
Can Verifiable Delay Functions be
Based on Random Oracles?

Mohammad Mahmoody, Caleb Smith, and David J. Wu

ICALP 2020

Verifiable Delay Functions (VDF)
[BBBF18]

a deterministic function that is slow to compute, but fast to verify

Setup 1𝜆, 𝑇 → pp

Eval pp, 𝑥 → 𝑦, 𝜋

Verify pp, 𝑥, 𝑦, 𝜋 → 0/1

time bound 𝑇 Completeness:

Verify pp, 𝑥, 𝑦, 𝜋 = 1

Uniqueness: no adversaries running in time
poly 𝜆, 𝑇 can find 𝑦′, 𝜋′ such that

Verify pp, 𝑥, 𝑦′, 𝜋′ = 1

𝑦′ ≠ Eval pp, 𝑥

and

Sequentiality: no adversary running in parallel
time 𝜎 ≪ 𝑇 can compute 𝑦 where

𝑦 = Eval pp, 𝑥

deterministic value 𝑦

𝜋 can be randomized

runs in time 𝑡 = poly 𝜆, log 𝑇

runs in time 𝑇

Verifiable Delay Functions (VDF)
[BBBF18]

a deterministic function that is slow to compute, but fast to verify

Setup 1𝜆, 𝑇 → pp

Eval pp, 𝑥 → 𝑦, 𝜋

Verify pp, 𝑥, 𝑦, 𝜋 → 0/1

Many applications:
• randomness beacons
• proofs of replication
• computational timestamping

Many constructions:
• groups of unknown order [Pie19, Wes19]

• incremental verifiable computation [BBBF18]

• pairings/isogenies [FMPS19, Sha19]

All of these constructions
rely on algebraic structure

time bound 𝑇

deterministic value 𝑦

𝜋 can be randomized

runs in time 𝑡 = poly 𝜆, log 𝑇

runs in time 𝑇

Verifiable Delay Functions (VDF)
[BBBF18]

a deterministic function that is slow to compute, but fast to verify

Setup 1𝜆, 𝑇 → pp

Eval pp, 𝑥 → 𝑦, 𝜋

Verify pp, 𝑥, 𝑦, 𝜋 → 0/1

Many applications:
• randomness beacons
• proofs of replication
• computational timestamping

Many constructions:
• groups of unknown order [Pie19, Wes19]

• incremental verifiable computation [BBBF18]

• pairings/isogenies [FMPS19, Sha19]

Can we construct VDFs from an unstructured assumption?

This Work

Can we construct VDFs from an unstructured assumption?

e.g., one-way functions,
collision-resistant hash functions

This Work

Can we construct VDFs from an unstructured assumption?

Can model objects like one-way functions,
collision-resistant hash functions by a random oracle

𝒪: 0,1 𝑛 → 0,1 𝑘

Metrics of interest:
• Time complexity: number of queries
• Parallel time complexity: rounds of queries

This work: Can we construct VDFs from a random oracle?

User only has
oracle access to 𝒪

This Work

Can we construct VDFs from an unstructured assumption?

Can model objects like one-way functions,
collision-resistant hash functions by a random oracle

𝒪: 0,1 𝑛 → 0,1 𝑘

Metrics of interest:
• Time complexity: number of queries
• Parallel time complexity: rounds of queries

This work: Can we construct VDFs from a random oracle?

User only has
oracle access to 𝒪

Random oracle is the
only source of hardness

Reason for optimism?

Publicly-verifiable proofs of
sequential work (PoSW) do exist in
the random oracle model [MMV13]

Proofs of sequential work: VDFs
without a uniqueness requirement

Our Results

Can we construct VDFs from a random oracle?

