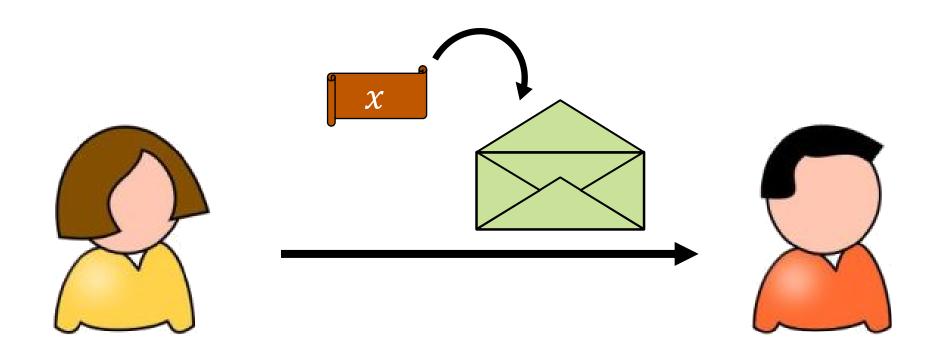
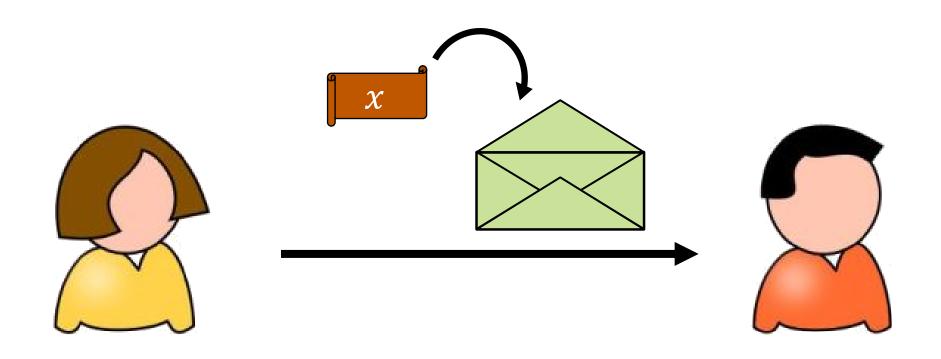
Succinct Vector, Polynomial, and Functional Commitments from Lattices

Hoeteck Wee and David Wu

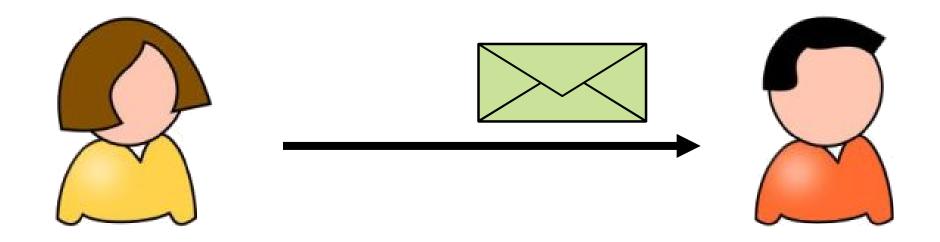
March 2023



cryptographic analog of a sealed envelope



cryptographic analog of a sealed envelope



cryptographic analog of a sealed envelope

Commit(crs, x) \rightarrow (σ , st)

Takes a common reference string and commits to a message

Outputs commitment σ and commitment state st

Commit(crs,
$$x$$
) \rightarrow (σ , st)
Open(st) $\rightarrow \pi$

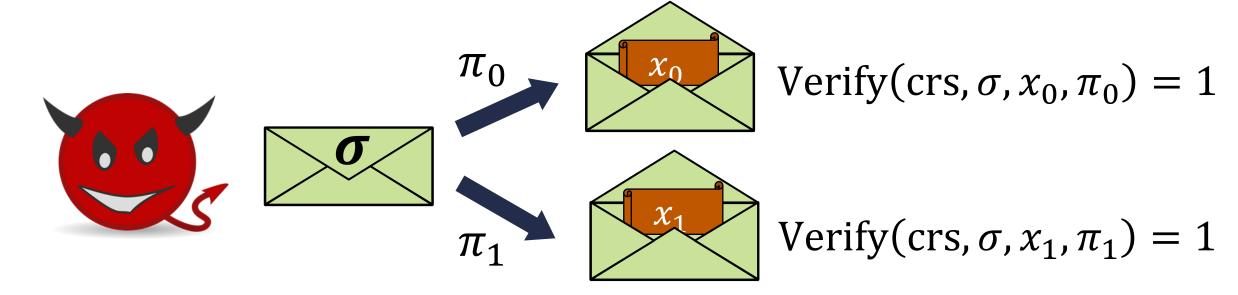
Alternatively: Could define Commit to output (σ, π) and remove Open

