Succinct Vector, Polynomial, and Functional Commitments from Lattices

Hoeteck Wee and David Wu

May 2023

 $Commit(crs, x) \rightarrow (\sigma, st)$

Takes a common reference string and commits to a message Outputs commitment σ and commitment state st

Focus exclusively on <u>non-interactive</u> schemes

Commit(crs, x) \rightarrow (σ , st) Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs,
$$\sigma$$
, (f, y) , π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

Binding: efficient adversary cannot open σ to two different values with respect to the same f

$$\pi_{0} (f, y_{0}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{0}), \pi_{0}) = 1$$

$$\pi_{1} (f, y_{1}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{1}), \pi_{1}) = 1$$

Hiding: commitment σ and opening π only reveal f(x)

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = \operatorname{poly}(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|, |f(x)|)$

Special cases: vector commitments, polynomial commitments

Special Cases of Functional Commitments

Vector commitments:

$$[x_1, x_2, \dots, x_n] \qquad \qquad \text{ind}_i(x_1, \dots, x_n) \coloneqq x_i$$

commit to a vector, open at an index

Polynomial commitments:

commit to a polynomial, open to the evaluation at x

(not an exhaustive list!)

Scheme	Function Class	Assumption	
[Mer87]	vector commitment	collision-resistant hash functions	
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions	
[CF13, LM19, BBF19] vector commitment		groups of unknown order	
[PPS21]	vector commitment	short integer solutions (SIS)	
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions	
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order	
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs non-falsifiable, non-black i	

(not an exhaustive list!)

Scheme	Function Class	Assumption	
[Mer87]	vector commitment	collision-resistant hash functions	
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions	
[CF13, LM19, BBF19]	vector commitment	groups of unknown order	
[PPS21]	vector commitment	short integer solutions (SIS)	
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions	
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order	
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs	
[LRY16]	linear functions	q-type pairing assumptions	
[ACLMT22]	constant-degree polynomials	k-R-ISIS assumption (falsifiable)	
This work	vector commitment	short integer solutions (SIS)	

supports private openings, commitments to large values, linearly-homomorphic

(not an exhaustive list!)

Scheme	Function Class	Assumption	
[Mer87]	vector commitment	collision-resistant hash functions	
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions	
[CF13, LM19, BBF19]	vector commitment	groups of unknown order	
[PPS21]	vector commitment	short integer solutions (SIS)	
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions	
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order	
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs	
[LRY16]	linear functions	q-type pairing assumptions	
[ACLMT22]	constant-degree polynomials	k-R-ISIS assumption (falsifiable)	
This work	vector commitment	short integer solutions (SIS)	
This work	Boolean circuits	BASIS _{struct} assumption (falsifiable)	

BASIS_{struct} assumption less structured than [ACLMT22] (no short preimages of powers)

(not an exhaustive list!)

Scheme	Function Class	Assumption	
[Mer87]	vector commitment	collision-resistant hash functions	
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions	
[CF13, LM19, BBF19]	vector commitment	groups of unknown order	
[PPS21]	vector commitment	short integer solutions (SIS)	
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions	
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order	
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs	
[LRY16]	linear functions	q-type pairing assumptions	
[ACLMT22]	constant-degree polynomials	<i>k-R-</i> ISIS assumption (falsifiable)	
This work	vector commitment	short integer solutions (SIS)	
This work	Boolean circuits	BASIS _{struct} assumption (falsifiable)	

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits

(not an exhaustive list!)

