Succinct Vector, Polynomial, and Functional Commitments from Lattices

Hoeteck Wee and David Wu
April 2023

Commitment Schemes
 cryptographic analog of a sealed envelope

Commitment Schemes
 cryptographic analog of a sealed envelope

Commitment Schemes

cryptographic analog of a sealed envelope

Commitment Schemes

Commit(crs, $x) \rightarrow(\sigma, \mathrm{st})$
Takes a common reference string and commits to a message
Outputs commitment σ and commitment state st

Commitment Schemes

Open + Verify

Commit(crs, $x) \rightarrow(\sigma$, st)
Open(st) $\rightarrow \pi$
Alternatively: Could define Commit to output (σ, π) and remove Open

Takes the commitment state and outputs an opening π Verify $(\operatorname{crs}, \sigma, x, \pi) \rightarrow 0 / 1$

Checks whether π is valid opening of σ to x

Commitment Schemes

Open + Verify

Binding: efficient adversary cannot open σ to two different values

$\operatorname{Verify}\left(\operatorname{crs}, \sigma, x_{0}, \pi_{0}\right)=1$
$\operatorname{Verify}\left(\operatorname{crs}, \sigma, x_{1}, \pi_{1}\right)=1$

Commitment Schemes

Open + Verify

Hiding: the commitment σ hides the input x

Commit(crs, x_{0}) \approx

Commit(crs, x_{1})

This Talk: Succinct Functional Commitments

Open + Verify

Commit(crs, $x) \rightarrow(\sigma$, st)
Open(st, $f) \rightarrow \pi$
Takes the commitment state and a function f and outputs an opening π Verify(crs, $\sigma,(f, y), \pi) \rightarrow 0 / 1$

Checks whether π is valid opening of σ to value y with respect to f

This Talk: Succinct Functional Commitments

Open + Verify

Binding: efficient adversary cannot open σ to two different values with respect to the same f

This Talk: Succinct Functional Commitments

Open + Verify

Hiding: commitment σ and opening π only reveal $f(x)$
Succinctness: commitments and openings should be short

- Short commitment: $|\sigma|=\operatorname{poly}(\lambda, \log |x|)$
- Short opening: $|\pi|=\operatorname{poly}(\lambda, \log |x|,|f(x)|)$

Special Cases of Functional Commitments

Vector commitments:

$$
\operatorname{ind}_{i}\left(x_{1}, \ldots, x_{n}\right):=x_{i}
$$

$\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

commit to a vector, open at an index

Polynomial commitments:

$$
f_{x}\left(\alpha_{0}, \ldots, \alpha_{d}\right):=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{d} x^{d}
$$

$\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}\right]$
commit to a polynomial, open to the evaluation at x

Succinct Functional Commitments

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	k - R-ISIS assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)
	supports private openings, commitments to large values, linearly-homomorphic	

Succinct Functional Commitments

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
$[$ LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
$[$ LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	k - R-ISIS assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)
This work	Boolean circuits	BASIS

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$

> short (i.e., low-norm) vector satisfying $\boldsymbol{A}_{i} \boldsymbol{u}_{i j}=\boldsymbol{t}_{j}$

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$

Commitment to $\boldsymbol{x} \in \mathbb{Z}_{q}^{\ell}$:

$$
\boldsymbol{c}=\sum_{i \in[\ell]} x_{i} \boldsymbol{t}_{i}
$$

linear combination of target vectors

Opening to value y at index i :

$$
\text { short } \boldsymbol{v}_{i} \text { such that } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+y \cdot \boldsymbol{t}_{i}
$$

Honest opening:
Correct as long as \boldsymbol{x} is short

$$
\boldsymbol{v}_{i}=\sum_{j \neq i} x_{j} \boldsymbol{u}_{i j} \boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i}=\sum_{j \neq i} x_{j} \boldsymbol{A}_{i} \boldsymbol{u}_{i j}+x_{i} \boldsymbol{t}_{i}=\sum_{j \in[\ell]} x_{j} \boldsymbol{t}_{j}=\boldsymbol{c}
$$

