Lattice-Based Functional Commitments: Constructions and Cryptanalysis

David Wu
December 2023

based on joint work with Hoeteck Wee

Functional Commitments

Functional Commitments

Commit(crs, $x) \rightarrow(\sigma, \mathrm{st})$
Takes a common reference string and commits to an input x
Outputs commitment σ and commitment state st

Functional Commitments

Open + Verify

Commit(crs, $x) \rightarrow(\sigma$, st)
Open(st, f) $\rightarrow \pi$
Takes the commitment state and a function f and outputs an opening π Verify(crs, $\sigma,(f, y), \pi) \rightarrow 0 / 1$

Checks whether π is valid opening of σ to value y with respect to f

Functional Commitments

Open + Verify

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Functional Commitments

Open + Verify

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma|=\operatorname{poly}(\lambda, \log |x|)$
- Short opening: $|\pi|=\operatorname{poly}(\lambda, \log |x|,|f(x)|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with depth of the circuit computing f

Special Cases of Functional Commitments

Vector commitments:

$$
\operatorname{ind}_{i}\left(x_{1}, \ldots, x_{n}\right):=x_{i}
$$

$\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

commit to a vector, open at an index

Polynomial commitments:

$$
f_{x}\left(\alpha_{0}, \ldots, \alpha_{d}\right):=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{d} x^{d}
$$

$\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}\right]$
commit to a polynomial, open to the evaluation at x

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
$[$ LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	k - R-ISIS assumption (falsifiable)
$[$ LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[dCP23]	Boolean circuits	SIS (non-succinct openings in general)
[KLVW23]	Boolean circuits	LWE (via batch arguments)
[BCFL23]	Boolean circuits	twin k - R-ISIS
$[$ Boolean circuits	ℓ-succinct SIS	

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$

> short (i.e., low-norm) vector satisfying $\boldsymbol{A}_{i} \boldsymbol{u}_{i j}=\boldsymbol{t}_{j}$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$ target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$

Commitment to $\boldsymbol{x} \in \mathbb{Z}_{q}^{\ell}$:

$$
\boldsymbol{c}=\sum_{i \in[\ell]} x_{i} \boldsymbol{t}_{i}
$$

linear combination of target vectors

Opening to value y at index i :

$$
\text { short } \boldsymbol{v}_{i} \text { such that } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+y \cdot \boldsymbol{t}_{i}
$$

Honest opening:
Correct as long as \boldsymbol{x} is short

$$
\boldsymbol{v}_{i}=\sum_{j \neq i} x_{j} \boldsymbol{u}_{i j} \boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i}=\sum_{j \neq i} x_{j} \boldsymbol{A}_{i} \boldsymbol{u}_{i j}+x_{i} \boldsymbol{t}_{i}=\sum_{j \in[\ell]} x_{j} \boldsymbol{t}_{j}=\boldsymbol{c}
$$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$
[PPS21]: $\boldsymbol{A}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $\boldsymbol{t}_{\boldsymbol{i}} \leftarrow \mathbb{Z}_{q}^{n}$ are independent and uniform
suffices for vector commitments (from SIS)
[ACLMT21]: $\boldsymbol{A}_{i}=\boldsymbol{W}_{i} \boldsymbol{A}$ and $\boldsymbol{t}_{i}=\boldsymbol{W}_{i} \boldsymbol{u}_{i}$ where $\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times n}, \boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}, \boldsymbol{u}_{i} \leftarrow \mathbb{Z}_{q}^{n}$ (one candidate adaptation to the integer case)
generalizes to functional commitments for constant-degree polynomials (from $k-R-I S I S$)

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{I}_{n} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{I}_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] } \\
& \boldsymbol{I}_{n} \text { denotes the identity matrix }
\end{aligned}
$$

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\left\lceil A_{1}\right.
$$

$$
\left.\begin{array}{ll:l}
& & -\boldsymbol{G} \\
\ddots & & \vdots \\
& \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\boldsymbol{c}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right]
$$

$$
G=\left[\begin{array}{llll}
1 & 2 & \cdots & 2^{\lfloor\log q\rfloor} \\
& & &
\end{array}\right.
$$

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\hat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{\mathbf{1}} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] \begin{aligned}
& \text { Common reference string: } \\
& \begin{array}{l}
\text { matrices } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m} \\
\text { target vectors } \boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n} \\
\text { auxiliary data: cross-terms } \boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right)
\end{array}
\end{aligned}
$$

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { forashort } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

