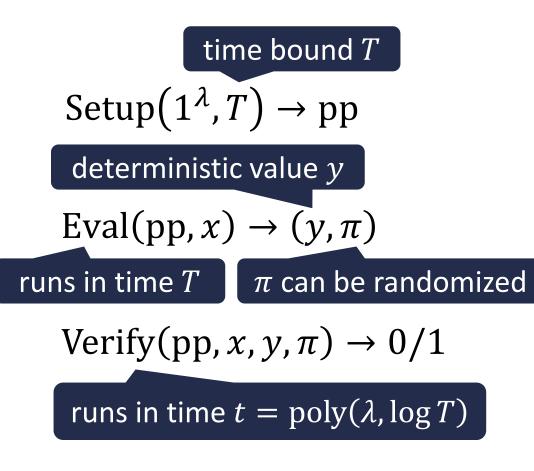
Can Verifiable Delay Functions be Based on Random Oracles?

Mohammad Mahmoody, Caleb Smith, and <u>David J. Wu</u> ICALP 2020

Verifiable Delay Functions (VDF)

a deterministic function that is *slow* to compute, but *fast* to verify



Completeness:

 $Verify(pp, x, y, \pi) = 1$

Uniqueness: no adversaries running in time poly(λ , T) can find (y', π') such that Verify(pp, x, y', π') = 1 [BBBF18]

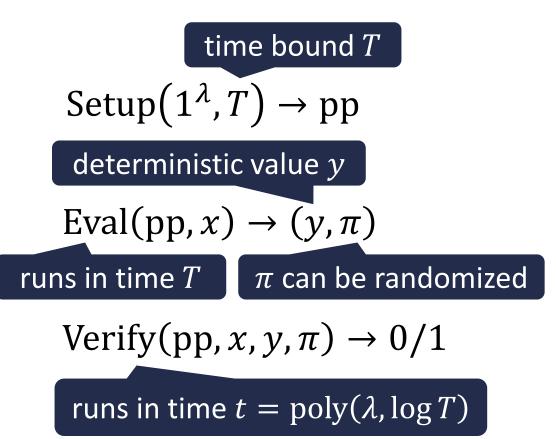
and $y' \neq \text{Eval}(\text{pp}, x)$

Sequentiality: no adversary running in <u>parallel</u> time $\sigma \ll T$ can compute y where y = Eval(pp, x)

Verifiable Delay Functions (VDF)

[BBBF18]

a deterministic function that is *slow* to compute, but *fast* to verify



Many applications:

- randomness beacons
- proofs of replication
- computational timestamping

Many constructions:

- groups of unknown order [Pie19, Wes19]
- incremental verifiable computation [BBBF18]
- pairings/isogenies [FMPS19, Sha19]

All of these constructions rely on <u>algebraic</u> structure

Verifiable Delay Functions (VDF)

[BBBF18]

a deterministic function that is *slow* to compute, but *fast* to verify

$$\operatorname{Setup}(1^{\lambda}, T) \to \operatorname{pp}$$

 $Eval(pp, x) \to (y, \pi)$

Verify(pp, x, y, π) $\rightarrow 0/1$

Many applications:

- randomness beacons
- proofs of replication
- computational timestamping

Many constructions:

- groups of unknown order [Pie19, Wes19]
- incremental verifiable computation [BBBF18]
- pairings/isogenies [FMPS19, Sha19]

Can we construct VDFs from an <u>unstructured</u> assumption?

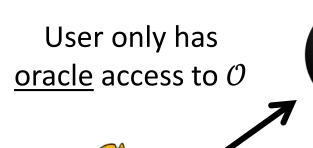
This Work

Can we construct VDFs from an <u>unstructured</u> assumption?

e.g., one-way functions, collision-resistant hash functions

This Work

Can we construct VDFs from an <u>unstructured</u> assumption?



Can model objects like one-way functions, collision-resistant hash functions by a <u>random oracle</u>

$$\mathcal{O}\colon \{0,1\}^n \to \{0,1\}^k$$

Metrics of interest:

- Time complexity: number of queries
- Parallel time complexity: rounds of queries

This work: Can we construct VDFs from a random oracle?

