Lattice-Based Functional Commitments: Constructions and Cryptanalysis

David Wu
December 2023

based on joint work with Hoeteck Wee

Commit(crs, x) \rightarrow (σ , st)

Takes a common reference string and commits to an input x

Outputs commitment σ and commitment state st

Commit(crs, x) \rightarrow (σ , st)

Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs, σ , (f, y), π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

Binding: efficient adversary cannot open σ to two different values with respect to the **same** f

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = \text{poly}(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|, |f(x)|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with **depth** of the circuit computing f

Special Cases of Functional Commitments

Vector commitments:

commit to a vector, open at an index

Polynomial commitments:

commit to a polynomial, open to the evaluation at x

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	k- R -ISIS assumption (falsifiable)
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[dCP23]	Boolean circuits	SIS (non-succinct openings in general)
[KLVW23]	Boolean circuits	LWE (via batch arguments)
[BCFL23]	Boolean circuits	twin k - R -ISIS
[WW23a, WW23b]	Boolean circuits	ℓ -succinct SIS This talk

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors \boldsymbol{t}_1 , ..., $\boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $m{u}_{ij} \leftarrow m{A}_i^{-1}m{t}_j \in \mathbb{Z}_q^m$ where $i \neq j$

short (i.e., low-norm) vector satisfying $m{A}_im{u}_{ij}=m{t}_j$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors $\boldsymbol{t}_1, ..., \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_i) \in \mathbb{Z}_q^m$ where $i \neq j$

Commitment to $x \in \mathbb{Z}_q^{\ell}$:

$$\boldsymbol{c} = \sum_{i \in [\ell]} x_i \boldsymbol{t}_i$$

linear combination of target vectors

Opening to value y at index i:

short
$$\boldsymbol{v}_i$$
 such that $\boldsymbol{c} = \boldsymbol{A}_i \boldsymbol{v}_i + \boldsymbol{y} \cdot \boldsymbol{t}_i$

Honest opening:

$$\boldsymbol{v}_i = \sum_{j \neq i} x_j \boldsymbol{u}_{ij} \quad \boldsymbol{A}_i \boldsymbol{v}_i + x_i \boldsymbol{t}_i = \sum_{j \neq i} x_j \boldsymbol{A}_i \boldsymbol{u}_{ij} + x_i \boldsymbol{t}_i = \sum_{j \in [\ell]} x_j \boldsymbol{t}_j = \boldsymbol{c}$$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors $\boldsymbol{t}_1, ..., \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

[PPS21]: $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ and $t_i \leftarrow \mathbb{Z}_q^n$ are independent and uniform

suffices for vector commitments (from SIS)

[ACLMT21]: $A_i = W_i A$ and $t_i = W_i u_i$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$, $A \leftarrow \mathbb{Z}_q^{n \times m}$, $u_i \leftarrow \mathbb{Z}_q^n$

(one candidate adaptation to the integer case)

<u>generalizes</u> to functional commitments for constant-degree polynomials (from k-R-ISIS)

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$
 for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | -I_n \\ & \ddots & & | & \vdots \\ & A_\ell & | -I_n \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \boldsymbol{c} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$

 $oldsymbol{I}_n$ denotes the identity matrix

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i$$
 $\forall i \in [\ell]$ for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & & | & -G \\ & \ddots & & & | & \vdots \\ & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \hat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$

"powers of two matrix"

For security and functionality, it will be useful to write
$$c = G\hat{c}$$

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} \boldsymbol{A}_1 & & & & & & & \\ & \ddots & & & & & \\ & & \boldsymbol{A}_\ell & & -\boldsymbol{G} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \boldsymbol{\hat{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix} \quad \begin{array}{l} \textbf{Common reference string:} \\ \text{matrices } \boldsymbol{A}_1, \dots, \boldsymbol{A}_\ell \in \mathbb{Z}_q^{n \times m} \\ \text{target vectors } \boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n \\ \text{auxiliary data: cross-terms } \boldsymbol{u}_{ij} \leftarrow \boldsymbol{A}_i^{-1}(\boldsymbol{t}_j) \end{array}$$

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system

Trapdoor for B_ℓ can be used to sample <u>short</u> solutions x to the linear system $B_\ell x = y$ (for arbitrary y)