Committing to an input \boldsymbol{x} :
Use trapdoor for \boldsymbol{B}_{ℓ} to jointly sample a solution $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}, \hat{\boldsymbol{c}}$
$\boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}}$ is the commitment and $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{\ell}$ are the openings

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { forashort } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\underbrace{\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & \\
& \ddots & & -\boldsymbol{G} \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]}_{\boldsymbol{B}_{\ell}} \cdot \underbrace{\left[\begin{array}{c}
\text { Supports statistically private openings }
\end{array}\right.}_{\left.\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\widehat{\boldsymbol{c}}
\end{array}\right]} \begin{array}{c}
-x_{1} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}] \begin{aligned}
& \begin{array}{c}
\text { Committing to an input } \boldsymbol{x}: \\
\begin{array}{l}
\text { Use trapdoor for } \boldsymbol{B}_{\ell} \text { to jointly } \\
\text { sample a solution } \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}, \hat{\boldsymbol{c}}
\end{array} \\
\boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}} \text { is the commitment and } \\
\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{\ell} \text { are the openings }
\end{array} \\
&
\end{aligned}
$$

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]
Verification invariant: $\boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell]$ for a short \boldsymbol{v}_{i}

Suppose adversary can break binding
outputs $c,\left(v_{i}, x_{i}\right),\left(v_{i}^{\prime}, x_{i}^{\prime}\right)$ such that

$$
\begin{aligned}
\boldsymbol{c} & =\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \\
& =\boldsymbol{A}_{i} \boldsymbol{v}_{i}^{\prime}+x_{i}^{\prime} \boldsymbol{t}_{i}
\end{aligned}
$$

Short integer solutions (SIS)
given $A \leftarrow \mathbb{Z}_{q}^{n \times m}$, hard to find short $\boldsymbol{x} \neq 0$ such that $\boldsymbol{A x}=\mathbf{0}$

$$
\boldsymbol{A}_{i}\left(v_{i}-v_{i}^{\prime}\right)=\left(x_{i}-x_{i}^{\prime}\right) \boldsymbol{e}_{1}
$$

$$
\boldsymbol{v}_{i}-\boldsymbol{v}_{i}^{\prime} \text { is a SIS solution for } \boldsymbol{A}_{i}
$$

$$
\text { set } A_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}
$$ without the first row

$$
\begin{array}{ll}
\text { given } & \text { matrices } A_{1}, \ldots, A_{\ell} \\
& \text { target vectors } \boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \\
& \text { trapdoor for } \boldsymbol{B}_{\ell}
\end{array}
$$

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Adversary that breaks binding can solve SIS with respect to \boldsymbol{A}_{i}
(technically \boldsymbol{A}_{i} without the first row - which is equivalent to SIS with dimension $n-1$)
but... adversary also gets additional information beyond A_{i}

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]
$$

Adversary sees trapdoor for \boldsymbol{B}_{ℓ}

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Adversary that breaks binding can solve SIS with respect to \boldsymbol{A}_{i} Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to \boldsymbol{A}_{i} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \quad \begin{gathered}
\text { Can simulate CRS from BASIS challenge: } \\
\text { matrices } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times m} \\
\text { trapdoor for } \boldsymbol{B}_{\ell}
\end{gathered}
$$

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to \boldsymbol{A}_{i} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]
$$

When $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
auxiliary data: trapdoor for $\boldsymbol{B}_{\ell}=\left[\begin{array}{lll:c}\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\ & \ddots & & \vdots \\ & & \boldsymbol{A}_{\ell} & -\boldsymbol{G}\end{array}\right]$
To commit to a vector $\boldsymbol{x} \in \mathbb{Z}_{q}^{\ell}$: sample solution $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}, \widehat{\boldsymbol{c}}\right)$

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\hat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{e}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{e}_{\ell}
\end{array}\right]
$$

Can commit and open to arbitrary \mathbb{Z}_{q} vectors

Commitments and openings statistically hide unopened components

Linearly homomorphic:
$\boldsymbol{c}+\boldsymbol{c}^{\prime}$ is a commitment to $\boldsymbol{x}+\boldsymbol{x}^{\prime}$ with openings $\boldsymbol{v}_{i}+\boldsymbol{v}_{i}^{\prime}$

Commitment is $\boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}} \quad$ Openings are $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}$

Functional Commitments for Circuits

Setting: commit to an input $x \in\{0,1\}^{\ell}$, open to $f(\boldsymbol{x})$
(f can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation
Let $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$ be an arbitrary matrix
[GSW13, BGGHNSVV14, GVW15]
$\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G}$

homomorphic evaluation

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{V}_{f}+f(\boldsymbol{x}) \cdot \boldsymbol{G}
$$

