Succinct Vector, Polynomial, and Functional Commitments from Lattices

Hoeteck Wee and David Wu

April 2023

cryptographic analog of a sealed envelope

cryptographic analog of a sealed envelope

cryptographic analog of a sealed envelope

 $Commit(crs, x) \rightarrow (\sigma, st)$

Takes a common reference string and commits to a message Outputs commitment σ and commitment state st

Commit(crs, x) \rightarrow (σ , st) Open(st) $\rightarrow \pi$

Alternatively: Could define Commit to output (σ, π) and remove Open

Takes the commitment state and outputs an opening π

Verify(crs, σ, x, π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to x

Binding: efficient adversary cannot open σ to two different values

$$\begin{array}{c}
\pi_{0} \\
\pi_{1}
\end{array} \quad \forall rify(crs, \sigma, x_{0}, \pi_{0}) = 1 \\
\hline
\text{Verify}(crs, \sigma, x_{1}, \pi_{1}) = 1
\end{array}$$

Hiding: the commitment σ hides the input x

This Talk: Succinct Functional Commitments

Commit(crs, x) \rightarrow (σ , st) Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs,
$$\sigma$$
, (f, y) , π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

This Talk: Succinct Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

$$\pi_{0} (f, y_{0}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{0}), \pi_{0}) = 1$$

$$\pi_{1} (f, y_{1}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{1}), \pi_{1}) = 1$$

This Talk: Succinct Functional Commitments

Hiding: commitment σ and opening π only reveal f(x)

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = \text{poly}(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|, |f(x)|)$

Special Cases of Functional Commitments

Vector commitments:

$$[x_1, x_2, \dots, x_n] \qquad \qquad \text{ind}_i(x_1, \dots, x_n) \coloneqq x_i$$

commit to a vector, open at an index

Polynomial commitments:

commit to a polynomial, open to the evaluation at x

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	<i>k-R-</i> ISIS assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	k-R-ISIS assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)
This work	Boolean circuits	BASIS _{struct} assumption (falsifiable)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ): matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^n$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$ short (i.e., low-norm) vector satisfying $A_i u_{ij} = t_j$

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $\boldsymbol{u}_{ij} \leftarrow A_i^{-1}(\boldsymbol{t}_j) \in \mathbb{Z}_q^m$ where $i \neq j$

Commitment to $x \in \mathbb{Z}_q^{\ell}$:

Opening to value y at index i:

 $\boldsymbol{c} = \sum_{i \in [\ell]} x_i \boldsymbol{t}_i$

linear combination of target vectors

short \boldsymbol{v}_i such that $\boldsymbol{c} = \boldsymbol{A}_i \boldsymbol{v}_i + y \cdot \boldsymbol{t}_i$

Honest opening:

$$\boldsymbol{v}_i = \sum_{j \neq i} x_j \boldsymbol{u}$$

$$z_j \boldsymbol{u}_{ij} \quad \boldsymbol{A}_i \boldsymbol{v}_i + x_i \boldsymbol{t}_i = \sum_{j \neq i} x_j \boldsymbol{A}_i \boldsymbol{u}_{ij} + x_i \boldsymbol{t}_i = \sum_{j \in [\ell]} x_j \boldsymbol{t}_j = \boldsymbol{c}$$

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

[PPS21]: $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ and $t_i \leftarrow \mathbb{Z}_q^n$ are independent and uniform suffices for vector commitments (from SIS)

[ACLMT21]: $A_i = W_i A$ and $t_i = W_i u_i$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$, $A \leftarrow \mathbb{Z}_q^{n \times m}$, $u_i \leftarrow \mathbb{Z}_q^n$ (one candidate adaptation to the integer case)

<u>generalizes</u> to functional commitments for constant-degree polynomials (from k-R-ISIS)

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | & -I_n \\ & \ddots & & & & | & \vdots \\ & & A_\ell & & -I_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_\ell \\ c \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_\ell t_\ell \end{bmatrix}$$