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$
[PPS21]: $\boldsymbol{A}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $\boldsymbol{t}_{\boldsymbol{i}} \leftarrow \mathbb{Z}_{q}^{n}$ are independent and uniform
suffices for vector commitments (from SIS)
[ACLMT21]: $\boldsymbol{A}_{i}=\boldsymbol{W}_{i} \boldsymbol{A}$ and $\boldsymbol{t}_{i}=\boldsymbol{W}_{i} \boldsymbol{u}_{i}$ where $\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times n}, \boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}, \boldsymbol{u}_{i} \leftarrow \mathbb{Z}_{q}^{n}$ (one candidate adaptation to the integer case)
generalizes to functional commitments for constant-degree polynomials (from $k-R-I S I S$)

Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{I}_{n} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{I}_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] } \\
& \boldsymbol{I}_{n} \text { denotes the identity matrix }
\end{aligned}
$$

Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\left[A_{1}\right.
$$

For security and functionality, it will be useful to write $\boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}}$

$$
G=\left[\begin{array}{llll}
1 & 2 & \cdots & 2^{\lfloor\log q\rfloor} \\
& & &
\end{array}\right.
$$

Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\begin{aligned}
& {\left[\boldsymbol{A}_{1}\right.} \\
& \left.\boldsymbol{A}_{\ell} \begin{array}{c:c}
& -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\hat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] \\
& \text { Common reference string: } \\
& \text { matrices } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m} \\
& \text { target vectors } \boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n} \\
& \text { auxiliary data: cross-terms } \boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right)
\end{aligned}
$$

Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { forashort } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\underbrace{\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & \\
& \ddots & & -\boldsymbol{G} \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{-}
\end{array}\right]}_{\boldsymbol{B}_{\ell}} \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\widehat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-\boldsymbol{x}_{\mathbf{1}} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] \begin{gathered}
\begin{array}{c}
\text { Common reference string: } \\
\begin{array}{l}
\text { matrices } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m} \\
\text { target vectors } \boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n} \\
\text { auxiliary data: eross-terms } u_{i j} \\
\text { trapdoor for } \boldsymbol{B}_{\ell}
\end{array} \\
\boldsymbol{x} \text { to the linear system } \boldsymbol{B}_{\ell} \boldsymbol{x}=\boldsymbol{y} \text { (for arbitrary } \boldsymbol{y} \text {) }
\end{array}
\end{gathered}
$$

Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

Committing to an input \boldsymbol{x} :
Use trapdoor for \boldsymbol{B}_{ℓ} to jointly sample a solution $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}, \hat{\boldsymbol{c}}$
$\boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}}$ is the commitment and $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{\ell}$ are the openings

Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system
\(\underbrace{\left[$$
\begin{array}{cccc}\boldsymbol{A}_{1} & & & \\
& \ddots & & -\boldsymbol{G} \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}\end{array}
$$\right]}_{\boldsymbol{B}_{\ell}} \cdot \underbrace{\left[\begin{array}{c}\boldsymbol{v}_{1}

\vdots

\boldsymbol{v}_{\ell}

\hat{\boldsymbol{c}}\end{array}\right]}_{\)| Supports statistically private openings |
| :---: |\(}=\left[\begin{array}{c}-x_{1} \boldsymbol{t}_{1}

\vdots

-x_{\ell} \boldsymbol{t}_{\ell}\end{array}\right]\)\begin{tabular}{l}
Committing to an input $\boldsymbol{x}:$

Use trapdoor for \boldsymbol{B}_{ℓ} to jointly
sample a solution $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}, \hat{\boldsymbol{c}}$

$\boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}}$ is the commitment and

$\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{\ell}$ are the openings
\end{tabular}

Proving Security

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell]
$$ for a short \boldsymbol{v}_{i}

Suppose adversary can break binding
outputs $c,\left(v_{i}, x_{i}\right),\left(v_{i}^{\prime}, x_{i}^{\prime}\right)$ such that

$$
\begin{aligned}
\boldsymbol{c} & =\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \\
& =\boldsymbol{A}_{i} \boldsymbol{v}_{i}^{\prime}+x_{i}^{\prime} \boldsymbol{t}_{i}
\end{aligned}
$$