$\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}$
\boldsymbol{C}_{i} is an encoding of x_{i} with (short) randomness \boldsymbol{V}_{i}
\boldsymbol{C}_{f} is an encoding of $f(\boldsymbol{x})$ with (short) randomness \boldsymbol{V}_{f}

Functional Commitments for Circuits

Replace random \boldsymbol{A}_{i} with a single \boldsymbol{A} (and gadget matrix with $\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\ell}$)

$$
\begin{aligned}
& A \leftarrow \mathbb{Z}_{q}^{n \times m}, A_{i}:=A \\
& W_{1}, \ldots, W_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times n}
\end{aligned}
$$

Common reference string contains trapdoor for matrix \boldsymbol{B}_{ℓ} :

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A} & & & W_{1} \\
& \ddots & & \vdots \\
& & A & W_{\ell}
\end{array}\right]
$$

Functional Commitments for Circuits

Replace random \boldsymbol{A}_{i} with a single \boldsymbol{A} (and gadget matrix with $\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\ell}$)

$$
\begin{aligned}
& A \leftarrow \mathbb{Z}_{q}^{n \times m}, A_{i}:=A \\
& W_{1}, \ldots, W_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times n}
\end{aligned}
$$

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
A & & & W_{1} \\
& \ddots & & \vdots \\
& & A & W_{\ell}
\end{array}\right]
$$

To commit to an input $\boldsymbol{x} \in\{0,1\}^{\ell}$:
Use trapdoor for \boldsymbol{B}_{ℓ} to jointly sample $\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\ell}, \widehat{\boldsymbol{C}}$ that satisfy

$$
\left[\begin{array}{ccc:c}
A & & & W_{1} \\
& \ddots & & \vdots \\
& & A & W_{\ell}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Functional Commitments for Circuits

Commitment relation:

$$
\left[\begin{array}{cccc:c}
\boldsymbol{A} & & & W_{1} \\
& \ddots & & \vdots \\
& & A & W_{\ell}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Homomorphic evaluation:

$$
\begin{gathered}
\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G} \\
\vdots \\
\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}
\end{gathered} \quad \boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{V}_{f}+f(\boldsymbol{x}) \cdot \boldsymbol{G}
$$

function of just the commitment \boldsymbol{C}

$$
\widetilde{\boldsymbol{C}}_{i}=-W_{i} \boldsymbol{C}
$$

for all $i \in[\ell]$

$$
A \boldsymbol{V}_{i}+W_{i} \boldsymbol{C}=-x_{i} \boldsymbol{G}
$$

rearranging

$$
-W_{i} \boldsymbol{C}=A \boldsymbol{V}_{i}+x_{i} \boldsymbol{G}
$$

Functional Commitments for Circuits

Commitment relation:

$$
\left[\begin{array}{cccc:c}
A & & & W_{1} \\
& \ddots & & \vdots \\
& & A & W_{\ell}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Homomorphic evaluation:
$\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G}$
$\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}$
function of just the commitment \boldsymbol{C}

$$
\widetilde{\boldsymbol{C}}_{i}=-W_{i} \boldsymbol{C}
$$

$$
\widetilde{\boldsymbol{C}}_{i}=\boldsymbol{A} \boldsymbol{V}_{i}+x_{i} \boldsymbol{G}
$$

$\widetilde{\boldsymbol{C}}_{i}$ is an encoding of x_{i} with randomness \boldsymbol{V}_{i} compute on $\widetilde{\boldsymbol{C}}_{1}, \ldots \widetilde{\boldsymbol{C}}_{f}$ $\underset{\text { compute on }}{V_{1}, \ldots, V_{\ell}}$

$$
\widetilde{\boldsymbol{C}}_{f}=A V_{f, f(x)}+f(\boldsymbol{x}) \boldsymbol{G}
$$

$\widetilde{\boldsymbol{C}}_{f}$ is an encoding of $f(\boldsymbol{x})$ with randomness $\boldsymbol{V}_{f, f(\boldsymbol{x})}$
[GVW15]: independent V_{i} is sampled for each input bit, so commitments \boldsymbol{C}_{i} are independent

- long commitment, security from SIS
[WW23a, WW23b]: publish a trapdoor that allows deriving \boldsymbol{C}_{i} (and associated \boldsymbol{V}_{i}) from a single commitment $\widehat{\boldsymbol{C}}$
- short commitment, stronger assumption

Functional Commitments for Circuits

Commitment relation:

$$
\left[\begin{array}{cccc:c}
A & & & W_{1} \\
& \ddots & & \vdots \\
& & A & W_{\ell}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Homomorphic evaluation:
$\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G}$

