verification: for linear functions (captures polynomial commitments), can preprocess and support fast verification

Aggregation: can aggregate openings to f_1, \dots, f_T into single opening

[see paper for details]

Summary

New methodology for constructing lattice-based commitments:

- 1. Write down the main verification relation ($c = A_i v_i + x_i t_i$)
- 2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to **A** is hard given a trapdoor for a **related** matrix **B**

"Random" variant of BASIS assumption implies vector commitments and reduces to SIS

"Structured" variant of BASIS assumption implies functional commitments

Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Describe and analyze knowledge variants of the assumption or the constructions

Reducing CRS size: functional commitments with *linear*-size CRS?

Constructing lattice-based *subvector* commitments

Thank you!

https://eprint.iacr.org/2022/1515