Short integer solutions (SIS)
given $A \leftarrow \mathbb{Z}_{q}^{n \times m}$, hard to find short $\boldsymbol{x} \neq 0$ such that $\boldsymbol{A x}=\mathbf{0}$

$$
\boldsymbol{A}_{i}\left(v_{i}-v_{i}^{\prime}\right)=\left(x_{i}-x_{i}^{\prime}\right) \boldsymbol{e}_{1}
$$

$$
\boldsymbol{v}_{i}-\boldsymbol{v}_{i}^{\prime} \text { is a SIS solution for } \boldsymbol{A}_{i}
$$

$$
\text { set } A_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}
$$ without the first row

$$
\begin{array}{ll}
\text { given } & \text { matrices } A_{1}, \ldots, \boldsymbol{A}_{\ell} \\
& \text { target vectors } \boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \\
& \text { trapdoor for } \boldsymbol{B}_{\ell}
\end{array}
$$

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Adversary that breaks binding can solve SIS with respect to \boldsymbol{A}_{i}
(technically \boldsymbol{A}_{i} without the first row - which is equivalent to SIS with dimension $n-1$)

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Adversary that breaks binding can solve SIS with respect to \boldsymbol{A}_{i} Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to \boldsymbol{A}_{i} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \quad \begin{gathered}
\text { Can simulate CRS from BASIS challenge: } \\
\text { matrices } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times m} \\
\text { trapdoor for } \boldsymbol{B}_{\ell}
\end{gathered}
$$

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to \boldsymbol{A}_{i} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]
$$

When $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
auxiliary data: trapdoor for $\boldsymbol{B}_{\ell}=\left[\begin{array}{lll:c}\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\ & \ddots & & \vdots \\ & & \boldsymbol{A}_{\ell} & -\boldsymbol{G}\end{array}\right]$
To commit to a vector $\boldsymbol{x} \in \mathbb{Z}_{q}^{\ell}$: sample solution $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}, \widehat{\boldsymbol{c}}\right)$

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\hat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{e}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{e}_{\ell}
\end{array}\right]
$$

Can commit and open to arbitrary \mathbb{Z}_{q} vectors

Commitments and openings statistically hide unopened components

Linearly homomorphic:
$\boldsymbol{c}+\boldsymbol{c}^{\prime}$ is a commitment to $\boldsymbol{x}+\boldsymbol{x}^{\prime}$ with openings $\boldsymbol{v}_{i}+\boldsymbol{v}_{i}^{\prime}$

Commitment is $\boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}} \quad$ Openings are $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}$

Functional Commitments for Circuits

Setting: commit to an input $x \in\{0,1\}^{\ell}$, open to $f(\boldsymbol{x})$
(f can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation
Let $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$ be an arbitrary matrix
[GSW13, BGGHNSVV14, GVW15]
$\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G}$

homomorphic evaluation

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{V}_{f}+f(\boldsymbol{x}) \cdot \boldsymbol{G}
$$

$\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}$
\boldsymbol{C}_{i} is an encoding of x_{i} with (short) randomness \boldsymbol{V}_{i}
\boldsymbol{C}_{f} is an encoding of $f(\boldsymbol{x})$ with (short) randomness \boldsymbol{V}_{f}

Functional Commitments using Structured A_{i}

Instead of using random \boldsymbol{A}_{i}, consider structured $\boldsymbol{A}_{\boldsymbol{i}}$ (like in [ACLMT22])

$$
\begin{aligned}
& A \leftarrow \mathbb{Z}_{q}^{n \times m} \\
& W_{1}, \ldots, W_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times n} \quad \text { (invertible) }
\end{aligned}
$$

$$
\boldsymbol{A}_{\boldsymbol{i}}=W_{i} \boldsymbol{A}
$$

Common reference string still consists of trapdoor for \boldsymbol{B}_{ℓ} (with the structured \boldsymbol{A}_{i})

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{lll::}
\boldsymbol{A}_{1} & & \\
& \ddots & \\
& & \boldsymbol{A}_{\ell} \\
& -\boldsymbol{G}
\end{array}\right]
$$

