
Succinct Vector, Polynomial, and
Functional Commitments from Lattices

Hoeteck Wee and David Wu

May 2023



Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

𝜋

𝝈

𝑥
Commit

“opening”

“commitment”



𝝈

Functional Commitments

Takes a common reference string and commits to a message

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st

“commitment”

Focus exclusively on non-interactive schemes



Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋



Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values 
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋



Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Hiding: commitment 𝜎 and opening 𝜋 only reveal 𝑓 𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥 , 𝑓 𝑥

𝜋

Special cases: vector commitments, polynomial commitments



Special Cases of Functional Commitments

Vector commitments:

Polynomial commitments:

𝑥1, 𝑥2, … , 𝑥𝑛 𝑥𝑖

ind𝑖 𝑥1, … , 𝑥𝑛 ≔ 𝑥𝑖

commit to a vector, open at an index

𝛼0, 𝛼1, … , 𝛼𝑑

𝑓𝑥 𝛼0, … , 𝛼𝑑 ≔ 𝛼0 + 𝛼1𝑥 +⋯+ 𝛼𝑑𝑥
𝑑

𝑦

commit to a polynomial, open to the evaluation at 𝑥



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

(not an exhaustive list!)

non-falsifiable, non-black box



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

This work Boolean circuits 𝐁𝐀𝐒𝐈𝐒𝐬𝐭𝐫𝐮𝐜𝐭 assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

BASISstruct assumption less structured than [ACLMT22] (no short preimages of powers)



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

This work Boolean circuits 𝐁𝐀𝐒𝐈𝐒𝐬𝐭𝐫𝐮𝐜𝐭 assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

This work Boolean circuits 𝐁𝐀𝐒𝐈𝐒𝐬𝐭𝐫𝐮𝐜𝐭 assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits

[BCFL22]: short openings and supports fast verification with 
preprocessing; based on (falsifiable) twin-𝑘-𝑀-ISIS 
assumption

[dCP23]: transparent setup from SIS, long openings, 
selectively-secure (without complexity leveraging)



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

short (i.e., low-norm) vector 
satisfying 𝑨𝑖𝒖𝑖𝑗 = 𝒕𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

Commitment to 𝒙 ∈ ℤ𝑞
ℓ :

𝒄 = 

𝑗∈ ℓ

𝑥𝑗𝒕𝑗

linear combination of target vectors

Opening to value 𝑦 at index 𝑖:

short 𝒗𝑖 such that 𝒄 = 𝑦 ⋅ 𝒕𝑖 + 𝑨𝑖𝒗𝑖

Honest opening:

𝒗𝑖 =

𝑗≠𝑖

𝑥𝑗𝒖𝑖𝑗

Correct as long as 𝒙 is short

= 𝑥𝑖𝒕𝑖 + 𝑨𝑖𝒗𝑖= 𝑥𝑖𝒕𝑖 +

𝑗≠𝑖

𝑥𝑗𝑨𝑖𝒖𝑖𝑗𝒄 = 𝑥𝑖𝒕𝑖 +

𝑗≠𝑖

𝑥𝑗𝒕𝑗



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

[PPS21]: 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚 and 𝒕𝑖 ← ℤ𝑞

𝑛 are independent and uniform

[ACLMT21]: 𝑨𝑖 = 𝑾𝑖𝑨 and 𝒕𝑖 = 𝑾𝑖𝒖𝑖 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛, 𝑨 ← ℤ𝑞

𝑛×𝑚, 𝒖𝑖 ← ℤ𝑞
𝑛

suffices for vector commitments (from SIS)

generalizes to functional commitments for constant-degree polynomials (from 𝑘-𝑅-ISIS)

(one candidate adaptation to the integer case)



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

𝑰𝑛 denotes the identity matrix

𝑨1 −𝑰𝑛
⋱ ⋮

𝑨ℓ −𝑰𝑛

⋅

𝒗1
⋮
𝒗ℓ
𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

For security and functionality, it 
will be useful to write 𝒄 = 𝑮ො𝒄

𝑮 =
1 2 ⋯ 2⌊log 𝑞⌋

⋱
1 2 ⋯ 2 log 𝑞

“powers of two matrix”