Scheme	Function Class	Assumption	
[Mer87]	vector commitment	collision-resistant hash functions	
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions	
[CF13, LM19, BBF19]	vector commitment	groups of unknown order	
[PPS21]	vector commitment	short integer solutions (SIS)	
[KZG10, Lee20] polynomial commitment		q-type pairing assumptions	
[PCEI 22], chart openings and s	groups of unknown order		
preprocessing; based on (falsif	collision-resistant hash functions + SNARKs		
assumption		q-type pairing assumptions	
	k-R-ISIS assumption (falsifiable)		
[dCP23]: transparent setup fro	short integer solutions (SIS)		
selectively-secure (without con	BASIS_{struct} assumption (falsifiable)		

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ): matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^n$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$ short (i.e., low-norm) vector satisfying $A_i u_{ij} = t_j$

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $\boldsymbol{u}_{ij} \leftarrow A_i^{-1}(\boldsymbol{t}_j) \in \mathbb{Z}_q^m$ where $i \neq j$

Commitment to $x \in \mathbb{Z}_q^{\ell}$:

Opening to value y at index i:

 $\boldsymbol{c} = \sum_{j \in [\ell]} x_j \boldsymbol{t}_j$

linear combination of target vectors

short \boldsymbol{v}_i such that $\boldsymbol{c} = \boldsymbol{y} \cdot \boldsymbol{t}_i + \boldsymbol{A}_i \boldsymbol{v}_i$

Honest opening:

 v_i

$$= \sum_{j \neq i} x_j \boldsymbol{u}_{ij} \quad \boldsymbol{c} = x_i \boldsymbol{t}_i + \sum_{j \neq i} x_j \boldsymbol{t}_j = x_i \boldsymbol{t}_i + \sum_{j \neq i} x_j \boldsymbol{A}_i \boldsymbol{u}_{ij} = x_i \boldsymbol{t}_i + \boldsymbol{A}_i \boldsymbol{v}_i$$

Correct as long as x is short

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

[PPS21]: $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ and $t_i \leftarrow \mathbb{Z}_q^n$ are independent and uniform suffices for vector commitments (from SIS)

[ACLMT21]: $A_i = W_i A$ and $t_i = W_i u_i$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$, $A \leftarrow \mathbb{Z}_q^{n \times m}$, $u_i \leftarrow \mathbb{Z}_q^n$ (one candidate adaptation to the integer case)

<u>generalizes</u> to functional commitments for constant-degree polynomials (from k-R-ISIS)

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | & -I_n \\ & \ddots & & & & | & \vdots \\ & & A_\ell & & -I_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_\ell \\ c \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_\ell t_\ell \end{bmatrix}$$

I_n denotes the identity matrix

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_{\ell} t_{\ell} \end{bmatrix}$$

Common reference string: matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^n$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j)$

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{bmatrix} A_{1} & & & | & -G \\ & \ddots & & & | & \cdot \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_{1} \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_{1}t_{1} \\ \vdots \\ -x_{\ell}t_{\ell} \end{bmatrix} \overset{\text{common reference string:}}{\text{matrices } A_{1}, \dots, A_{\ell} \in \mathbb{Z}_{q}^{n \times m}} \underset{\text{target vectors } t_{1}, \dots, t_{\ell} \in \mathbb{Z}_{q}^{n}}{\text{auxiliary data: cross-terms } u_{ij} \leftarrow A_{i}^{-1}(t_{j})} \underset{\text{(random) trapdoor for } B_{\ell}}{B_{\ell}}$

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{bmatrix} A_1 & & & -G \\ & \ddots & & & \vdots \\ & & A_{\ell} & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_{\ell} t_{\ell} \end{bmatrix}$ Use trapdoor for B_{ℓ} to jointly sample a solution $v_1, \dots, v_{\ell}, \hat{c}$

Committing to an input *x*:

 $c = G\hat{c}$ is the commitment and $\boldsymbol{v}_1, \dots \boldsymbol{v}_\ell$ are the openings

Supports commitments to arbitrary (i.e., large) values over \mathbb{Z}_a

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{vmatrix} A_1 & & | -G \\ & \ddots & | & | \\ & A_\ell & | -G \end{vmatrix} \cdot \begin{vmatrix} v_1 \\ \vdots \\ v_\ell \\ \hat{c} \end{vmatrix} = \begin{vmatrix} -x_1 t_1 \\ \vdots \\ -x_\ell t_\ell \end{vmatrix}$ Use trapdoor for B_ℓ to jointly sample a solution $v_1, \dots, v_\ell, \hat{c}$