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$
 for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & & & \\ & \ddots & & & & \\ & \vdots & & & \\ & A_\ell & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \hat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$
 Use trapdoor for \boldsymbol{B}_ℓ to jointly sample a solution $\boldsymbol{v}_1, \dots, \boldsymbol{v}_\ell, \hat{\boldsymbol{c}}$
$$\boldsymbol{c} = \boldsymbol{G} \hat{\boldsymbol{c}} \text{ is the commitment and } \boldsymbol{v}_1, \dots \boldsymbol{v}_\ell \text{ are the openings}$$

Committing to an input x:

 $oldsymbol{c} = oldsymbol{G} \hat{oldsymbol{c}}$ is the commitment and $v_1, ... v_\ell$ are the openings

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system

Committing to an input x:

 $c = G\hat{c}$ is the commitment and $oldsymbol{v}_1$, ... $oldsymbol{v}_\ell$ are the openings

Supports statistically private openings (commitment + opening *hides* unopened positions)

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Suppose adversary can break binding

outputs \boldsymbol{c} , $(\boldsymbol{v_i}, \boldsymbol{x_i})$, $(\boldsymbol{v_i'}, \boldsymbol{x_i'})$ such that

$$c = A_i v_i + x_i t_i$$
$$= A_i v_i' + x_i' t_i$$

given matrices $A_1, ..., A_\ell$ target vectors $oldsymbol{t}_1, ..., oldsymbol{t}_\ell$ trapdoor for $oldsymbol{B}_\ell$

 $\mathsf{set}\, \boldsymbol{A}_i \leftarrow \mathbb{Z}_q^{n \times m}$

set
$$\mathbf{t}_i = \mathbf{e}_1 = [1, 0, ..., 0]^{\mathrm{T}}$$

Short integer solutions (SIS)

given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0

$$\mathbf{A}_i(\mathbf{v}_i - \mathbf{v}_i') = (\mathbf{x}_i - \mathbf{x}_i')\mathbf{e}_1$$

 $oldsymbol{v}_i - oldsymbol{v}_i'$ is a SIS solution for $oldsymbol{A}_i$ without the first row

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Adversary that breaks binding can solve SIS with respect to A_i

(technically A_i without the first row – which is equivalent to SIS with dimension n-1)

but... adversary also gets additional information beyond $m{A}_i$

$$m{B}_{\ell} = egin{bmatrix} A_1 & & & | -m{G} \ & \ddots & & | & \vdots \ & A_{\ell} & | -m{G} \end{bmatrix}$$
 Adversary sees trapdoor for $m{B}_{\ell}$

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Adversary that breaks binding can solve SIS with respect to A_i Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A}_1 & & & & & -m{G} \ & \ddots & & & dots \ & m{A}_{\ell} & m{G} \end{bmatrix}$$

 $m{B}_{\ell} = egin{bmatrix} m{A}_1 & -m{G} \ & \ddots & \vdots \ & A_{\ell} & -m{G} \end{bmatrix}$ Can simulate CRS from BASIS challenge: matrices $m{A}_1, \dots, m{A}_{\ell} \leftarrow \mathbb{Z}_q^{n imes m}$ trapdoor for $m{B}_{\ell}$

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A}_1 & & & & & -m{G} \ & \ddots & & & dots \ & m{A}_{\ell} & -m{G} \end{bmatrix}$$

When $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

auxiliary data: trapdoor for
$$m{B}_\ell = egin{bmatrix} A_1 & & & | - m{G} \\ & \ddots & & | & \vdots \\ & & A_\ell & | - m{G} \end{bmatrix}$$

To commit to a vector $x \in \mathbb{Z}_q^\ell$: sample solution $(v_1, ..., v_\ell, \widehat{c})$

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \widehat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{e}_1 \\ \vdots \\ -x_\ell \boldsymbol{e}_\ell \end{bmatrix}$$

Commitment is $c = G\hat{c}$

Openings are $oldsymbol{v}_1$, ..., $oldsymbol{v}_\ell$

Can commit and open to arbitrary \mathbb{Z}_q vectors

Commitments and openings statistically **hide** unopened components

Linearly homomorphic:

$$c+c'$$
 is a commitment to $x+x'$ with openings $oldsymbol{v}_i+oldsymbol{v}_i'$