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

(random) trapdoor for 𝑩ℓ

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

Trapdoor for 𝑩ℓ can be used to sample short solutions 
𝒙 to the linear system 𝑩ℓ𝒙 = 𝒚 (for arbitrary 𝒚)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports commitments to arbitrary (i.e., large) values over ℤ𝑞

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and 
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports statistically private openings
(commitment + opening hides unopened positions)

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and 
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Proving Security

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Suppose adversary can break binding

𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

= 𝑨𝑖𝒗𝑖
′ + 𝑥𝑖

′𝒕𝑖

outputs 𝒄, 𝒗𝑖 , 𝑥𝑖 , 𝒗𝑖
′, 𝑥𝑖

′ such that

trapdoor for 𝑩ℓ

given matrices 𝑨1, … , 𝑨ℓ set 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ set 𝒕𝑖 = 𝒆1 = 1,0,… , 0 T

𝑨𝑖 𝒗𝑖 − 𝒗𝑖
′ = 𝑥𝑖 − 𝑥𝑖

′ 𝒆1

given 𝑨 ← ℤ𝑞
𝑛×𝑚, hard to find

short 𝒙 ≠ 0 such that 𝑨𝒙 = 𝟎

Goal: reduce to
short integer solutions (SIS)

𝒗𝑖 − 𝒗𝑖
′ is a SIS solution for 𝑨𝑖

without the first row

𝑥𝑖 ≠ 𝑥𝑖
′ ∈ ℤ𝑞

can be large!

Our scheme



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖
(technically 𝑨𝑖 without the first row – which is equivalent to SIS with dimension 𝑛 − 1)

Our scheme



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

SIS is hard with respect to 𝑨𝑖
given a random trapdoor (a random basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Basis-augmented SIS (BASIS) assumption:

Can simulate CRS from BASIS challenge:

trapdoor for 𝑩ℓ

matrices 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚

Our scheme



Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to 𝑨𝑖 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

When 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚 are uniform and independent:

hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)

Sketch for 𝒊 = 𝟏:𝑨1 −𝑮

𝑨𝟐 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

𝑩ℓ =
Sample 𝑨2, … , 𝑨ℓ with trapdoors

Use trapdoors for 𝑨2, … , 𝑨ℓ and 𝑮 to trapdoor for 𝑩ℓ



Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

auxiliary data: trapdoor for 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to a vector 𝒙 ∈ ℤ𝑞
ℓ : sample solution (𝒗1, … , 𝒗ℓ, ො𝒄)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒆1
⋮

−𝑥ℓ𝒆ℓ

Commitment is 𝒄 = 𝑮ො𝒄 Openings are 𝒗1, … , 𝒗ℓ

Can commit and open to 
arbitrary ℤ𝑞 vectors

Commitments and openings 
statistically hide unopened 
components

Linearly homomorphic:
𝒄 + 𝒄′ is a commitment to 

𝒙 + 𝒙′ with openings 𝒗𝑖 + 𝒗𝑖
′



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [GSW13, BGGHNSVV14, GVW15]

Let 𝑨 ∈ ℤ𝑞
𝑛×𝑚 be an arbitrary matrix

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮ 𝑪𝑓 = 𝑨𝑽𝑓 + 𝑓 𝒙 ⋅ 𝑮

[GVW15]: 𝑪𝑖 is a commitment
to 𝑥𝑖 with (short) opening 𝑽𝑖

homomorphic 
evaluation

𝑪𝑓 is a commitment to 𝑓(𝒙)

with (short) opening 𝑽𝑓

𝑪𝑓 is a function of 𝑪1, … , 𝑪ℓ, 𝑓

𝑽𝑓 is a function of 𝑽1, … , 𝑽ℓ, 𝑓, 𝒙



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [GSW13, BGGHNSVV14, GVW15]