Committing to an input *x*:

 $c = G\hat{c}$ is the commitment and v_1 , ... v_ℓ are the openings

Supports statistically private openings (commitment + opening *hides* unopened positions)

Proving Security

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i$ $\forall i \in [\ell]$ for a short v_i Our scheme **Goal:** reduce to Suppose adversary can break binding short integer solutions (SIS) outputs $\boldsymbol{c}, (\boldsymbol{v}_i, \boldsymbol{x}_i), (\boldsymbol{v}_i', \boldsymbol{x}_i')$ such that given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0 $\boldsymbol{c} = A_i \boldsymbol{v}_i + x_i \boldsymbol{t}_i$ $x_i \neq x'_i \in \mathbb{Z}_q$ $\boldsymbol{A}_{i}(\boldsymbol{v}_{i}-\boldsymbol{v}_{i}')=(\boldsymbol{x}_{i}-\boldsymbol{x}_{i}')\boldsymbol{e}_{1}$ can be large! $= A_i v'_i + x'_i t_i$ $\boldsymbol{v}_i - \boldsymbol{v}_i'$ is a SIS solution for \boldsymbol{A}_i set $A_i \leftarrow \mathbb{Z}_a^{n \times m}$ without the first row given matrices A_1, \ldots, A_{ℓ} set $\mathbf{t}_i = \mathbf{e}_1 = [1, 0, ..., 0]^{\mathrm{T}}$ target vectors t_1, \ldots, t_{ρ} trapdoor for B_{ℓ}

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$

Our scheme

Adversary that breaks binding can solve SIS with respect to A_i

(technically A_i without the first row – which is equivalent to SIS with dimension n - 1)

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$ for a short v_i

Adversary that breaks binding can solve SIS with respect to A_i

Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to A_i

Our scheme

given a random trapdoor (a random basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & | & -\boldsymbol{G} \\ & \ddots & & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

Can simulate CRS from BASIS challenge: matrices $A_1, \dots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ trapdoor for B_ℓ

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & | & -\boldsymbol{G} \\ & \ddots & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

When $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)

 $B_{\ell} = \begin{vmatrix} A_1 & & -G \\ A_2 & & -G \\ \vdots & & A_{\ell} \end{vmatrix}$ Sketch for i = 1: Sample A_2, \dots, A_{ℓ} with trapdoors Use trapdoors for A_2, \dots, A_{ℓ} and G to trapdoor for B_{ℓ}

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_{\ell} \in \mathbb{Z}_q^{n \times m}$ auxiliary data: trapdoor for $B_{\ell} = \begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & & | & \vdots \\ & & & & A_{\ell} & | & -G \end{bmatrix}$

To commit to a vector $x \in \mathbb{Z}_q^{\ell}$: sample solution $(v_1, ..., v_{\ell}, \hat{c})$

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 e_1 \\ \vdots \\ -x_{\ell} e_{\ell} \end{bmatrix}$$

Commitment is $\boldsymbol{c} = \boldsymbol{G} \boldsymbol{\widehat{c}}$ Openings are $\boldsymbol{v}_1, \dots, \boldsymbol{v}_\ell$

Can commit and open to **arbitrary** \mathbb{Z}_q vectors

Commitments and openings statistically **hide** unopened components

Linearly homomorphic: c + c' is a commitment to x + x' with openings $v_i + v'_i$

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [GSW13, BGGHNSVV14, GVW15]

Let
$$A \in \mathbb{Z}_q^{n \times m}$$
 be an arbitrary matrix
 $C_1 = AV_1 + x_1G$
 \vdots
 C_f is a function of C_1, \dots, C_ℓ, f
 V_f is a function of V_1, \dots, V_ℓ, f, x
 $C_f = AV_f + f(x) \cdot G$
[GVW15]: C_i is a commitment
to x_i with (short) opening V_i
 C_f is a commitment to $f(x)$
with (short) opening V_f

with (short) opening V_f

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [GSW13, BGGHNSVV14, GVW15]