I_n denotes the identity matrix

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_{\ell} t_{\ell} \end{bmatrix}$$

Common reference string: matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ target vectors $t_1, ..., t_\ell \in \mathbb{Z}_q^n$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j)$

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{bmatrix} A_{1} & & | & -G \\ & \ddots & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_{1} \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_{1}t_{1} \\ \vdots \\ -x_{\ell}t_{\ell} \end{bmatrix}$ Common reference string: matrices $A_{1}, \dots, A_{\ell} \in \mathbb{Z}_{q}^{n \times m}$ target vectors $t_{1}, \dots, t_{\ell} \in \mathbb{Z}_{q}^{n}$ *auxiliary data:* cross-terms $u_{ij} \leftarrow A_{i}^{-1}(t_{j})$ trapdoor for B_{ℓ} Trapdoor for B_{ℓ} can be used to sample <u>short</u> solutions *x* to the linear system $B_{\ell}x = y$ (for arbitrary *y*)

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i$$
 $\forall i \in [\ell]$
for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{bmatrix} A_1 & & & -G \\ & \ddots & & & \vdots \\ & & A_{\ell} & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 t_1 \\ \vdots \\ -x_{\ell} t_{\ell} \end{bmatrix}$ Use trapdoor for B_{ℓ} to jointly sample a solution $v_1, \dots, v_{\ell}, \hat{c}$

Committing to an input *x*:

 $c = G\hat{c}$ is the commitment and $\boldsymbol{v}_1, \dots \boldsymbol{v}_\ell$ are the openings

Supports commitments to arbitrary (i.e., large) values over \mathbb{Z}_a

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

for a short v_i

Our approach: rewrite ℓ relations as a single linear system

 $\begin{vmatrix} A_1 & & | -G \\ & \ddots & | & | \\ & A_\ell & | -G \end{vmatrix} \cdot \begin{vmatrix} v_1 \\ \vdots \\ v_\ell \\ \hat{c} \end{vmatrix} = \begin{vmatrix} -x_1 t_1 \\ \vdots \\ -x_\ell t_\ell \end{vmatrix}$ Use trapdoor for B_ℓ to jointly sample a solution $v_1, \dots, v_\ell, \hat{c}$

Committing to an input *x*:

 $c = G\hat{c}$ is the commitment and v_1 , ... v_ℓ are the openings

Supports statistically private openings (commitment + opening *hides* unopened positions)

Proving Security

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i$ $\forall i \in [\ell]$ for a short v_i

Suppose adversary can break binding

outputs $\boldsymbol{c}, (\boldsymbol{v}_i, \boldsymbol{x}_i), (\boldsymbol{v}_i', \boldsymbol{x}_i')$ such that

 $c = A_i \boldsymbol{v}_i + x_i \boldsymbol{t}_i$ $= A_i \boldsymbol{v}_i' + x_i' \boldsymbol{t}_i$

given matrices A_1, \dots, A_ℓ target vectors t_1, \dots, t_ℓ trapdoor for B_ℓ

set $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ set $t_i = e_1 = [1, 0, ..., 0]^T$

Short integer solutions (SIS)

given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0

$$\boldsymbol{A}_{i}(\boldsymbol{v}_{i}-\boldsymbol{v}_{i}')=(\boldsymbol{x}_{i}-\boldsymbol{x}_{i}')\boldsymbol{e}_{1}$$

 $v_i - v'_i$ is a SIS solution for A_i without the first row

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$ for a short v_i

Adversary that breaks binding can solve SIS with respect to A_i

(technically A_i without the first row – which is equivalent to SIS with dimension n - 1)

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: $c = A_i v_i + x_i t_i$ $\forall i \in [\ell]$ for a short v_i

Adversary that breaks binding can solve SIS with respect to A_i Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to **A**_i given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & | & -\boldsymbol{G} \\ & \ddots & & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