Functional Commitments using Structured A_{i}

Instead of using random \boldsymbol{A}_{i}, consider structured $\boldsymbol{A}_{\boldsymbol{i}}$ (like in [ACLMT22])

$$
\begin{aligned}
& \boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m} \\
& W_{1}, \ldots, W_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times n} \quad \text { (invertible) } \\
& \boldsymbol{A}_{\boldsymbol{i}}=\boldsymbol{W}_{i} \boldsymbol{A}
\end{aligned}
$$

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{lll:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]
$$

To commit to an input $\boldsymbol{x} \in\{0,1\}^{\ell}$:
Use trapdoor for \boldsymbol{B}_{ℓ} to jointly sample $\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\ell}, \widehat{\boldsymbol{C}}$ that satisfy

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\widehat{\boldsymbol{C}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{W}_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{W}_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Functional Commitments using Structured A_{i}

Commitment relation:

$$
\left[\begin{array}{cccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\widehat{\boldsymbol{C}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{W}_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{W}_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Homomorphic evaluation:

$$
\begin{gathered}
\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G} \\
\vdots \\
\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}
\end{gathered}
$$

for all $i \in[\ell]$

$$
\boldsymbol{A}_{i} \boldsymbol{V}_{i}-\boldsymbol{G} \widehat{\boldsymbol{C}}=-x_{i} \boldsymbol{W}_{i} \boldsymbol{G}
$$

recall $\boldsymbol{A}_{i}=\boldsymbol{W}_{i} \boldsymbol{A}$

$$
\boldsymbol{W}_{i} \boldsymbol{A} \boldsymbol{V}_{i}-\boldsymbol{G} \widehat{\boldsymbol{C}}=-x_{i} \boldsymbol{W}_{i} \boldsymbol{G}
$$

recall \boldsymbol{W}_{i} is invertible

$$
\boldsymbol{A} \boldsymbol{V}_{i}-\boldsymbol{W}_{i}^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}=-x_{i} \boldsymbol{G}
$$

rearranging

$$
\boldsymbol{W}_{i}^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}=\boldsymbol{A} \boldsymbol{V}_{i}+x_{i} \boldsymbol{G}
$$

Functional Commitments using Structured $\boldsymbol{A}_{\boldsymbol{i}}$

Commitment relation:

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\widehat{\boldsymbol{C}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{W}_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{W}_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Homomorphic evaluation:

$$
\begin{gathered}
\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G} \\
\vdots \\
\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}
\end{gathered} \square \boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{V}_{f}+f(\boldsymbol{x}) \cdot \boldsymbol{G}
$$

function only of the
commitment $\boldsymbol{C}=\boldsymbol{G} \widehat{\boldsymbol{C}}$

$$
\widetilde{C}_{i}=W_{i}^{-1} G \widehat{C}
$$

for all $i \in[\ell]$

$$
\boldsymbol{A}_{i} \boldsymbol{V}_{i}-\boldsymbol{G} \widehat{\boldsymbol{C}}=-x_{i} \boldsymbol{W}_{i} \boldsymbol{G}
$$

recall $\boldsymbol{A}_{i}=\boldsymbol{W}_{i} \boldsymbol{A}$

$$
\boldsymbol{W}_{i} \boldsymbol{A} \boldsymbol{V}_{i}-\boldsymbol{G} \widehat{\boldsymbol{C}}=-x_{i} \boldsymbol{W}_{i} \boldsymbol{G}
$$

recall \boldsymbol{W}_{i} is invertible

$$
A \boldsymbol{V}_{i}-\boldsymbol{W}_{i}^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}=-x_{i} \boldsymbol{G}
$$

rearranging

$$
\begin{aligned}
& W_{i}^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}=\boldsymbol{A} \boldsymbol{V}_{i}+x_{i} \boldsymbol{G} \\
& \widetilde{\boldsymbol{C}}_{i}=\boldsymbol{A} \boldsymbol{V}_{i}+x_{i} \boldsymbol{G}
\end{aligned}
$$

Functional Commitments using Structured $\boldsymbol{A}_{\boldsymbol{i}}$

Commitment relation:

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\widehat{\boldsymbol{C}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{W}_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{W}_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Homomorphic evaluation:
$\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G}$