Takes the commitment state and outputs an opening π

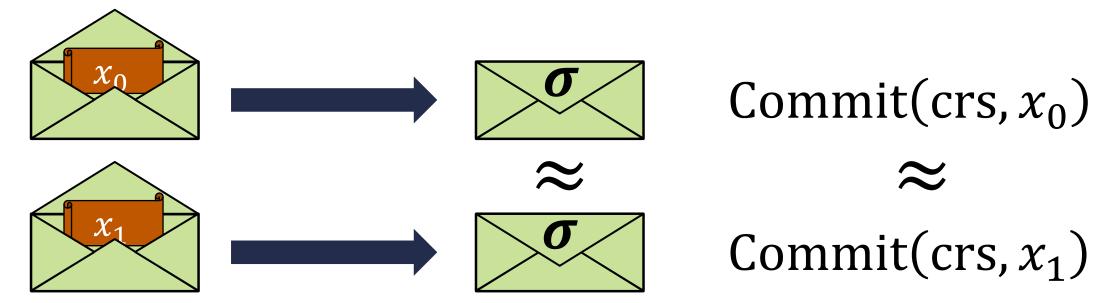
Verify(crs,
$$\sigma$$
, x , π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to x

Binding: efficient adversary cannot open σ to two different values



Hiding: the commitment σ hides the input x



Commit(crs, x) \rightarrow (σ , st)

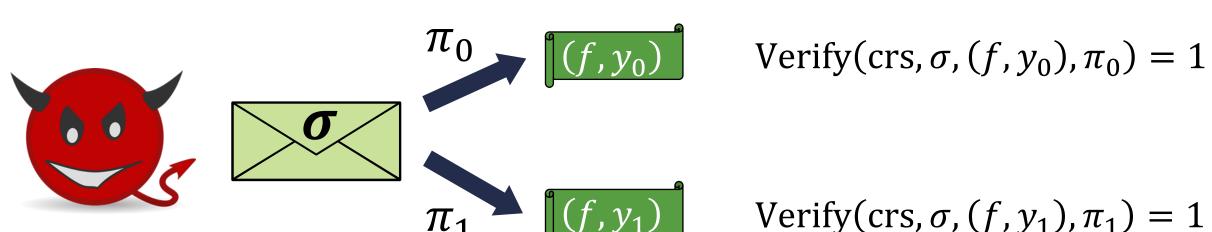
Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

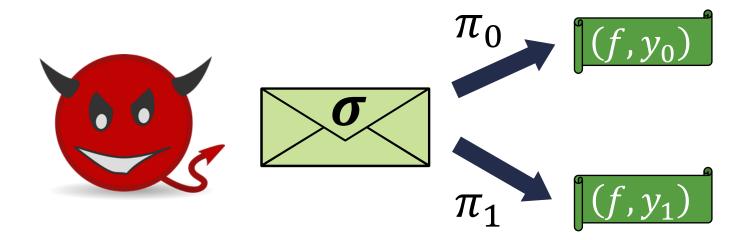
Verify(crs, σ , (f, y), π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

Binding: efficient adversary cannot open σ to two different values with respect to the **same** f



Binding: efficient adversary cannot open σ to two different values with respect to the **same** f



Note: successful opening of σ to y with respect to f does *not* mean there exists x where y = f(x)

Hiding: commitment σ and opening π only reveal f(x)

Succinctness: commitments and openings should be short

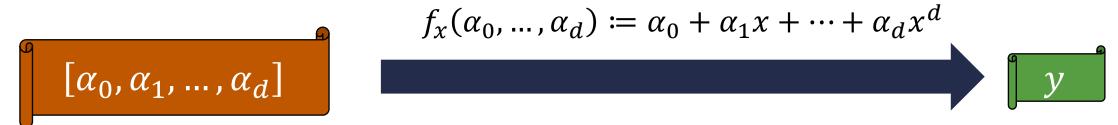
- Short commitment: $|\sigma| = \text{poly}(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|, |f(x)|)$

Special Cases of Functional Commitments

Vector commitments:

commit to a vector, open at an index

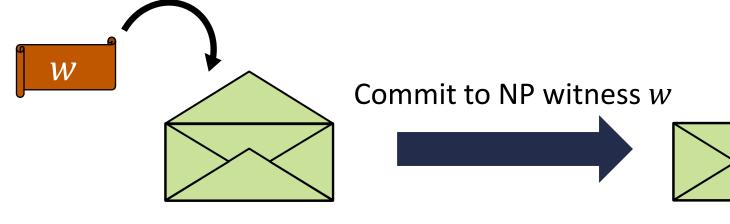
Polynomial commitments:



commit to a polynomial, open to the evaluation at x

Connection to Succinct Arguments

Goal: prove that $x \in \mathcal{L}$ (where \mathcal{L} is an NP language)

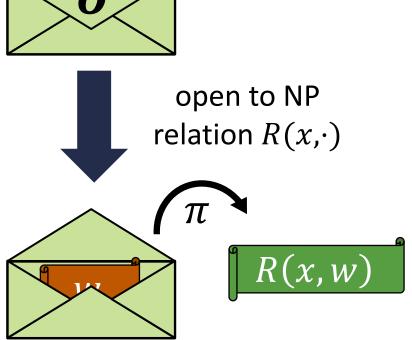


Proof consists of commitment σ and opening π

Succinctness means that $|\sigma|$, $|\pi| = \text{poly}(\lambda, \log w)$

Soundness relies on stronger version of binding

More generally: can view functional commitments as providing <u>succinct</u> proofs on committed data



Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	$k ext{-}R ext{-} ext{ISIS}$ assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19]	polynomial commitment	groups of unknown order
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	k- R -ISIS assumption (falsifiable)
This work	vector commitment	short integer solutions (SIS)
This work	Boolean circuits	BASIS _{struct} assumption (falsifiable)