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

[GSW13, BGGHNSVV14, GVW15]

Will need some basic lattice machinery for homomorphic computation

Let $A \in \mathbb{Z}_q^{n \times m}$ be an arbitrary matrix

$$C_1 = AV_1 + x_1G$$

$$\vdots$$

$$\boldsymbol{C}_{\ell} = \boldsymbol{A}\boldsymbol{V}_{\ell} + \boldsymbol{x}_{\ell}\boldsymbol{G}$$

 C_i is an encoding of x_i with (short) randomness V_i

homomorphic evaluation

$$\boldsymbol{C}_f = \boldsymbol{A}\boldsymbol{V}_f + f(\boldsymbol{x}) \cdot \boldsymbol{G}$$

 C_f is an encoding of f(x) with (short) randomness V_f

Replace random A_i with a single A (and gadget matrix with $W_1,...,W_\ell$)

$$A \leftarrow \mathbb{Z}_q^{n \times m}$$
 , $A_i \coloneqq A$

$$\boldsymbol{W}_1, \dots, \boldsymbol{W}_\ell \leftarrow \mathbb{Z}_q^{n \times n}$$

Common reference string contains trapdoor for matrix B_{ℓ} :

$$m{B}_{\ell} = egin{bmatrix} m{A} & & & & m{W}_{1} \ & \ddots & & & & \vdots \ & m{A} & m{W}_{\ell} \end{bmatrix}$$

Replace random A_i with a single A (and gadget matrix with $W_1, ..., W_\ell$)

$$egin{align} A \leftarrow \mathbb{Z}_q^{n imes m} \;,\; A_i \coloneqq A \ W_1, \dots, W_\ell \leftarrow \mathbb{Z}_q^{n imes n} \ \end{pmatrix} \qquad egin{align} B_\ell = egin{bmatrix} A & W_1 \ \vdots & A & W_\ell \end{bmatrix}$$

To commit to an input $x \in \{0,1\}^{\ell}$:

Use trapdoor for B_{ℓ} to jointly sample $V_1, \dots, V_{\ell}, \widehat{C}$ that satisfy

$$\begin{bmatrix} \mathbf{A} & & & & | \mathbf{W_1} \\ & \ddots & & | & \vdots \\ & \mathbf{A} & | \mathbf{W_\ell} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V_1} \\ \vdots \\ \mathbf{V_\ell} \\ \mathbf{C} \end{bmatrix} = \begin{bmatrix} -x_1 \mathbf{G} \\ \vdots \\ -x_\ell \mathbf{G} \end{bmatrix}$$

Commitment relation:

$$\begin{bmatrix} \mathbf{A} & & & & & | \mathbf{W}_1 \\ & \ddots & & & | & \vdots \\ & \mathbf{A} & \mathbf{W}_{\ell} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_{\ell} \\ \mathbf{C} \end{bmatrix} = \begin{bmatrix} -x_1 \mathbf{G} \\ \vdots \\ -x_{\ell} \mathbf{G} \end{bmatrix}$$

Homomorphic evaluation:

$$C_1 = AV_1 + x_1G$$

$$\vdots$$

$$C_f = AV_f + f(x) \cdot G$$

$$C_f = AV_f + f(x) \cdot G$$

$$\boldsymbol{C}_{\ell} = \boldsymbol{A}\boldsymbol{V}_{\ell} + \boldsymbol{x}_{\ell}\boldsymbol{G}$$

for all
$$i \in [\ell]$$

$$\mathbf{AV}_i + \mathbf{W}_i \mathbf{C} = -x_i \mathbf{G}$$

rearranging

$$-\boldsymbol{W}_{i}\boldsymbol{C} = \boldsymbol{A}\boldsymbol{V}_{i} + \boldsymbol{x}_{i}\boldsymbol{G}$$

function of just the commitment C

$$\widetilde{\boldsymbol{C}}_i = -\boldsymbol{W}_i \boldsymbol{C}$$

$$|\widetilde{\boldsymbol{c}}_i = -\boldsymbol{W}_i \boldsymbol{c}| \qquad \widetilde{\boldsymbol{c}}_i = \boldsymbol{A}\boldsymbol{V}_i + \boldsymbol{x}_i \boldsymbol{G}$$