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{V}_{f}+f(\boldsymbol{x}) \cdot \boldsymbol{G}
$$

$\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}$
function only of the commitment $\boldsymbol{C}=\boldsymbol{G} \widehat{\boldsymbol{C}}$

$$
\widetilde{C}_{i}=W_{i}^{-1} G \widehat{C}
$$

$$
\widetilde{\boldsymbol{C}}_{i}=\boldsymbol{A} \boldsymbol{V}_{i}+x_{i} \boldsymbol{G}
$$

$\widetilde{\boldsymbol{C}}_{i}$ is an encoding of x_{i} with randomness \boldsymbol{V}_{i} compute on
$\widetilde{\boldsymbol{C}}_{1}, \ldots \widetilde{\boldsymbol{c}}_{f}$

$$
\widetilde{\boldsymbol{C}}_{f}=\boldsymbol{A} \boldsymbol{V}_{f, f(x)}+f(\boldsymbol{x}) \boldsymbol{G}
$$

$\widetilde{\boldsymbol{C}}_{f}$ is an encoding of $f(\boldsymbol{x})$ with randomness $\boldsymbol{V}_{f, f(\boldsymbol{x})}$
[GVW15]: independent \boldsymbol{V}_{i} is sampled for each input bit, so commitments \boldsymbol{C}_{i} are independent

- long commitment, security from SIS

This work: publish a trapdoor that allows deriving \boldsymbol{C}_{i} (and associated \boldsymbol{V}_{i}) from a single commitment $\widehat{\boldsymbol{C}}$

- short commitment, stronger assumption

Functional Commitments using Structured $\boldsymbol{A}_{\boldsymbol{i}}$

Commitment relation:

$$
\left[\begin{array}{cccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\widehat{\boldsymbol{C}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{W}_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{W}_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Homomorphic evaluation:
$\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G}$

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{V}_{f}+f(\boldsymbol{x}) \cdot \boldsymbol{G}
$$

$\boldsymbol{C}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}$
Opening is $\boldsymbol{V}_{f, f(x)}$ is (short) linear function of $\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\ell}$

To verify:

1. Expand commitment

$$
\boldsymbol{C} \stackrel{\widetilde{\boldsymbol{c}}_{i}=\boldsymbol{W}_{i}^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}}{ } \left\lvert\, \begin{gathered}
\widetilde{\boldsymbol{C}}_{1}=\boldsymbol{A} \boldsymbol{V}_{1}+x_{1} \boldsymbol{G} \\
\vdots \\
\widetilde{\boldsymbol{C}}_{\ell}=\boldsymbol{A} \boldsymbol{V}_{\ell}+x_{\ell} \boldsymbol{G}
\end{gathered}\right.
$$

2. Homomorphically evaluate f
$\widetilde{\boldsymbol{C}}_{1}, \ldots \widetilde{\boldsymbol{C}}_{\ell} \quad \widetilde{\boldsymbol{C}}_{f}$
3. Check verification relation

$$
\boldsymbol{A} \boldsymbol{V}_{f, z}=\widetilde{\boldsymbol{C}}_{f}-z \cdot \boldsymbol{G}
$$

Functional Commitments from Lattices

Security follows from BASIS assumption with a structured matrix:

SIS is hard with respect to \boldsymbol{A} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]
$$

where $\boldsymbol{A}_{i}=\boldsymbol{W}_{i} \boldsymbol{A}$ where $\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times n}$ and $\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$
Falsifiable assumption but does not appear to reduce to standard SIS
$\ell=1$ case does follow from plain SIS
Open problem: Understanding security or attacks when $\ell>1$

Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

$$
\text { matrices } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m} \text { where } \boldsymbol{A}_{i}=\boldsymbol{W}_{i} \boldsymbol{A}
$$

$$
\text { auxiliary data: trapdoor for } \boldsymbol{B}_{\ell}=\left[\begin{array}{lll:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]
$$

To commit to a vector $\boldsymbol{x} \in\{0,1\}^{\ell}$: sample $\left(\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\ell}, \widehat{\boldsymbol{C}}\right)$