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors \boldsymbol{t}_1 , ..., $\boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $m{u}_{ij} \leftarrow m{A}_i^{-1}m{t}_j \in \mathbb{Z}_q^m$ where $i \neq j$

 $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^n$ where $i \neq j$

short (i.e., low-norm) vector satisfying $m{A}_im{u}_{ij}=m{t}_j$

Framework for Lattice Commitments

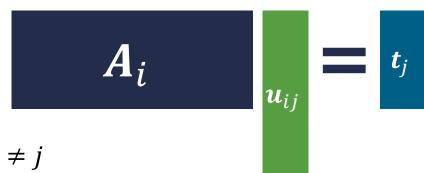
Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors $\boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_i) \in \mathbb{Z}_q^m$ where $i \neq j$



Commitment to $x \in \mathbb{Z}_q^{\ell}$:

$$\boldsymbol{c} = \sum_{i \in [\ell]} x_i \boldsymbol{t}_i$$

linear combination of target vectors

Opening to value y at index i:

short
$$\boldsymbol{v}_i$$
 such that $\boldsymbol{c} = \boldsymbol{A}_i \boldsymbol{v}_i + \boldsymbol{y} \cdot \boldsymbol{t}_i$

Honest opening:

Correct as long as x is short

$$\boldsymbol{v}_i = \sum_{j \neq i} x_j \boldsymbol{u}_{ij} \quad \boldsymbol{A}_i \boldsymbol{v}_i + x_i \boldsymbol{t}_i = \sum_{i \neq i} x_j \boldsymbol{A}_i \boldsymbol{u}_{ij} + x_i \boldsymbol{t}_i = \sum_{i \in [\ell]} x_j \boldsymbol{t}_j = \boldsymbol{c}$$

Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors $\boldsymbol{t}_1, ..., \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

[PPS21]: $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ and $t_i \leftarrow \mathbb{Z}_q^n$ are independent and uniform

suffices for vector commitments (from SIS)

[ACLMT21]: $A_i = W_i A$ and $t_i = W_i u_i$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$, $A \leftarrow \mathbb{Z}_q^{n \times m}$, $u_i \leftarrow \mathbb{Z}_q^n$

(one candidate adaptation to the integer case)

<u>generalizes</u> to functional commitments for constant-degree polynomials (from k-R-ISIS)

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$
 for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & | -I_n \\ & \ddots & & | \vdots \\ & A_\ell & | -I_n \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \boldsymbol{c} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$

 $oldsymbol{I}_n$ denotes the identity matrix

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \hat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$

"powers of two matrix"

For security and functionality, it will be useful to write
$$c = G\hat{c}$$

$$m{G} = egin{bmatrix} 1 & 2 & \cdots & 2^{\lfloor \log q \rfloor} & & & & & & \\ & & & \ddots & & & & & \\ & & & 1 & 2 & \cdots & 2^{\lfloor \log q \rfloor} \end{bmatrix}$$

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

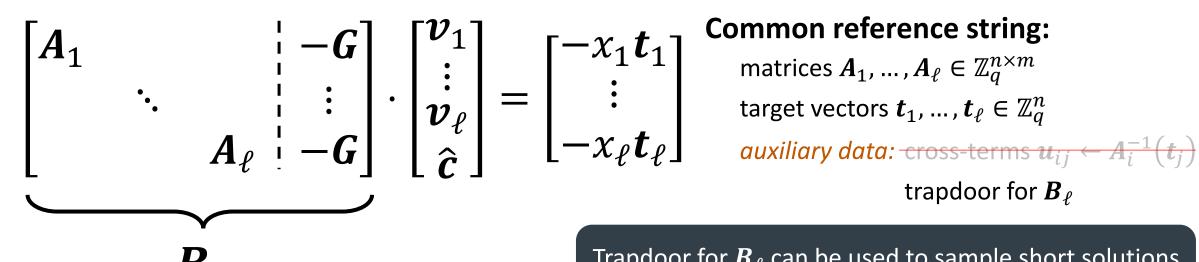
Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} \boldsymbol{A}_1 & & & & & & & \\ & \ddots & & & & & \\ & & \boldsymbol{A}_\ell & & -\boldsymbol{G} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \hat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix} \quad \begin{array}{l} \text{Common reference string:} \\ \text{matrices } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \\ \text{target vectors } \boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n \\ \text{auxiliary data: cross-terms } \boldsymbol{u}_{ij} \leftarrow A_i^{-1}(\boldsymbol{t}_j) \end{array}$$

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system



Trapdoor for B_ℓ can be used to sample <u>short</u> solutions x to the linear system $B_\ell x = y$ (for arbitrary y)

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & & & \\ & \ddots & & & & \\ & \vdots & & & \\ & A_\ell & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \hat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$
 Use trapdoor for \boldsymbol{B}_ℓ to jointly sample a solution $\boldsymbol{v}_1, \dots, \boldsymbol{v}_\ell, \hat{\boldsymbol{c}}$
$$\boldsymbol{c} = \boldsymbol{G}\hat{\boldsymbol{c}} \text{ is the commitment and } \boldsymbol{v}_1, \dots \boldsymbol{v}_\ell \text{ are the openings}$$

Committing to an input x:

 $v_1, ... v_\ell$ are the openings

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & & & & \\ & \ddots & & & & & \\ & & \vdots & & & \\ & A_\ell & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \hat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$
 Use trapdoor for \boldsymbol{B}_ℓ to jointly sample a solution $\boldsymbol{v}_1, \dots, \boldsymbol{v}_\ell, \hat{\boldsymbol{c}}$
$$\boldsymbol{c} = \boldsymbol{G} \hat{\boldsymbol{c}} \text{ is the commitment and } \boldsymbol{v}_1, \dots \boldsymbol{v}_\ell \text{ are the openings}$$

Committing to an input x:

 $oldsymbol{c} = oldsymbol{G} \hat{oldsymbol{c}}$ is the commitment and $\boldsymbol{v}_1,...\boldsymbol{v}_\ell$ are the openings

Supports statistically private openings (commitment + opening *hides* unopened positions)

Proving Security

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Suppose adversary can break binding

outputs \boldsymbol{c} , $(\boldsymbol{v}_i, \boldsymbol{x}_i)$, $(\boldsymbol{v}_i', \boldsymbol{x}_i')$ such that

$$c = A_i v_i + x_i t_i$$
$$= A_i v_i' + x_i' t_i$$

given matrices A_1, \dots, A_ℓ target vectors $oldsymbol{t}_1, \dots, oldsymbol{t}_\ell$ trapdoor for $oldsymbol{B}_\ell$

 $\mathsf{set}\, \boldsymbol{A}_i \leftarrow \mathbb{Z}_q^{n \times m}$

set
$$\mathbf{t}_i = \mathbf{e}_1 = [1, 0, ..., 0]^{\mathrm{T}}$$

Short integer solutions (SIS)

given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0

$$\mathbf{A}_i(\mathbf{v}_i - \mathbf{v}_i') = (\mathbf{x}_i - \mathbf{x}_i')\mathbf{e}_1$$

 $\overline{m{v}_i - m{v}_i'}$ is a SIS solution for $m{A}_i$ without the first row

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Adversary that breaks binding can solve SIS with respect to A_i

(technically A_i without the first row – which is equivalent to SIS with dimension n-1)

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Adversary that breaks binding can solve SIS with respect to A_i Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A}_1 & & & & & -m{G} \ & \ddots & & & dots \ & m{A}_{\ell} & m{G} \end{bmatrix}$$

 $m{B}_{\ell} = egin{bmatrix} m{A}_1 & -m{G} \ & \ddots & \vdots \ & A_{\ell} & -m{G} \end{bmatrix}$ Can simulate CRS from BASIS challenge: matrices $m{A}_1, \dots, m{A}_{\ell} \leftarrow \mathbb{Z}_q^{n imes m}$ trapdoor for $m{B}_{\ell}$

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A}_1 & & & & & -m{G} \ & \ddots & & & dots \ & m{A}_{\ell} & -m{G} \end{bmatrix}$$

When $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

auxiliary data: trapdoor for
$$m{B}_\ell = egin{bmatrix} A_1 & & & | - m{G} \\ & \ddots & & | & \vdots \\ & & A_\ell & | - m{G} \end{bmatrix}$$

To commit to a vector $x \in \mathbb{Z}_q^\ell$: sample solution $(v_1, ..., v_\ell, \widehat{c})$

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \widehat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{e}_1 \\ \vdots \\ -x_\ell \boldsymbol{e}_\ell \end{bmatrix}$$

Commitment is $c = G\hat{c}$

Openings are $oldsymbol{v}_1$, ..., $oldsymbol{v}_\ell$

Can commit and open to arbitrary \mathbb{Z}_q vectors

Commitments and openings statistically **hide** unopened components

Linearly homomorphic:

$$c+c'$$
 is a commitment to $x+x'$ with openings $oldsymbol{v}_i+oldsymbol{v}_i'$

Functional Commitments for Circuits

Setting: commit to an input $x \in \{0,1\}^{\ell}$, open to f(x)(f can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation

[GSW13, BGGHNSVV14]

Let
$$A = [A_1|\cdots|A_\ell] \in \mathbb{Z}_q^{\ell n \times m}$$
 be an arbitrary matrix

Input-independent evaluation:
$$A, f \mapsto A_f \in \mathbb{Z}_q^{n \times m}$$

Input-dependent evaluation:
$$A, f, x \mapsto H_{A,f,x} \in \mathbb{Z}_q^{\ell n \times m}$$

Homomorphic evaluation:

$$[A_1 - x_1 \mathbf{G} \mid \cdots \mid A_{\ell} - x_{\ell} \mathbf{G}] \cdot \mathbf{H}_{A,f,x} = A_f - f(\mathbf{x}) \cdot \mathbf{G}$$

 $A_i - x_i G$: "encoding" of x_i with respect to A

Instead of using random A_i , consider structured A_i (like in [ACLMT22])

$$m{A} \leftarrow \mathbb{Z}_q^{n imes m} \ m{W}_1, ..., m{W}_\ell \leftarrow \mathbb{Z}_q^{n imes n} \quad ext{(invertible)}$$

Common reference string still consists of trapdoor for $m{B}_\ell$ (with the structured A_i)

$$m{B}_{\ell} = egin{bmatrix} m{A}_1 & & m{-G} \ & \ddots & m{\vdots} \ & m{A}_{\ell} & m{-G} \end{bmatrix}$$