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{V}_{f}+f(\boldsymbol{x}) \cdot \boldsymbol{G}
$$

$\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}$

To verify:

1. Expand commitment

$$
\boldsymbol{C} \stackrel{\widetilde{\boldsymbol{c}}_{i}=-W_{i} \boldsymbol{C}}{ } \left\lvert\, \begin{gathered}
\widetilde{\boldsymbol{C}}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G} \\
\vdots \\
\widetilde{\boldsymbol{C}}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}
\end{gathered}\right.
$$

2. Homomorphically evaluate f
$\widetilde{\boldsymbol{C}}_{1}, \ldots \widetilde{\boldsymbol{C}}_{\ell} \longmapsto \widetilde{\boldsymbol{C}}_{f}$
3. Check verification relation

$$
\boldsymbol{A} \boldsymbol{V}_{f, z}=\widetilde{\boldsymbol{C}}_{f}-z \cdot \boldsymbol{G}
$$

Functional Commitments from Lattices

Security follows from ℓ-succinct SIS assumption [Wee23]:
SIS is hard with respect to \boldsymbol{A} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A} & & & W_{1} \\
& \ddots & & \vdots \\
& & A & W_{\ell}
\end{array}\right]
$$

where $\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}$
Falsifiable assumption but does not appear to reduce to standard SIS
$\ell=1$ case does follow from plain SIS (and when W_{i} is very wide)
Open problem: Understanding security or attacks when $\ell>1$

Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
auxiliary data: trapdoor for $\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}\boldsymbol{A} & & & \boldsymbol{W}_{1} \\ & \ddots & & \vdots \\ & & \boldsymbol{A} & \boldsymbol{W}_{\ell}\end{array}\right]$
To commit to a vector $\boldsymbol{x} \in\{0,1\}^{\ell}$: sample $\left(\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\ell}, \boldsymbol{C}\right)$

$$
\left[\begin{array}{ccc:c}
A & & & \boldsymbol{W}_{1} \\
& \ddots & & \vdots \\
& & A & \boldsymbol{W}_{\ell}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} G
\end{array}\right]
$$

Scheme supports functions computable by Boolean circuits of (bounded) depth d

$$
\begin{gathered}
|\operatorname{crs}|=\ell^{2} \cdot \operatorname{poly}(\lambda, d, \log \ell) \\
|C|=\operatorname{poly}(\lambda, d, \log \ell)
\end{gathered}
$$

$$
\left|\boldsymbol{V}_{f, f(x)}\right|=\operatorname{poly}(\lambda, d, \log \ell)
$$

Verification time scales with $|f|$ (i.e., size of circuit computing f)

Commitment is \boldsymbol{C} Openings for function f is $\left[\boldsymbol{V}_{1}|\cdots| \boldsymbol{V}_{\ell}\right] \cdot \boldsymbol{H}_{\widetilde{\boldsymbol{c}}, f, \boldsymbol{x}}$

Summary of Functional Commitments

New methodology for constructing lattice-based commitments:

1. Write down the main verification relation ($\boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i}$)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on new q-type variants of SIS:
SIS with respect to \boldsymbol{A} is hard given a trapdoor for a related matrix \boldsymbol{B}
"Random" variant of the assumption implies vector commitments and reduces to SIS
"Structured" variant (ℓ-succinct SIS) implies functional commitments for circuits

- Structure also enables aggregating openings

Cryptanalysis of Lattice-Based Knowledge Assumptions

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that $f(x)=y$

$$
\underset{\text { efficient extractor }}{\longrightarrow} x \text { such that } y=f(x)
$$

π

Note: f could have multiple outputs

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

given (tall) matrices $\boldsymbol{A}, \boldsymbol{D}$ and short preimages \boldsymbol{Z} of a random target \boldsymbol{T} the only way an adversary can produce a short vector \boldsymbol{v} such that $\boldsymbol{A} \boldsymbol{v}$ is in the image of \boldsymbol{D} (i.e., $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$) is by setting $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Observe: $\boldsymbol{A} \boldsymbol{v}$ for a random (short) \boldsymbol{v} is outside the image of \boldsymbol{D} (since \boldsymbol{D} is tall)

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

For extractable functional commitments:

- \boldsymbol{Z} is in the CRS
- Commitment is $\boldsymbol{c}=\boldsymbol{D T} \boldsymbol{x}$
- Opening is \boldsymbol{v} where $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$