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

Negative results (in several specific settings):

Perfect uniqueness: for all 𝑦′ ≠ Eval(pp, 𝑥) and 𝜋 ∈ 0,1 ∗, Verify pp, 𝑥, 𝑦′, 𝜋 = 0

Computational uniqueness: no efficient adversary running in time poly 𝜆, 𝑇 can find (𝑦′, 𝜋′)
with 𝑦′ ≠ Eval pp, 𝑥 such that Verify pp, 𝑥, 𝑦′, 𝜋 = 1

“Every input 𝑥 has at most one output 𝑦 that verifies”

“Efficient adversary cannot find different output 𝑦′ ≠ Eval(pp, 𝑥) that verifies”

Corollary. “Permutation VDFs” cannot be built from random oracles

(e.g., [LW15, AKKPW19])

Our Results

Can we construct VDFs from a random oracle?

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

Negative results (in several specific settings):

Perfect uniqueness: for all 𝑦′ ≠ Eval(pp, 𝑥) and 𝜋 ∈ 0,1 ∗, Verify pp, 𝑥, 𝑦′, 𝜋 = 0

Computational uniqueness: no efficient adversary running in time poly 𝜆, 𝑇 can find (𝑦′, 𝜋′)
with 𝑦′ ≠ Eval 𝑝𝑝, 𝑥 such that Verify 𝑝𝑝, 𝑥, 𝑦′, 𝜋 = 1

“Every input 𝑥 has at most one output 𝑦 that verifies”

“Efficient adversary cannot find different output 𝑦′ ≠ Eval(pp, 𝑥) that verifies”

Corollary. “Permutation VDFs” cannot be built from random oracles

Permutation VDF: VDF with an efficiently-
computable inverse Eval−1 (i.e., “reversible”

proof of sequential work) [LW15, AKKPW19]

(e.g., [LW15, AKKPW19])

Our Results

Can we construct VDFs from a random oracle?

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

Theorem. VDFs with tight sequentiality cannot be based solely on random oracles

Negative results (in several specific settings):

(e.g., [LW15, AKKPW19])

(e.g., [DGMV19])

Tight sequentiality: parallel adversary running in time 𝜎 = 𝑇 − 𝑇𝜌 for 𝜌 < 1 cannot find 𝑦 = Eval(pp, 𝑥)

Sequentiality: parallel adversary running in time 𝜎 ≪ 𝑇 cannot find 𝑦 = Eval(pp, 𝑥)

e.g., 𝜎 = Τ𝑇 2 or 𝜎 = 𝑇

(lower bound also appeared in concurrent work of [DGMV19])

Our Results

Can we construct VDFs from a random oracle?

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

Theorem. VDFs with tight sequentiality cannot be based solely on random oracles

Negative results (in several specific settings):

Impossibility also extends to tight publicly-verifiable proofs of sequential work (PoSW)

Note: Non-tight PoSWs (𝜎 = 𝑇/2) are known in the random oracle model [MMV13]

Tight sequentiality: parallel adversary running in time 𝜎 = 𝑇 − 𝑇𝜌 for 𝜌 < 1 cannot find 𝑦 = Eval(pp, 𝑥)

(e.g., [LW15, AKKPW19])

(e.g., [DGMV19]) (lower bound also appeared in concurrent work of [DGMV19])

Our Results

Can we construct VDFs from a random oracle?

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

Theorem. VDFs with tight sequentiality cannot be based solely on random oracles

Negative results (in several specific settings):

Conclusions:
• Lower bounds exist for certain types of VDFs in the random oracle model
• Non-tight VDFs with computational uniqueness still plausible from random oracles!

(e.g., [LW15, AKKPW19])

(e.g., [DGMV19]) (lower bound also appeared in concurrent work of [DGMV19])

Ruling out VDFs with Perfect Uniqueness

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

Argument uses similar ideas as lower bound for time-lock puzzles in the random
oracle model [MMV11]

Ruling out VDFs with Perfect Uniqueness

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

Approach: construct algorithm that uses honest evaluation algorithm,
but substitutes “fake” responses for some of the random oracle queries

query 𝒪 on input 𝑥1
(function of 𝑥)

query 𝒪 on input 𝑥𝑖 (function of 𝑥 and
and outputs of previous queries)