Instead of using random A_i , consider structured A_i (like in [ACLMT22])

$$m{B}_{\ell} = egin{bmatrix} A_1 & & & & & -G \ & \ddots & & & & \vdots \ & & A_{\ell} & -G \end{bmatrix}$$

To commit to an input $x \in \{0,1\}^{\ell}$:

Use trapdoor for B_{ℓ} to jointly sample $V_1, \dots, V_{\ell}, \widehat{C}$ that satisfy

$$\begin{bmatrix} A_1 & & & & | -G \\ & \ddots & & | & \vdots \\ & A_{\ell} & | -G \end{bmatrix} \cdot \begin{vmatrix} V_1 \\ \vdots \\ V_{\ell} \\ \widehat{\boldsymbol{c}} \end{vmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_{\ell} W_{\ell} G \end{bmatrix}$$

Commitment relation:

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Homomorphic evaluation:

$$\boldsymbol{B} = [\boldsymbol{B_1} \mid \cdots \mid \boldsymbol{B_\ell}]$$

input-independent evaluation: $\mathbf{B}, f \mapsto \mathbf{B}_f$

input-dependent evaluation: $B, f, x \mapsto H_{B,f,x}$

$$[\mathbf{B}_1 - x_1 \mathbf{G} \mid \cdots \mid \mathbf{B}_{\ell} - x_{\ell} \mathbf{G}] \cdot \mathbf{H}_{\mathbf{B},f,\mathbf{x}} = \mathbf{B}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

for all $i \in [\ell]$

$$A_i V_i - G\widehat{C} = -x_i W_i G$$

recall $A_i = W_i A$

$$\boldsymbol{W}_i \boldsymbol{A} \boldsymbol{V}_i - \boldsymbol{G} \widehat{\boldsymbol{C}} = -x_i \boldsymbol{W}_i \boldsymbol{G}$$

recall W_i is invertible

$$AV_i - W_i^{-1}G\widehat{C} = -x_iG$$

rearranging

$$\boldsymbol{W}_{i}^{-1}\boldsymbol{G}\widehat{\boldsymbol{C}}-\boldsymbol{x}_{i}\boldsymbol{G}=\boldsymbol{A}\boldsymbol{V}_{i}$$

Commitment relation:

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Homomorphic evaluation:

$$B = [B_1 \mid \cdots \mid B_\ell]$$

input-independent evaluation: $\mathbf{B}, f \mapsto \mathbf{B}_f$

input-dependent evaluation: $B, f, x \mapsto H_{B,f,x}$

$$[\boldsymbol{B}_1 - x_1 \boldsymbol{G} \mid \cdots \mid \boldsymbol{B}_{\ell} - x_{\ell} \boldsymbol{G}] \cdot \boldsymbol{H}_{\boldsymbol{B},f,\boldsymbol{x}} = \boldsymbol{B}_f - f(\boldsymbol{x}) \cdot \boldsymbol{G}$$

function only of the commitment $C = G\widehat{C} \mid \widetilde{C}_i = W_i^{-1} G\widehat{C} \mid$

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}$$

for all $i \in [\ell]$

$$A_i V_i - G\widehat{C} = -x_i W_i G$$

recall $A_i = W_i A$

$$\boldsymbol{W}_i \boldsymbol{A} \boldsymbol{V}_i - \boldsymbol{G} \widehat{\boldsymbol{C}} = -x_i \boldsymbol{W}_i \boldsymbol{G}$$

recall W_i is invertible

$$AV_i - W_i^{-1}G\widehat{C} = -x_iG$$

rearranging

$$\boldsymbol{W}_{i}^{-1}\boldsymbol{G}\widehat{\boldsymbol{C}}-\boldsymbol{x}_{i}\boldsymbol{G}=\boldsymbol{A}\boldsymbol{V}_{i}$$

$$\widetilde{\boldsymbol{C}}_i - x_i \boldsymbol{G} = A \boldsymbol{V}_i$$

Commitment relation:

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Homomorphic evaluation:

$$B = [B_1 \mid \cdots \mid B_\ell]$$

input-independent evaluation: $\mathbf{B}, f \mapsto \mathbf{B}_f$

input-dependent evaluation: $B, f, x \mapsto H_{B,f,x}$

$$[\boldsymbol{B}_1 - x_1 \boldsymbol{G} \mid \cdots \mid \boldsymbol{B}_{\ell} - x_{\ell} \boldsymbol{G}] \cdot \boldsymbol{H}_{\boldsymbol{B}, f, x} = \boldsymbol{B}_f - f(\boldsymbol{x}) \cdot \boldsymbol{G}$$

function only of the commitment $m{c} = m{G} \widehat{m{c}}_i = m{W}_i^{-1} m{G} \widehat{m{c}}$

$$\widetilde{\boldsymbol{C}}_i - x_i \boldsymbol{G} = \boldsymbol{A} \boldsymbol{V}_i$$

 $\widetilde{\boldsymbol{C}}_i$ is a GSW encryption of x_i with randomness \boldsymbol{V}_i

Can also be viewed as a homomorphic commitment to x_i with opening V_i [GVW15]

[GVW15]: independent V_i is sampled for each input bit, so commitments C_i are independent

• long commitment, security from SIS

This work: publish a trapdoor that allows deriving C_i (and associated V_i) from a **single** commitment \widehat{C}

• short commitment, stronger assumption

Commitment relation:

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{\boldsymbol{C}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{W}_1 \boldsymbol{G} \\ \vdots \\ -x_\ell \boldsymbol{W}_\ell \boldsymbol{G} \end{bmatrix}$$

Homomorphic evaluation:

$$B = [B_1 \mid \cdots \mid B_\ell]$$

input-independent evaluation: $\mathbf{B}, f \mapsto \mathbf{B}_f$

input-dependent evaluation: $B, f, x \mapsto H_{B,f,x}$

$$[\boldsymbol{B}_1 - x_1 \boldsymbol{G} \mid \cdots \mid \boldsymbol{B}_{\ell} - x_{\ell} \boldsymbol{G}] \cdot \boldsymbol{H}_{\boldsymbol{B}, f, x} = \boldsymbol{B}_f - f(\boldsymbol{x}) \cdot \boldsymbol{G}$$

$$\widetilde{\boldsymbol{C}}_i - x_i \boldsymbol{G} = \boldsymbol{A} \boldsymbol{V}_i$$
 for all $i \in [\ell]$

$$\widetilde{\boldsymbol{C}}_{i} - x_{i}\boldsymbol{G} = \boldsymbol{A}\boldsymbol{V}_{i} \quad \text{for all } i \in [\ell]$$

$$[\widetilde{\boldsymbol{C}}_{1} - x_{1}\boldsymbol{G}| \cdots | \widetilde{\boldsymbol{C}}_{\ell} - x_{\ell}\boldsymbol{G}] \cdot \boldsymbol{H}_{\widetilde{\boldsymbol{C}},f,x} = [\widetilde{\boldsymbol{C}}_{f} - f(\boldsymbol{x}) \cdot \boldsymbol{G}]$$

Can be computed by the verifier from commitment *C* and function *f*

function only of the commitment $m{c} = m{G} \widehat{m{c}} \mid \widehat{m{C}}_i = m{W}_i^{-1} m{G} \widehat{m{C}} \mid$

$$|\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}|$$

Opening to function f proceeds exactly as in [GVW15]

Commitment relation:

$$\begin{bmatrix} A_1 & & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{\boldsymbol{C}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{W}_1 \boldsymbol{G} \\ \vdots \\ -x_\ell \boldsymbol{W}_\ell \boldsymbol{G} \end{bmatrix}$$

Homomorphic evaluation:

$$B = [B_1 \mid \cdots \mid B_\ell]$$

input-independent evaluation: $\mathbf{B}, f \mapsto \mathbf{B}_f$

input-dependent evaluation: $B, f, x \mapsto H_{B,f,x}$

$$[\mathbf{B}_1 - x_1 \mathbf{G} \mid \cdots \mid \mathbf{B}_{\ell} - x_{\ell} \mathbf{G}] \cdot \mathbf{H}_{\mathbf{B}, f, x} = \mathbf{B}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

$$\widetilde{\boldsymbol{C}}_i - x_i \boldsymbol{G} = \boldsymbol{A} \boldsymbol{V}_i$$
 for all $i \in [\ell]$

$$\widetilde{\boldsymbol{C}}_{i} - x_{i}\boldsymbol{G} = \boldsymbol{A}\boldsymbol{V}_{i} \quad \text{for all } i \in [\ell]$$

$$[\widetilde{\boldsymbol{C}}_{1} - x_{1}\boldsymbol{G}| \cdots | \widetilde{\boldsymbol{C}}_{\ell} - x_{\ell}\boldsymbol{G}] \cdot \boldsymbol{H}_{\widetilde{\boldsymbol{C}},f,x} = [\widetilde{\boldsymbol{C}}_{f} - f(\boldsymbol{x}) \cdot \boldsymbol{G}]$$

Can be computed by the verifier from commitment *C* and function *f*

$$\begin{aligned} \left[\widetilde{\boldsymbol{C}}_{1} - x_{1}\boldsymbol{G}\right] & \cdots \mid \widetilde{\boldsymbol{C}}_{\ell} - x_{\ell}\boldsymbol{G} \end{aligned} &= \boldsymbol{A}[\boldsymbol{V}_{1} \mid \cdots \mid \boldsymbol{V}_{\ell}] \\ &= \boldsymbol{A}\widetilde{\boldsymbol{V}} \end{aligned}$$

Then

$$\mathbf{A}\widetilde{\mathbf{V}}\mathbf{H}_{\widetilde{\mathbf{C}},f,\mathbf{x}}=\widetilde{\mathbf{C}}_f-f(\mathbf{x})\cdot\mathbf{G}$$

function only of the commitment ${\it C}={\it G}\widehat{\it C} \, \left| \widetilde{\it C}_i = W_i^{-1} {\it G}\widehat{\it C} \right|$

$$|\widetilde{C}_i = W_i^{-1} G \widehat{C}$$

Opening to function f proceeds exactly as in [GVW15]