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{\ell} \\
\widehat{\boldsymbol{C}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{W}_{1} \boldsymbol{G} \\
\vdots \\
-x_{\ell} \boldsymbol{W}_{\ell} \boldsymbol{G}
\end{array}\right]
$$

Scheme supports functions computable by Boolean circuits of (bounded) depth d

$$
\begin{gathered}
|\operatorname{crs}|=\ell^{2} \cdot \operatorname{poly}(\lambda, d, \log \ell) \\
|C|=\operatorname{poly}(\lambda, d, \log \ell)
\end{gathered}
$$

$$
\left|\boldsymbol{V}_{f, f(x)}\right|=\operatorname{poly}(\lambda, d, \log \ell)
$$

Verification time scales with $|f|$ (i.e., size of circuit computing f)

Commitment is $\boldsymbol{C}=\boldsymbol{G} \widehat{\boldsymbol{C}} \quad$ Openings for function f is $\left[\boldsymbol{V}_{1}|\cdots| \boldsymbol{V}_{\ell}\right] \cdot \boldsymbol{H}_{\widetilde{\boldsymbol{C}}, f, \boldsymbol{x}}$

Fast Verification with Preprocessing

$$
\widetilde{\boldsymbol{C}}_{i}=\boldsymbol{W}_{i}^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}=\boldsymbol{W}_{i}^{-1} \boldsymbol{C}
$$

To verify opening V to (f, z), verifier computes the following:

- Homomorphic evaluation: $\widetilde{\boldsymbol{C}}_{1}, \ldots, \widetilde{\boldsymbol{C}}_{\ell}, f \mapsto \widetilde{\boldsymbol{C}}_{f}$
- Verification relation: $\boldsymbol{A V}=\widetilde{\boldsymbol{C}}_{f}-z \cdot \boldsymbol{G}$

Suppose f is a linear function:

> Computing $\widetilde{\boldsymbol{C}}_{f}$ corresponds to homomorphic computation on $\widetilde{\boldsymbol{C}}_{1}, \ldots, \widetilde{\boldsymbol{C}}_{\ell}$

$$
f\left(x_{1}, \ldots, x_{\ell}\right)=\sum_{i \in[\ell]} \alpha_{i} x_{i}
$$

Then we can write $\widetilde{\boldsymbol{C}}_{f}=\boldsymbol{M}_{f} \cdot \boldsymbol{C}$
\boldsymbol{M}_{f} is a fixed matrix that depends only on f and can be computed in offline phase

For linear functions, if f is known in advance, verification runs in time poly $(\lambda, \log \ell)$

Fast Verification with Preprocessing

$$
\widetilde{\boldsymbol{C}}_{i}=\boldsymbol{W}_{i}^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}=\boldsymbol{W}_{i}^{-1} \boldsymbol{C}
$$

To verify opening V to (f, z), verifier computes the following:

- Homomorphic evaluation: $\widetilde{\boldsymbol{C}}_{1}, \ldots, \widetilde{\boldsymbol{C}}_{\ell}, f \mapsto \widetilde{\boldsymbol{C}}_{f}$
- Verification relation: $\boldsymbol{A V}=\widetilde{\boldsymbol{C}}_{f}-z \cdot \boldsymbol{G}$

Suppose f is a linear function:

$$
f\left(x_{1}, \ldots, x_{\ell}\right)=\sum \alpha_{i} x_{i}
$$

Captures polynomial commitments as a special case (polynomial evaluation can be described by a linear function)

For linear functions, if f is known in advance, verification runs in time poly $(\lambda, \log \ell)$

Summary

New methodology for constructing lattice-based commitments:

1. Write down the main verification relation ($\boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i}$)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:
SIS with respect to \boldsymbol{A} is hard given a trapdoor for a related matrix \boldsymbol{B}
"Random" variant of BASIS assumption implies vector commitments and reduces to SIS
"Structured" variant of BASIS assumption implies functional commitments

- Yields linear and polynomial commitments with fast preprocessed verification
- Structure also enables aggregating openings
[see paper for details]

Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)
Describe and analyze knowledge variants of the assumption or the constructions

Reducing CRS size: can we obtain functional commitments with linear-size CRS?

Thank you!
https://eprint.iacr.org/2022/1515