𝑥1

𝑥
𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 ⋯ 𝑥𝑇

For simplicity, assume there are no public parameters pp or proof 𝜋
[Same argument works in general case; see paper for details]

sequence of 𝑇 oracle queries made by Eval𝒪(𝑥) 𝑦 = Eval𝒪(𝑥)

Ruling out VDFs with Perfect Uniqueness

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

𝑥1

𝑥
𝑥2
′ 𝑥3

′ 𝑥4
′ 𝑥5

′ 𝑥6
′ 𝑥7

′ ⋯ 𝑥𝑇
′

Run Eval 𝑥 but use random values for oracle queries 𝒪 ⋅

𝑥1

𝑥

At end of each round, query 𝒪 on all 𝑥𝑖 appearing in previous round

Use real oracle values for values that have been queried in the past,
and random values for the rest

𝑦 1

𝑦 2

𝑥1

𝑥
𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 ⋯ 𝑥𝑇

sequence of 𝑇 oracle queries made by Eval𝒪(𝑥) 𝑦 = Eval𝒪(𝑥)

Ruling out VDFs with Perfect Uniqueness

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

𝑥1

𝑥
𝑥2
′ 𝑥3

′ 𝑥4
′ 𝑥5

′ 𝑥6
′ 𝑥7

′ ⋯ 𝑥𝑇
′

𝑥

𝑦 1

𝑦 2

𝑥 𝑦 2𝑡+1
⋮ ⋮ ⋮

𝑥1

𝑥
𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 ⋯ 𝑥𝑇

sequence of 𝑇 oracle queries made by Eval𝒪(𝑥) 𝑦 = Eval𝒪(𝑥)

Ruling out VDFs with Perfect Uniqueness

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

𝑥𝑇
′

𝑦 1

𝑦 2

𝑦 2𝑡+1
Output: majority value 𝑦′ of 𝑦 1 , … , 𝑦 2𝑡+1

Claim: 𝑦′ = Eval𝒪 𝑥

2𝑡 + 1 rounds of queries

≤ (2𝑡 + 1)𝑇 queries in total

If algorithm succeeds, then
break sequentiality of the VDF

𝑥1

𝑥
𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 ⋯ 𝑥𝑇

sequence of 𝑇 oracle queries made by Eval𝒪(𝑥) 𝑦 = Eval𝒪(𝑥)

Ruling out VDFs with Perfect Uniqueness

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

𝑥1

𝑥
𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 ⋯ 𝑥𝑇

Consider Verify𝒪 𝑥, 𝑦 :

𝑧1 𝑧2 ⋯ 𝑧𝑡

sequence of 𝑡 queries

Consider output in round 𝑖:

Suppose 𝒪 𝑧𝑖 = 𝒪′ 𝑧𝑖 for all 𝑖 ∈ [𝑡]

Let 𝒪′ be an oracle consistent with the above values

Then, 1 = Verify𝒪 𝑥, 𝑦 = Verify𝒪
′
𝑥, 𝑦

𝑦 𝑖 = Eval𝒪
′
(𝑥)

Perfect uniqueness:

if 𝑦 𝑖 = Eval𝒪
′
(𝑥) and

Verify𝒪
′
𝑥, 𝑦 = 1, then

𝑦 = 𝑦 𝑖

sequence of 𝑇 oracle queries made by Eval𝒪(𝑥) 𝑦 = Eval𝒪(𝑥)