Commitment relation:

$$\begin{bmatrix} A_1 & & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Homomorphic evaluation:

$$B = [B_1 \mid \cdots \mid B_\ell]$$

input-independent evaluation: $\mathbf{B}, f \mapsto \mathbf{B}_f$

input-dependent evaluation: $B, f, x \mapsto H_{B,f,x}$

$$[\mathbf{B}_1 - x_1 \mathbf{G} \mid \cdots \mid \mathbf{B}_{\ell} - x_{\ell} \mathbf{G}] \cdot \mathbf{H}_{\mathbf{B}, f, x} = \mathbf{B}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

$$\widetilde{\boldsymbol{C}}_i - x_i \boldsymbol{G} = \boldsymbol{A} \boldsymbol{V}_i$$
 for all $i \in [\ell]$

$$\widetilde{\boldsymbol{C}}_{i} - x_{i}\boldsymbol{G} = \boldsymbol{A}\boldsymbol{V}_{i} \quad \text{for all } i \in [\ell]$$

$$[\widetilde{\boldsymbol{C}}_{1} - x_{1}\boldsymbol{G}| \cdots | \widetilde{\boldsymbol{C}}_{\ell} - x_{\ell}\boldsymbol{G}] \cdot \boldsymbol{H}_{\widetilde{\boldsymbol{C}},f,x} = [\widetilde{\boldsymbol{C}}_{f} - f(\boldsymbol{x}) \cdot \boldsymbol{G}]$$

Can be computed by the verifier from commitment *C* and function *f*

$$\begin{aligned} \left[\widetilde{\boldsymbol{C}}_{1} - \boldsymbol{x}_{1}\boldsymbol{G} | \cdots | \widetilde{\boldsymbol{C}}_{\ell} - \boldsymbol{x}_{\ell}\boldsymbol{G}\right] &= \boldsymbol{A}[\boldsymbol{V}_{1} | \cdots | \boldsymbol{V}_{\ell}] \\ &= \boldsymbol{A}\widetilde{\boldsymbol{V}} \end{aligned}$$

Then

$$\mathbf{A}\widetilde{\mathbf{V}}\mathbf{H}_{\widetilde{\mathbf{C}},f,\mathbf{x}} = \widetilde{\mathbf{C}}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

Define opening to be $V_{f,f(x)} = \tilde{V}H_{\tilde{C},f,x}$

function only of the commitment $m{c} = m{G} \widehat{m{c}} \mid \widehat{m{C}}_i = m{W}_i^{-1} m{G} \widehat{m{C}} \mid$

$$|\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}}|$$

Opening to function f proceeds exactly as in [GVW15]

Commitment relation:

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ \vdots \\ V_\ell \\ \widehat{C} \end{bmatrix} = \begin{bmatrix} -x_1 W_1 G \\ \vdots \\ -x_\ell W_\ell G \end{bmatrix}$$

Homomorphic evaluation:

$$B = [B_1 \mid \cdots \mid B_{\ell}]$$

input-independent evaluation: $\mathbf{B}, f \mapsto \mathbf{B}_f$

input-dependent evaluation: $B, f, x \mapsto H_{B,f,x}$

$$[\mathbf{B}_1 - x_1 \mathbf{G} \mid \cdots \mid \mathbf{B}_{\ell} - x_{\ell} \mathbf{G}] \cdot \mathbf{H}_{\mathbf{B}, f, x} = \mathbf{B}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

$$\widetilde{\boldsymbol{C}}_i - x_i \boldsymbol{G} = \boldsymbol{A} \boldsymbol{V}_i$$
 for all $i \in [\ell]$

$$\widetilde{\boldsymbol{C}}_{i} - x_{i}\boldsymbol{G} = \boldsymbol{A}\boldsymbol{V}_{i} \quad \text{for all } i \in [\ell]$$

$$\left[\widetilde{\boldsymbol{C}}_{1} - x_{1}\boldsymbol{G}| \cdots | \widetilde{\boldsymbol{C}}_{\ell} - x_{\ell}\boldsymbol{G}\right] \cdot \boldsymbol{H}_{\widetilde{\boldsymbol{C}},f,x} = \left[\widetilde{\boldsymbol{C}}_{f} - f(\boldsymbol{x}) \cdot \boldsymbol{G}\right]$$

Can be computed by the verifier from commitment *C* and function *f*

$$\begin{aligned} \left[\widetilde{\boldsymbol{C}}_{1} - \boldsymbol{x}_{1}\boldsymbol{G}\right] & \cdots \mid \widetilde{\boldsymbol{C}}_{\ell} - \boldsymbol{x}_{\ell}\boldsymbol{G} \end{aligned} &= \boldsymbol{A}[\boldsymbol{V}_{1} \mid \cdots \mid \boldsymbol{V}_{\ell}] \\ &= \boldsymbol{A}\widetilde{\boldsymbol{V}} \end{aligned}$$

Then

$$\mathbf{A}\widetilde{\mathbf{V}}\mathbf{H}_{\widetilde{\mathbf{C}},f,\mathbf{x}} = \widetilde{\mathbf{C}}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

Define opening to be $V_{f,f(x)} = \tilde{V}H_{\tilde{C},f,x}$

Verification relation (for opening \boldsymbol{C} to (f,z)):

$$AV_{f,z} = \widetilde{C}_f - z \cdot G$$

function only of the commitment $m{c} = m{G} \widehat{m{c}} \mid \widehat{m{C}}_i = m{W}_i^{-1} m{G} \widehat{m{C}} \mid$

Functional Commitments from Lattices

Security follows from BASIS assumption with a **structured** matrix:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A}_1 & & & & -m{G} \ & \ddots & & & dash A_{\ell} & -m{G} \end{bmatrix}$$

where $A_i = W_i A$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$ and $A \leftarrow \mathbb{Z}_q^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