Commitment relation:

$$\begin{bmatrix} \mathbf{A} & & & & | \mathbf{W}_1 \\ & \ddots & & | & \vdots \\ & \mathbf{A} & | \mathbf{W}_\ell \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_\ell \\ \mathbf{C} \end{bmatrix} = \begin{bmatrix} -x_1 \mathbf{G} \\ \vdots \\ -x_\ell \mathbf{G} \end{bmatrix}$$

Homomorphic evaluation:

$$C_1 = AV_1 + x_1G$$

$$\vdots$$

$$C_f = AV_f + f(x) \cdot G$$

$$C_{\ell} = AV_{\ell} + x_{\ell}G$$

function of just the commitment *C*

$$|\widetilde{\boldsymbol{c}}_i = -\boldsymbol{W}_i \boldsymbol{c}|$$

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{A}\boldsymbol{V}_i + \boldsymbol{x}_i \boldsymbol{G}$$

 $\widetilde{\boldsymbol{C}}_i$ is an encoding of x_i with randomness \boldsymbol{V}_i

compute on
$$\widetilde{\pmb{C}}_1, \ldots \widetilde{\pmb{C}}_f$$
 compute on $\pmb{V}_1, \ldots, \pmb{V}_\ell$

$$\widetilde{\boldsymbol{C}}_f = \boldsymbol{A}\boldsymbol{V}_{f,f(\boldsymbol{x})} + f(\boldsymbol{x})\boldsymbol{G}$$

 $\widetilde{m{C}}_f$ is an encoding of $f(m{x})$ with randomness $m{V}_{f,f(m{x})}$

[GVW15]: independent V_i is sampled for each input bit, so commitments C_i are independent

• long commitment, security from SIS

[WW23a, WW23b]: publish a trapdoor that allows deriving C_i (and associated V_i) from a single commitment \widehat{C}

short commitment, stronger assumption

Commitment relation:

$$\begin{bmatrix} \mathbf{A} & & & & | \mathbf{W}_1 \\ & \ddots & & | & \vdots \\ & \mathbf{A} & | \mathbf{W}_\ell \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_\ell \\ \mathbf{C} \end{bmatrix} = \begin{bmatrix} -x_1 \mathbf{G} \\ \vdots \\ -x_\ell \mathbf{G} \end{bmatrix}$$

Homomorphic evaluation:

$$C_1 = AV_1 + x_1G$$

$$\vdots$$

$$C_f = AV_f + f(x) \cdot G$$

$$C_{\ell} = AV_{\ell} + x_{\ell}G$$

Opening is $V_{f,f(x)}$ is (short) linear function of V_1,\ldots,V_ℓ

Opening to function f proceeds exactly as in [GVW15]

To verify:

1. Expand commitment

$$\widetilde{C}_{i} = -W_{i}C$$

$$\widetilde{C}_{1} = AV_{1} + x_{1}G$$

$$\vdots$$

$$\widetilde{C}_{\ell} = AV_{\ell} + x_{\ell}G$$

2. Homomorphically evaluate f

$$\widetilde{\boldsymbol{c}}_1, ... \widetilde{\boldsymbol{c}}_\ell \longrightarrow \widetilde{\boldsymbol{c}}_f$$

3. Check verification relation

$$AV_{f,z} = \widetilde{C}_f - z \cdot G$$

Functional Commitments from Lattices

Security follows from ℓ -succinct SIS assumption [Wee23]:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A} & & m{W}_1 \ & \ddots & m{\vdots} \ m{A} & m{W}_{\ell} \end{bmatrix}$$

where $A \leftarrow \mathbb{Z}_q^{n \times m}$ and $W_i \leftarrow \mathbb{Z}_q^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

 $\ell=1$ case does follow from plain SIS (and when $m{W}_i$ is very wide)

Open problem: Understanding security or attacks when $\ell > 1$

Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

matrices
$$A_1, W_1, \dots, W_\ell \in \mathbb{Z}_q^{n \times m}$$

auxiliary data: trapdoor for
$$m{B}_\ell = egin{bmatrix} m{A} & & & & & W_1 \\ & \ddots & & & \vdots \\ & & A & W_\ell \end{bmatrix}$$