Extractable since valid opening can be associated with an honestly-generated commitment
given (tall) matrices $\boldsymbol{A}, \boldsymbol{D}$ and short preimages \mathbf{Z} of a random target \boldsymbol{T}
the only way an adversary can produce a short vector \boldsymbol{v} such that $\boldsymbol{A v}$ is in the image of \boldsymbol{D} (i.e., $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$) is by setting $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Observe: $\boldsymbol{A} \boldsymbol{v}$ for a random (short) \boldsymbol{v} is outside the image of \boldsymbol{D} (since \boldsymbol{D} is tall)

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

This work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[A \mid D G] \cdot\left[\begin{array}{c}
Z \\
-G^{-1}(T)
\end{array}\right]=\mathbf{0}
$$

If \boldsymbol{Z} and \boldsymbol{T} are wide enough, we (heuristically) obtain a basis for $[\boldsymbol{A} \mid \boldsymbol{D G}]$

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[A \mid D G] \cdot \underbrace{\left[\begin{array}{c}
Z \\
-G^{-1}(T)
\end{array}\right]}_{B^{*}}=0
$$

If \boldsymbol{Z} and \boldsymbol{T} are wide enough, we (heuristically) obtain a basis for $[\boldsymbol{A} \mid \boldsymbol{D G}]$

Oblivious sampler (Babai rounding):

1. Take any (non-zero) integer solution \boldsymbol{y} where $[\boldsymbol{A} \mid \boldsymbol{D} \boldsymbol{G}] \boldsymbol{y}=\mathbf{0} \bmod q$
2. Assuming \boldsymbol{B}^{*} is full-rank over \mathbb{Q}, find \boldsymbol{z} such that $\boldsymbol{B}^{*} \boldsymbol{z}=\boldsymbol{y}$ (over \mathbb{Q})
3. Set $\boldsymbol{y}^{*}=\boldsymbol{y}-\boldsymbol{B}^{*}[\boldsymbol{z}\rceil=\boldsymbol{B}^{*}(\boldsymbol{z}-\lfloor\boldsymbol{z}\rceil)$ and parse into $\boldsymbol{v}, \boldsymbol{c}$

Correctness: $\left.[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{y}^{*}=[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{B}^{*}(\mathbf{z}-\mid \mathbf{z}]\right)=\mathbf{0} \bmod q$ and \boldsymbol{y}^{*} is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot\left[\begin{array}{c}
\boldsymbol{Z} \\
\quad
\end{array}\right]=\mathbf{I f} \boldsymbol{Z} \text { and } \boldsymbol{T} \text { are wide enough, we }
$$

Oblivious sampler (Babai roun

1. Take any (non-zero) inte
2. Assuming \boldsymbol{B}^{*} is full-rank
3. Set $\boldsymbol{y}^{*}=\boldsymbol{y}-\boldsymbol{B}^{*}[\boldsymbol{z}\rceil=\boldsymbol{B}$

This solution is obtained by "rounding" off a long solution
Question: Can we explain such solutions as taking a short linear combination of Z (i.e., what the knowledge assumption asserts)

Correctness: $[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{y}^{*}=[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{B}^{*}(\mathbf{z}-[\mathbf{z}])=\mathbf{0} \bmod q$ and \boldsymbol{y}^{*} is short

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (ie., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice
(1)

$$
A v=D c
$$

(2)

$$
[A \mid D G]\left[\begin{array}{c}
\boldsymbol{v} \\
-\boldsymbol{G}^{-1}(\boldsymbol{c})
\end{array}\right]=\mathbf{0}
$$

(3)

$$
[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot\left[\begin{array}{c}
\mathbb{Z} \\
-G^{-1}(T)
\end{array}\right]=\mathbf{0}
$$

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge $k-R$-ISIS assumption from [ACLMT22] Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)
Open question: Can we extend the attacks to break soundness of the SNARK?

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integ Implementation by Martin Albrec
- Breaks extractability of the [ACLMT22] assuming hardn

The SNARK considers extractable commitment for quadratic functions while our current oblivious sampler only works for linear functions in the case of [ACLMT22] for oblivious sampler implies algoritnm for innomogeneous SIS)
Open question: Can we extend the attacks to break soundness of the SNARK?

Open Questions

Understanding the hardness of ℓ-succinct SIS (hardness reductions or cryptanalysis)?
(Black-box) functional commitments with fast verification from standard SIS?
Cryptanalysis of lattice-based SNARKs based on knowledge k - R-ISIS [ACLMT22, CLM23, FLV23]
Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions
Formulation of new lattice-based knowledge assumptions that avoids our attacks

Thank you!