Let $A \in \mathbb{Z}_q^{n \times m}$ be an arbitrary matrix

$$C_1 = AV_1 + x_1G$$
$$\vdots$$
$$C_\ell = AV_\ell + x_\ell G$$

[GVW15]: C_i is a commitment to x_i with (short) opening V_i **[GVW15]:** long commitments (linear in |x|) C_1, \dots, C_ℓ are <u>independent</u>

Our approach: compress C_1 , ..., C_ℓ into a single \widehat{C}

We will define $C_i = W_i^{-1} G \widehat{C}$ where $W_i \in \mathbb{Z}_q^{n \times n}$ is part of the common reference string

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

$$C_{1} = AV_{1} + x_{1}G$$

$$\vdots$$

$$W_{1}^{-1}G\widehat{C} = AV_{1} + x_{1}G$$

$$\vdots$$

$$C_{\ell} = AV_{\ell} + x_{\ell}G$$

$$W_{\ell}^{-1}G\widehat{C} = AV_{\ell} + x_{\ell}G$$

$$G\widehat{C} = W_{\ell}AV_{\ell} + x_{\ell}W_{\ell}G$$

$$\begin{bmatrix}A_{1} & & & & | & -G \\ & \vdots & & & | & -G \\ & \vdots & & & | & -G \\ & \vdots & & & | & -G \end{bmatrix} \cdot \begin{bmatrix}V_{1} \\ \vdots \\ V_{\ell} \\ \widehat{C}\end{bmatrix} = \begin{bmatrix}-x_{1}W_{1}G \\ \vdots \\ -x_{\ell}W_{\ell}G\end{bmatrix}$$

$$A_{i} = W_{i}A$$
Target is now a matrix
$$A_{\ell} = W_{i}A$$

$$Cur approach: commitment is \widehat{C} and set C_{i} = W_{i}^{-1}G\widehat{C}$$

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

Our approach: commitment is \widehat{C} and set $C_i = W_i^{-1} G \widehat{C}$

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

To commit to $x \in \{0,1\}^{\ell}$:

Use trapdoor for \boldsymbol{B}_ℓ to sample $\boldsymbol{V}_1, \ldots, \boldsymbol{V}_\ell, \widehat{\boldsymbol{C}}$

To compute an opening with respect to f: $V_1, \dots, V_\ell, f \mapsto V_f$ as in [GVW15] To check an opening V_f to z with respect to f: derive commitments $C_i \leftarrow W_i^{-1} G \widehat{C}$ compute $C_1, \dots, C_\ell, f \mapsto C_f$ as in [GVW15] check $C_f = AV_f + z \cdot G$

Functional Commitments from Lattices

Security follows from BASIS assumption with a **structured** matrix:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & & & & & \\ & \ddots & & & & & \\ & & \boldsymbol{A}_{\ell} & & -\boldsymbol{G} \end{bmatrix}$$

where $A_i = W_i A$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$ and $A \leftarrow \mathbb{Z}_q^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

$$\ell = 1$$
 case does follow from plain SIS

Open problem: Understanding security or attacks when $\ell > 1$

Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

matrices
$$A_1, ..., A_{\ell} \in \mathbb{Z}_q^{n \times m}$$
 where $A_i = W_i A$
auxiliary data: trapdoor for $B_{\ell} = \begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & & | & \vdots \\ & & & A_{\ell} & | & -G \end{bmatrix}$

To commit to a vector $\mathbf{x} \in \{0,1\}^{\ell}$: sample $(\mathbf{V}_1, \dots, \mathbf{V}_{\ell}, \widehat{\mathbf{C}})$

$$\begin{bmatrix} A_1 & & & | -G \\ & \ddots & & | \vdots \\ & & A_{\ell} & | -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_{\ell} \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_{\ell} W_{\ell} G \end{bmatrix}$$