Can simulate CRS from BASIS challenge: matrices $A_1, \dots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ trapdoor for B_ℓ

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & | & -\boldsymbol{G} \\ & \ddots & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

When $A_1, ..., A_{\ell} \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices $A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$ auxiliary data: trapdoor for $B_\ell = \begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & & | & \vdots \\ & & & & A_\ell & | & -G \end{bmatrix}$

To commit to a vector $x \in \mathbb{Z}_q^{\ell}$: sample solution $(v_1, ..., v_{\ell}, \hat{c})$

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} -x_1 e_1 \\ \vdots \\ -x_{\ell} e_{\ell} \end{bmatrix}$$

Commitment is $\boldsymbol{c} = \boldsymbol{G} \boldsymbol{\widehat{c}}$ Openings are $\boldsymbol{v}_1, \dots, \boldsymbol{v}_\ell$

Can commit and open to **arbitrary** \mathbb{Z}_q vectors

Commitments and openings statistically **hide** unopened components

Linearly homomorphic: c + c' is a commitment to x + x' with openings $v_i + v'_i$

Functional Commitments for Circuits

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)

(f can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation [GSW13, BGGHNSVV14, GVW15]

Let $A \in \mathbb{Z}_q^{n \times m}$ be an arbitrary matrix

 $C_{1} = AV_{1} + x_{1}G$ \vdots $C_{\ell} = AV_{\ell} + x_{\ell}G$ $C_{f} = AV_{f} + f(x) \cdot G$ $C_{f} = AV_{f} + f(x) \cdot G$

Instead of using random A_i , consider structured A_i (like in [ACLMT22])

 $A \leftarrow \mathbb{Z}_q^{n \times m}$ $W_1, \dots, W_\ell \leftarrow \mathbb{Z}_q^{n \times n} \quad (invertible)$

$$A_i = W_i A$$

Common reference string still consists of trapdoor for B_{ℓ} (with the structured A_i)

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & & | & -\boldsymbol{G} \\ & \ddots & & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

Instead of using random A_i , consider structured A_i (like in [ACLMT22])

$$\begin{array}{l} A \leftarrow \mathbb{Z}_{q}^{n \times m} \\ W_{1}, \dots, W_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times n} \quad (invertible) \\ A_{i} = W_{i}A \end{array} \qquad \begin{array}{l} B_{\ell} = \begin{bmatrix} A_{1} & & & & & & \\ & \ddots & & & & & \\ & & A_{\ell} & & & \\ & & & & A_{\ell} & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & &$$

To commit to an input $x \in \{0,1\}^{\ell}$:

Use trapdoor for B_ℓ to jointly sample $V_1, \ldots, V_\ell, \widehat{C}$ that satisfy

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Commitment relation:

$$\begin{bmatrix} A_1 & & & & & \\ & \ddots & & & & \\ & & A_\ell & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Homomorphic evaluation:

$$C_1 = AV_1 + x_1G$$

$$\vdots$$

$$C_f = AV_f + f(x) \cdot G$$

$$C_\ell = AV_\ell + x_\ell G$$

for all $i \in [\ell]$ $A_i V_i - G \widehat{C} = -x_i W_i G$ recall $A_i = W_i A$ $W_i A V_i - G \widehat{C} = -x_i W_i G$ recall \boldsymbol{W}_i is invertible $AV_i - W_i^{-1}G\widehat{C} = -x_iG$ rearranging $\boldsymbol{W}_{i}^{-1}\boldsymbol{G}\widehat{\boldsymbol{C}}=\boldsymbol{A}\boldsymbol{V}_{i}+\boldsymbol{x}_{i}\boldsymbol{G}$