Let 𝑨 ∈ ℤ𝑞
𝑛×𝑚 be an arbitrary matrix

[GVW15]: long commitments (linear in 𝒙 )
𝑪1, … , 𝑪ℓ are independent

Our approach: compress 𝑪1, … , 𝑪ℓ into a single 𝑪

We will define 𝑪𝑖 = 𝑾𝑖
−1𝑮𝑪 where 𝑾𝑖 ∈ ℤ𝑞

𝑛×𝑛 is 

part of the common reference string

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮

[GVW15]: 𝑪𝑖 is a commitment
to 𝑥𝑖 with (short) opening 𝑽𝑖



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮

Our approach: commitment is 𝑪 and set 𝑪𝑖 = 𝑾𝑖
−1𝑮𝑪

𝑾1
−1𝑮𝑪 = 𝑨𝑽1 + 𝑥1𝑮

⋮

𝑾ℓ
−1𝑮𝑪 = 𝑨𝑽ℓ + 𝑥ℓ𝑮

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

𝑮𝑪 = 𝑾1𝑨𝑽1 + 𝑥1𝑾1𝑮

⋮

𝑮𝑪 = 𝑾ℓ𝑨𝑽ℓ + 𝑥ℓ𝑾ℓ𝑮

𝑨𝑖 = 𝑾𝑖𝑨

Target is now a matrix



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Our approach: commitment is 𝑪 and set 𝑪𝑖 = 𝑾𝑖
−1𝑮𝑪

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

𝑨𝑖 = 𝑾𝑖𝑨

𝑩ℓ

As in the case of vector commitments, we can 
publish a trapdoor for 𝑩ℓ in the CRS
(along with the matrices 𝑾1, … ,𝑾ℓ)



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

𝑩ℓ

To commit to 𝒙 ∈ 0,1 ℓ:

Use trapdoor for 𝑩ℓ to sample 𝑽1, … , 𝑽ℓ, 𝑪

To compute an opening with respect to 𝑓:

𝑽1, … , 𝑽ℓ, 𝑓 ↦ 𝑽𝑓 as in [GVW15]

To check an opening 𝑽𝑓 to 𝑧 with respect to 𝑓:

derive commitments 𝑪𝑖 ← 𝑾𝑖
−1𝑮𝑪

compute 𝑪1, … , 𝑪ℓ, 𝑓 ↦ 𝑪𝑓 as in [GVW15]

check 𝑪𝑓 = 𝑨𝑽𝑓 + 𝑧 ⋅ 𝑮



Functional Commitments from Lattices

Security follows from BASIS assumption with a structured matrix:

SIS is hard with respect to 𝑨 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

where 𝑨𝑖 = 𝑾𝑖𝑨 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛 and 𝑨 ← ℤ𝑞

𝑛×𝑚

Falsifiable assumption but does not appear to reduce to standard SIS

ℓ = 1 case does follow from plain SIS

Open problem: Understanding security or attacks when ℓ > 1



Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚 where 𝑨𝑖 = 𝑾𝑖𝑨

auxiliary data: trapdoor for 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to a vector 𝒙 ∈ 0,1 ℓ: sample (𝑽1, … , 𝑽ℓ, 𝑪)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment is 𝑪 = 𝑮𝑪 Openings for function 𝑓 is 𝑽1 ⋯ 𝑽ℓ ⋅ 𝑯෩𝑪,𝑓,𝒙

crs = ℓ2 ⋅ poly 𝜆, 𝑑, log ℓ

Scheme supports functions 
computable by Boolean circuits 

of (bounded) depth 𝑑

𝑪 = poly 𝜆, 𝑑, log ℓ

𝑽𝑓,𝑓 𝒙 = poly 𝜆, 𝑑, log ℓ

Verification time scales with 𝑓
(i.e., size of circuit computing 𝑓)



Fast Verification with Preprocessing

To verify opening 𝑽 to (𝑓, 𝑧), verifier computes the following:
• Homomorphic evaluation: ෩𝑪1, … , ෩𝑪ℓ, 𝑓 ↦ ෩𝑪𝑓
• Verification relation: 𝑨𝑽 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

෩𝑪𝑖 = 𝑾𝑖
−1𝑮𝑪 = 𝑾𝑖

−1𝑪

Computing ෩𝑪𝑓 corresponds 

to homomorphic 
computation on ෩𝑪1, … , ෩𝑪ℓSuppose 𝑓 is a linear function:

𝑓 𝑥1, … , 𝑥ℓ = 

𝑖∈ ℓ

𝛼𝑖𝑥𝑖

Then we can write ෩𝑪𝑓 = σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖
−1 𝑪

For linear functions, if 𝑓 is known in advance, verification runs in time poly 𝜆, log ℓ