 $\ell=1$ case does follow from plain SIS

Open problem: Understanding security or attacks when $\ell > 1$

Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

matrices
$$A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$$
 where $A_i = \boldsymbol{W}_i A$

auxiliary data: trapdoor for
$$m{B}_\ell = egin{bmatrix} A_1 & & & | - m{G} \\ & \ddots & & | & | \\ & & A_\ell & | - m{G} \end{bmatrix}$$

To commit to a vector $\mathbf{x} \in \{0,1\}^{\ell}$: sample $(V_1, ..., V_{\ell}, \widehat{\mathbf{C}})$

$$\begin{bmatrix} \boldsymbol{A}_{1} & & & & & & \\ & \ddots & & & & \\ & & \boldsymbol{A}_{\ell} & & -\boldsymbol{G} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{V}_{1} \\ \vdots \\ \boldsymbol{V}_{\ell} \\ \widehat{\boldsymbol{C}} \end{bmatrix} = \begin{bmatrix} -x_{1}\boldsymbol{W}_{1}\boldsymbol{G} \\ \vdots \\ -x_{\ell}\boldsymbol{W}_{\ell}\boldsymbol{G} \end{bmatrix} \quad \begin{bmatrix} |\boldsymbol{V}_{f,f(x)}| = \operatorname{poly}(\lambda,d,\log\ell) \\ \text{Verification time scales with } |f| \\ \text{(i.e., size of circuit computing } f) \end{bmatrix}$$

Scheme supports functions computable by Boolean circuits of (bounded) depth d

$$|\operatorname{crs}| = \ell^2 \cdot \operatorname{poly}(\lambda, d, \log \ell)$$

$$|\mathbf{C}| = \text{poly}(\lambda, d, \log \ell)$$

$$|V_{f,f(x)}| = \text{poly}(\lambda, d, \log \ell)$$

Commitment is $C = G\widehat{C}$

Openings for function f is $[V_1 \mid \cdots \mid V_\ell] \cdot H_{\widetilde{C},f,x}$

Fast Verification with Preprocessing

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}} = \boldsymbol{W}_i^{-1} \boldsymbol{C}$$

To verify opening V to (f,z), verifier computes the following:

- Homomorphic evaluation: $\widetilde{\boldsymbol{C}}_1$, ..., $\widetilde{\boldsymbol{C}}_\ell$, $f \mapsto \widetilde{\boldsymbol{C}}_f$
- Verification relation: $m{A}m{V} = \widetilde{m{C}}_f z \cdot m{G}$

Suppose f is a linear function:

$$f(x_1, \dots, x_\ell) = \sum_{i \in [\ell]} \alpha_i x_i$$

Computing $\widetilde{\pmb{C}}_f$ corresponds to homomorphic computation on $\widetilde{\pmb{C}}_1,\ldots,\widetilde{\pmb{C}}_\ell$

Can be **precomputed**

Then
$$\widetilde{\pmb{c}}_f = \sum_{i \in [\ell]} \alpha_i \widetilde{\pmb{c}}_i = \sum_{i \in [\ell]} \alpha_i \pmb{W}_i^{-1} \pmb{c} = \left(\sum_{i \in [\ell]} \alpha_i \pmb{W}_i^{-1}\right) \pmb{c}$$

For linear functions, if f is known in advance, verification runs in time $poly(\lambda, \log \ell)$

Fast Verification with Preprocessing

$$\widetilde{\boldsymbol{C}}_i = \boldsymbol{W}_i^{-1} \boldsymbol{G} \widehat{\boldsymbol{C}} = \boldsymbol{W}_i^{-1} \boldsymbol{C}$$

To verify opening V to (f,z), verifier computes the following:

- Homomorphic evaluation: $\widetilde{\pmb{C}}_1$, ..., $\widetilde{\pmb{C}}_\ell$, $f \mapsto \widetilde{\pmb{C}}_f$
- Verification relation: $AV = \widetilde{C}_f z \cdot G$

Suppose f is a linear function:

$$f(x_1, \dots, x_\ell) = \sum_{i} \alpha_i x_i$$

Computing $\widetilde{\pmb{C}}_f$ corresponds to homomorphic computation on $\widetilde{\pmb{C}}_1,\ldots,\widetilde{\pmb{C}}_\ell$

Can be precomputed

Captures polynomial commitments as a special case (polynomial evaluation can be described by a linear function)

For linear functions, if f is known in advance, verification runs in time poly(λ , log ℓ)

Summary

New methodology for constructing lattice-based commitments:

- 1. Write down the main verification relation ($\mathbf{c} = \mathbf{A}_i \mathbf{v}_i + x_i \mathbf{t}_i$)
- 2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to A is hard given a trapdoor for a **related** matrix B

"Random" variant of BASIS assumption implies vector commitments and reduces to SIS

"Structured" variant of BASIS assumption implies functional commitments

- Yields linear and polynomial commitments with fast preprocessed verification
- Structure also enables aggregating openings

[see paper for details]

Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Functional commitments for circuits that supports fast preprocessed verification

• [ACLMT22]: fast preprocessed verification for constant-degree polynomials

Describe and analyze knowledge variants of the assumption or the constructions

Reducing CRS size: can we obtain functional commitments with *linear*-size CRS?

Thank you!

https://eprint.iacr.org/2022/1515