Commitment relation:

$$\begin{bmatrix} A_1 & & & & & \\ & \ddots & & & & \\ & & & A_\ell & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Homomorphic evaluation:

$$C_1 = AV_1 + x_1G$$

:

$$C_f = AV_f + f(x) \cdot G$$

$$C_\ell = AV_\ell + x_\ell G$$

function only of the commitment $C = G\widehat{C}$

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}$$

for all $i \in [\ell]$ $A_i V_i - G \widehat{C} = -x_i W_i G$ recall $A_i = W_i A$ $W_i A V_i - G \widehat{C} = -x_i W_i G$ recall \boldsymbol{W}_i is invertible $AV_i - W_i^{-1}G\widehat{C} = -x_iG$ rearranging $\boldsymbol{W}_i^{-1}\boldsymbol{G}\widehat{\boldsymbol{C}} = \boldsymbol{A}\boldsymbol{V}_i + \boldsymbol{x}_i\boldsymbol{G}$ $\widetilde{\boldsymbol{C}}_i = \boldsymbol{A}\boldsymbol{V}_i + x_i\boldsymbol{G}$

Commitment relation:

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_{\ell} \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_{\ell} W_{\ell} G \end{bmatrix}$$

Homomorphic evaluation:

$$C_1 = AV_1 + x_1G$$

:

$$C_f = AV_f + f(x) \cdot G$$

$$C_\ell = AV_\ell + x_\ell G$$

function only of the commitment $C = G\widehat{C}$

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}$$

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{A}\boldsymbol{V}_i + \boldsymbol{x}_i\boldsymbol{G}$$

 \widetilde{C}_i is an encoding of x_i with randomness V_i

compute on $\widetilde{C}_1, \dots, \widetilde{C}_f$ compute on V_1, \dots, V_ℓ

$$\widetilde{\boldsymbol{C}}_f = \boldsymbol{A}\boldsymbol{V}_{f,f(\boldsymbol{x})} + f(\boldsymbol{x})\boldsymbol{G}$$

 \widetilde{C}_{f} is an encoding of f(x) with randomness $V_{f,f(x)}$

[GVW15]: independent V_i is sampled for each input bit, so commitments C_i are independent

long commitment, security from SIS

This work: publish a trapdoor that allows deriving C_i (and associated V_i) from a single commitment \widehat{C}

short commitment, stronger assumption

Commitment relation:

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_{\ell} & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_{\ell} \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_{\ell} W_{\ell} G \end{bmatrix}$$

Homomorphic evaluation:

$$C_1 = AV_1 + x_1G$$

$$\vdots$$

$$C_f = AV_f + f(x) \cdot G$$

$$C_\ell = AV_\ell + x_\ell G$$

Opening is $V_{f,f(x)}$ is (short) linear function of V_1, \ldots, V_ℓ

Opening to function f proceeds exactly as in [GVW15]

To verify:

1. Expand commitment

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}$$

$$\widetilde{\boldsymbol{C}}_{1} = \boldsymbol{A}\boldsymbol{V}_{1} + \boldsymbol{x}_{1}\boldsymbol{G}$$
$$\vdots$$
$$\widetilde{\boldsymbol{C}}_{\ell} = \boldsymbol{A}\boldsymbol{V}_{\ell} + \boldsymbol{x}_{\ell}\boldsymbol{G}$$

2. Homomorphically evaluate f $\widetilde{C}_1, \ldots \widetilde{C}_\ell \longrightarrow \widetilde{C}_f$

3. Check verification relation

$$\boldsymbol{AV}_{f,z} = \widetilde{\boldsymbol{C}}_f - z \cdot \boldsymbol{G}$$

Functional Commitments from Lattices

Security follows from BASIS assumption with a **structured** matrix:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$\boldsymbol{B}_{\ell} = \begin{bmatrix} \boldsymbol{A}_1 & & & & | & -\boldsymbol{G} \\ & \ddots & & & & | & \vdots \\ & & \boldsymbol{A}_{\ell} & | & -\boldsymbol{G} \end{bmatrix}$$

where $A_i = W_i A$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$ and $A \leftarrow \mathbb{Z}_q^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