To commit to a vector $\mathbf{x} \in \{0,1\}^{\ell}$: sample $(\mathbf{V}_1, \dots, \mathbf{V}_{\ell}, \mathbf{C})$

$$\begin{bmatrix} A & & & & | & W_1 \\ & \ddots & & & | & \vdots \\ & A & | & W_\ell \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ C \end{bmatrix} = \begin{bmatrix} -x_1 G \\ \vdots \\ -x_\ell G \end{bmatrix}$$

Scheme supports functions computable by Boolean circuits of (bounded) depth d

$$|\operatorname{crs}| = \ell^2 \cdot \operatorname{poly}(\lambda, d, \log \ell)$$

$$|\mathbf{C}| = \text{poly}(\lambda, d, \log \ell)$$

$$|V_{f,f(x)}| = \text{poly}(\lambda, d, \log \ell)$$

Verification **time** scales with |f| (i.e., size of circuit computing f)

Commitment is C

Openings for function f is $[V_1 \mid \cdots \mid V_\ell] \cdot H_{\widetilde{C},f,x}$

Summary of Functional Commitments

New methodology for constructing lattice-based commitments:

- 1. Write down the main verification relation ($\mathbf{c} = \mathbf{A}_i \mathbf{v}_i + x_i \mathbf{t}_i$)
- 2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on new q-type variants of SIS:

SIS with respect to A is hard given a trapdoor for a related matrix B

"Random" variant of the assumption implies vector commitments and reduces to SIS

"Structured" variant (ℓ -succinct SIS) implies functional commitments for circuits

Structure also enables aggregating openings

[see paper for details]

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that f(x) = y

Note: f could have multiple outputs

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

given (tall) matrices $m{A}, m{D}$ and short preimages $m{Z}$ of a random target $m{T}$

the only way an adversary can produce a short vector v such that Av is in the image of D (i.e., Av = Dc) is by setting v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

given (tall) matrices $m{A}, m{D}$ and short preimages $m{Z}$ of a random target $m{T}$

the only way an adversary can produce a short vector v such that Av is in the image of D (i.e., Av = Dc) is by setting v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as

$$[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$

If Z and T are wide enough, we (heuristically) obtain a basis for $[A \mid DG]$

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as

$$[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$

$$B^*$$

If Z and T are wide enough, we (heuristically) obtain a basis for $[A \mid DG]$

Oblivious sampler (Babai rounding):

- 1. Take any (non-zero) integer solution y where $[A \mid DG]y = 0 \mod q$
- 2. Assuming B^* is full-rank over \mathbb{Q} , find z such that $B^*z = y$ (over \mathbb{Q})
- 3. Set $y^* = y B^*[z] = B^*(z [z])$ and parse into v, c

Correctness: $[A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rceil) = 0 \mod q$ and y^* is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as

$$[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$

If Z and T are wide enough, we (heuristically) obtain a basis for $[A \mid DG]$

 $oldsymbol{B}^*$

This solution is obtained by "rounding" off a long solution

Oblivious sampler (Babai roun

- 1. Take any (non-zero) inte
- 2. Assuming B^* is full-rank
- 3. Set $y^* = y B^*|z| = B$

Question: Can we explain such solutions as taking a <u>short</u> linear combination of Z (i.e., what the knowledge assumption asserts)

Correctness: $[A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rceil) = 0 \mod q$ and y^* is short

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

$$Av = Dc \qquad [A \mid DG] \begin{bmatrix} v \\ -G^{-1}(c) \end{bmatrix} = 0$$

$$[A \mid DG] \cdot \begin{bmatrix} \frac{Z}{-G^{-1}(T)} \end{bmatrix} = 0$$

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge *k-R-ISIS* assumption from [ACLMT22] Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer Implementation by Martin Albred
- Breaks extractability of the [ACLMT22] assuming hardn

The SNARK considers extractable commitment for quadratic functions while our current oblivious sampler only works for linear functions in the case of [ACLMT22]

for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

Open Questions

Understanding the hardness of ℓ -succinct SIS (hardness reductions or cryptanalysis)?

(Black-box) functional commitments with fast verification from standard SIS?

Cryptanalysis of lattice-based SNARKs based on knowledge k-R-ISIS [ACLMT22, CLM23, FLV23]

Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids our attacks

Thank you!