Ruling out VDFs with Perfect Uniqueness

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

𝑥1 𝑥2
′ 𝑥3

′ 𝑥4
′ ⋯ 𝑥𝑇

′

⋯

𝑦 1

𝑦 2

⋯

𝑦 2𝑡+1
⋮ ⋮

Property: If oracle values agree on 𝑧1, … , 𝑧𝑡, then 𝑦 𝑖 is correct

If Eval queries 𝑧𝑗 in some

round, then real value 𝒪(𝑧𝑗)

used in all future rounds

At most 𝑡 rounds can have
incorrect value of 𝑧𝑖

Ruling out VDFs with Perfect Uniqueness

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

𝑥1 𝑥2
′ 𝑥3

′ 𝑥4
′ ⋯ 𝑥𝑇

′

⋯

𝑦 1

𝑦 2

⋯

𝑦 2𝑡+1
⋮ ⋮

There are 2𝑡 + 1 rounds, at most 𝑡 rounds incorrect ⇒ majority is correct

If Eval queries 𝑧𝑗 in some

round, then real value 𝒪(𝑧𝑗)

used in all future rounds

At most 𝑡 rounds can have
incorrect value of 𝑧𝑖

Ruling out Tight VDFs

Theorem. VDFs with tight sequentiality cannot be based solely on random oracles

Tight sequentiality: parallel adversary running in time
𝜎 = 𝑇 − 𝑇𝜌 for 𝜌 < 1 cannot find 𝑦 = Eval(pp, 𝑥)

𝑥1

𝑥
𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 ⋯ 𝑥𝑇

sequence of 𝑇 oracle queries made by Eval𝒪(𝑥) 𝑦 = Eval𝒪(𝑥)

Ruling out Tight VDFs

Theorem. VDFs with tight sequentiality cannot be based solely on random oracles

𝑥1

𝑥
𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 ⋯ 𝑥𝑇

sequence of 𝑇 oracle queries made by Eval𝒪(𝑥) 𝑦 = Eval𝒪(𝑥)

Main idea:
• Choose random subset of the queries 𝑆 ⊆ [𝑇]
• Output Eval𝒪(𝑥) using 𝒪 to answer queries outside 𝑆 and random values for queries in 𝑆

Verification algorithm makes 𝑡 queries to 𝒪:
• Important queries that can “affect” verification are those queried by Verify
• With probability 1 − 𝑡 ⋅ |𝑆|/𝑇, all queries Verify makes are outside 𝑆

Algorithm makes 𝑇 − 𝑆 queries and succeeds with probability at least 1 − 𝑡 ⋅ 𝑆 /𝑇

Ruling out Tight VDFs

Theorem. VDFs with tight sequentiality cannot be based solely on random oracles

𝑥1

𝑥
𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 ⋯ 𝑥𝑇

sequence of 𝑇 oracle queries made by Eval𝒪(𝑥) 𝑦 = Eval𝒪(𝑥)

Main idea:
• Choose random subset of the queries 𝑆 ⊆ [𝑇]
• Output Eval𝒪(𝑥) using 𝒪 to answer queries outside 𝑆 and random values for queries in 𝑆

Verification algorithm makes 𝑡 queries to 𝒪:
• Important queries that can “affect” verification are those queried by Verify
• With probability 1 − 𝑡 ⋅ |𝑆|/𝑇, all queries Verify makes are outside 𝑆

Algorithm makes 𝑇 − 𝑆 queries and succeeds with probability at least 1 − 𝑡 ⋅ 𝑆 /𝑇

For tight sequentiality, 𝜎 = 𝑇 − 𝑇𝜌

• Set 𝑆 = 𝑇𝜌

• Attack makes 𝑇 − 𝑇𝜌 queries and succeeds with
probability 1 − 𝑡/𝑇1−𝜌 which is noticeable since
𝑡 = polylog 𝑇 ≪ 𝑇1−𝜌

For non-tight sequentiality (e.g., 𝜎 = 𝑇/2), the
success probability is vacuous

Our Results

Can we construct VDFs from a random oracle?

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

Theorem. VDFs with tight sequentiality cannot be based solely on random oracles

Negative results (in several specific settings):

Open questions:
• Strengthen lower bounds to rule out VDFs in random oracle?
• Construct non-tight VDFs with computational uniqueness from random oracles?

(e.g., [LW15, AKKPW19])

(e.g., [DGMV19]) (lower bound also appeared in concurrent work of [DGMV19])

Thank you!
https://eprint.iacr.org/2019/663