 $\ell = 1$ case does follow from plain SIS

Open problem: Understanding security or attacks when $\ell > 1$

Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

matrices
$$A_1, ..., A_{\ell} \in \mathbb{Z}_q^{n \times m}$$
 where $A_i = W_i A$
auxiliary data: trapdoor for $B_{\ell} = \begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & & | & \vdots \\ & & & A_{\ell} & | & -G \end{bmatrix}$

To commit to a vector $\mathbf{x} \in \{0,1\}^{\ell}$: sample $(\mathbf{V}_1, \dots, \mathbf{V}_{\ell}, \widehat{\mathbf{C}})$

$$\begin{bmatrix} A_1 & & & | -G \\ & \ddots & & | \vdots \\ & & A_{\ell} & | -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_{\ell} \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_{\ell} W_{\ell} G \end{bmatrix}$$

Scheme supports functions computable by Boolean circuits of (bounded) depth *d*

$$|\operatorname{crs}| = \ell^2 \cdot \operatorname{poly}(\lambda, d, \log \ell)$$

$$|\boldsymbol{C}| = \operatorname{poly}(\lambda, d, \log \ell)$$

$$|V_{f,f(x)}| = \operatorname{poly}(\lambda, d, \log \ell)$$

Verification **time** scales with |f| (i.e., size of circuit computing f)

Openings for function f is $[V_1 | \cdots | V_\ell] \cdot H_{\widetilde{C}, f, x}$

Commitment is $C = G\widehat{C}$

Fast Verification with Preprocessing

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}} = \boldsymbol{W}_i^{-1} \boldsymbol{C}$$

To verify opening V to (f, z), verifier computes the following:

- Homomorphic evaluation: $\widetilde{C}_1, \dots, \widetilde{C}_\ell, f \mapsto \widetilde{C}_f$
- Verification relation: $AV = \widetilde{C}_f z \cdot G$

Suppose f is a linear function:

$$f(x_1, \dots, x_\ell) = \sum_{i \in [\ell]} \alpha_i x_i$$

Then we can write $\widetilde{C}_f = M_f \cdot C$

Computing \widetilde{C}_f corresponds to homomorphic computation on $\widetilde{C}_1, \dots, \widetilde{C}_\ell$

 M_f is a fixed matrix that depends only on f and can be computed in *offline phase*

For linear functions, if f is known in advance, verification runs in time $poly(\lambda, \log \ell)$

Fast Verification with Preprocessing

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}} = \boldsymbol{W}_i^{-1} \boldsymbol{C}$$

To verify opening V to (f, z), verifier computes the following:

- Homomorphic evaluation: $\widetilde{C}_1, \dots, \widetilde{C}_\ell, f \mapsto \widetilde{C}_f$
- Verification relation: $AV = \tilde{C}_f z \cdot G$

Suppose f is a linear function:

$$f(x_1,\ldots,x_\ell) = \sum \alpha_i x_i$$

Computing \widetilde{C}_f corresponds to homomorphic computation on $\widetilde{C}_1, \dots, \widetilde{C}_\ell$

Captures polynomial commitments as a special case (polynomial evaluation can be described by a linear function)

For linear functions, if f is known in advance, verification runs in time $poly(\lambda, \log \ell)$

Summary

New methodology for constructing lattice-based commitments:

- 1. Write down the main verification relation ($c = A_i v_i + x_i t_i$)
- 2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to A is hard given a trapdoor for a *related* matrix B

"Random" variant of BASIS assumption implies vector commitments and reduces to SIS

"Structured" variant of BASIS assumption implies functional commitments

- Yields linear and polynomial commitments with fast preprocessed verification
- Structure also enables aggregating openings

[see paper for details]

Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Describe and analyze knowledge variants of the assumption or the constructions

Reducing CRS size: can we obtain functional commitments with *linear*-size CRS?

Thank you!

https://eprint.iacr.org/2022/1515