Scheme supports functions computable by Boolean circuits of (bounded) depth *d*

$$|\operatorname{crs}| = \ell^2 \cdot \operatorname{poly}(\lambda, d, \log \ell)$$

$$|\boldsymbol{C}| = \operatorname{poly}(\lambda, d, \log \ell)$$

$$|V_{f,f(x)}| = \operatorname{poly}(\lambda, d, \log \ell)$$

Verification **time** scales with |f| (i.e., size of circuit computing f)

Openings for function f is $[V_1 | \cdots | V_\ell] \cdot H_{\widetilde{C}, f, x}$

Commitment is $C = G\widehat{C}$

Fast Verification with Preprocessing

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}} = \boldsymbol{W}_i^{-1} \boldsymbol{C}$$

To verify opening V to (f, z), verifier computes the following:

- Homomorphic evaluation: $\widetilde{C}_1, \dots, \widetilde{C}_\ell, f \mapsto \widetilde{C}_f$
- Verification relation: $AV = \widetilde{C}_f z \cdot G$

Suppose f is a linear function:

$$f(x_1, \dots, x_{\ell}) = \sum_{i \in [\ell]} \alpha_i x_i$$

Hen we can write $\widetilde{C}_f = \left(\sum_{i \in [\ell]} \alpha_i W_i^{-1} \right) C$

Computing \widetilde{C}_f corresponds to homomorphic computation on $\widetilde{C}_1, \dots, \widetilde{C}_\ell$

 W_f is a fixed matrix that depends only on f and can be computed in the *offline phase*

For linear functions, if f is known in advance, verification runs in time $poly(\lambda, \log \ell)$

Fast Verification with Preprocessing

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}} = \boldsymbol{W}_i^{-1} \boldsymbol{C}$$

To verify opening V to (f, z), verifier computes the following:

- Homomorphic evaluation: $\widetilde{C}_1, \dots, \widetilde{C}_\ell, f \mapsto \widetilde{C}_f$
- Verification relation: $AV = \tilde{C}_f z \cdot G$

Suppose f is a linear function:

$$f(x_1,\ldots,x_\ell) = \sum \alpha_i x_i$$

Computing \widetilde{C}_f corresponds to homomorphic computation on $\widetilde{C}_1, \dots, \widetilde{C}_\ell$

Captures polynomial commitments as a special case (polynomial evaluation can be described by a linear function)

For linear functions, if f is known in advance, verification runs in time $poly(\lambda, \log \ell)$

Comparison to Concurrent Work

Consider a bivariate function F(x, y)

commit to input *x*

open at y to the value F(x, y)

F is computable by a circuit of depth d and width w

Scheme				Fast			Adaptive
	crs	com	open	Assumption	Verification	Transparent	Security
[dCP23]	<i>y</i>	1	<i>y</i>	SIS	×	\checkmark	×
[BCFL22]	w^5	1	1	twin- <i>k-M-</i> ISIS	\checkmark	×	\checkmark
This work	$ x ^{2}$	1	1	BASIS _{struct}	×	×	\checkmark

All comparisons ignoring $poly(\lambda, d)$ factors

Summary

New methodology for constructing lattice-based commitments:

- 1. Write down the main verification relation ($c = A_i v_i + x_i t_i$)
- 2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to A is hard given a trapdoor for a *related* matrix B

"Random" variant of BASIS assumption implies vector commitments and reduces to SIS

"Structured" variant of BASIS assumption implies functional commitments

- Yields linear and polynomial commitments with fast preprocessed verification
- Structure also enables aggregating openings

[see paper for details]

Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Analyze knowledge variants of the assumption

Reducing CRS size: can we obtain functional commitments with *linear-size* CRS? *Solved in [CLM23] for the case of constant-degree polynomials!*

Direct construction of lattice-based *subvector* commitments *Construction in our paper does* <u>not</u> *satisfy consistency*

Thank you!

https://eprint.iacr.org/2022/1515