𝑾𝑓 is a fixed matrix that 

depends only on 𝑓 and can be 
computed in the offline phase

𝑾𝑓



Fast Verification with Preprocessing

To verify opening 𝑽 to (𝑓, 𝑧), verifier computes the following:
• Homomorphic evaluation: ෩𝑪1, … , ෩𝑪ℓ, 𝑓 ↦ ෩𝑪𝑓
• Verification relation: 𝑨𝑽 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

෩𝑪𝑖 = 𝑾𝑖
−1𝑮𝑪 = 𝑾𝑖

−1𝑪

Computing ෩𝑪𝑓 corresponds 

to homomorphic 
computation on ෩𝑪1, … , ෩𝑪ℓSuppose 𝑓 is a linear function:

𝑓 𝑥1, … , 𝑥ℓ = 

𝑖∈ ℓ

𝛼𝑖𝑥𝑖

Then we can write ෩𝑪𝑓 = σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖
−1 𝑪

For linear functions, if 𝑓 is known in advance, verification runs in time poly 𝜆, log ℓ

𝑾𝑓 is a fixed matrix that 

depends only on 𝑓 and can be 
computed in the offline phase

𝑾𝑓Captures polynomial commitments as a special case
(polynomial evaluation can be described by a linear function)



Comparison to Concurrent Work

Consider a bivariate function 𝐹 𝑥, 𝑦

commit to input 𝑥

open at 𝑦 to the value 𝐹(𝑥, 𝑦) 𝐹 is computable by a circuit of depth 𝑑 and width 𝑤

Scheme

[dCP23]

[BCFL22]

This work

𝐜𝐫𝐬

𝑦

𝑤5

𝑥 2

𝐜𝐨𝐦

1

1

1

𝐨𝐩𝐞𝐧

𝑦

1

1

Assumption

SIS

twin-𝑘-𝑀-ISIS

BASISstruct

Fast
Verification

✖

✓

✖

Transparent

✓

✖

✖

All comparisons ignoring poly 𝜆, 𝑑 factors

Adaptive
Security

✖

✓

✓



Summary

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to 𝑨 is hard given a trapdoor for a related matrix 𝑩

“Random” variant of BASIS assumption implies vector commitments and reduces to SIS

“Structured” variant of BASIS assumption implies functional commitments
• Yields linear and polynomial commitments with fast preprocessed verification
• Structure also enables aggregating openings [see paper for details]



Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Analyze knowledge variants of the assumption

Reducing CRS size: can we obtain functional commitments with linear-size CRS?
Solved in [CLM23] for the case of constant-degree polynomials!

Direct construction of lattice-based subvector commitments
Construction in our paper does not satisfy consistency

Thank you!

https://eprint.iacr.org/2022/1515


	Slide 1: Succinct Vector, Polynomial, and Functional Commitments from Lattices
	Slide 2: Functional Commitments
	Slide 3: Functional Commitments
	Slide 4: Functional Commitments
	Slide 5: Functional Commitments
	Slide 6: Functional Commitments
	Slide 7: Special Cases of Functional Commitments
	Slide 8: Functional Commitment Constructions
	Slide 9: Functional Commitment Constructions
	Slide 10: Functional Commitment Constructions
	Slide 11: Functional Commitment Constructions
	Slide 12: Functional Commitment Constructions
	Slide 13: Framework for Lattice Commitments
	Slide 14: Framework for Lattice Commitments
	Slide 15: Framework for Lattice Commitments
	Slide 16: Our Approach
	Slide 17: Our Approach
	Slide 18: Our Approach
	Slide 19: Our Approach
	Slide 20: Our Approach
	Slide 21: Our Approach
	Slide 22: Proving Security
	Slide 23: Basis-Augmented SIS (BASIS) Assumption
	Slide 24: Basis-Augmented SIS (BASIS) Assumption
	Slide 25: Basis-Augmented SIS (BASIS) Assumption
	Slide 26: Vector Commitments from SIS
	Slide 27: Functional Commitments for Circuits
	Slide 28: Functional Commitments for Circuits
	Slide 29: Functional Commitments for Circuits
	Slide 30: Functional Commitments for Circuits
	Slide 31: Functional Commitments for Circuits
	Slide 32: Functional Commitments from Lattices
	Slide 33: Functional Commitments from Lattices
	Slide 34: Fast Verification with Preprocessing
	Slide 35: Fast Verification with Preprocessing
	Slide 36: Comparison to Concurrent Work
	Slide 37: Summary
	Slide 38: Open Questions