This Work

Can we construct VDFs from an <u>unstructured</u> assumption?

Reason for optimism?

Publicly-verifiable proofs of sequential work (PoSW) <u>do</u> exist in the random oracle model [MMV13]

Proofs of sequential work: VDFs without a uniqueness requirement

Can model objects like one-way functions, collision-resistant hash functions by a <u>random oracle</u>

$$\mathcal{I}: \{0,1\}^n \rightarrow \{0,1\}^k$$

Metrics of interest:

- Time complexity: number of queries
- Parallel time

Random oracle is the <u>only</u> source of hardness

This work: Can we construct VDFs from a random oracle?

Can we construct VDFs from a random oracle?

Negative results (in several <u>specific</u> settings):

Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles (e.g., [LW15, AKKPW19])

Perfect uniqueness: for all $y' \neq \text{Eval}(\text{pp}, x)$ and $\pi \in \{0,1\}^*$, $\text{Verify}(\text{pp}, x, y', \pi) = 0$ *"Every input x has at most one output y that verifies"*

Computational uniqueness: no efficient adversary running in time $poly(\lambda, T)$ can find (y', π') with $y' \neq Eval(pp, x)$ such that $Verify(pp, x, y', \pi) = 1$

"Efficient adversary cannot find different output $y' \neq \text{Eval}(\text{pp}, x)$ that verifies"

Corollary. "Permutation VDFs" cannot be built from random oracles

Can we construct VDFs from a random oracle?

Negative results (in several <u>specific</u> settings):

Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles (e.g., [LW15, AKKPW19])

Perfect uniqueness: for all $y' \neq \text{Eval}(\text{pp}, x)$ and $\pi \in \{0,1\}^*$, $\text{Verify}(\text{pp}, x, y', \pi) = 0$

"Every input x has at most one output y that verifies"

Permutation VDF: VDF with an efficientlycomputable inverse Eval⁻¹ (i.e., "reversible" proof of sequential work) [LW15, AKKPW19]

; in time $\operatorname{poly}(\lambda, T)$ can find (y', π')

 $y' \neq \text{Eval}(\text{pp}, x)$ that verifies"

Corollary. "Permutation VDFs" cannot be built from random oracles

Can we construct VDFs from a random oracle?

Negative results (in several <u>specific</u> settings):

Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles (e.g., [LW15, AKKPW19])

Theorem. VDFs with <u>tight sequentiality</u> cannot be based solely on random oracles (e.g., [DGMV19]) (lower bound also appeared in concurrent work of [DGMV19])

Tight sequentiality: parallel adversary running in time $\sigma = T - T^{\rho}$ for $\rho < 1$ cannot find y = Eval(pp, x)

Sequentiality: parallel adversary running in time $\sigma \ll T$ cannot find y = Eval(pp, x)

e.g.,
$$\sigma = T/2$$
 or $\sigma = \sqrt{T}$

Can we construct VDFs from a random oracle?

Negative results (in several <u>specific</u> settings):

Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles (e.g., [LW15, AKKPW19])

Theorem. VDFs with <u>tight sequentiality</u> cannot be based solely on random oracles (e.g., [DGMV19]) (*lower bound also appeared in concurrent work of [DGMV19]*)

Tight sequentiality: parallel adversary running in time $\sigma = T - T^{\rho}$ for $\rho < 1$ cannot find y = Eval(pp, x)

Impossibility also extends to tight publicly-verifiable proofs of sequential work (PoSW)

Note: Non-tight PoSWs ($\sigma = T/2$) are known in the random oracle model [MMV13]

Can we construct VDFs from a random oracle?

Negative results (in several <u>specific</u> settings):

Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles (e.g., [LW15, AKKPW19])

Theorem. VDFs with <u>tight sequentiality</u> cannot be based solely on random oracles (e.g., [DGMV19]) (*lower bound also appeared in concurrent work of [DGMV19]*)

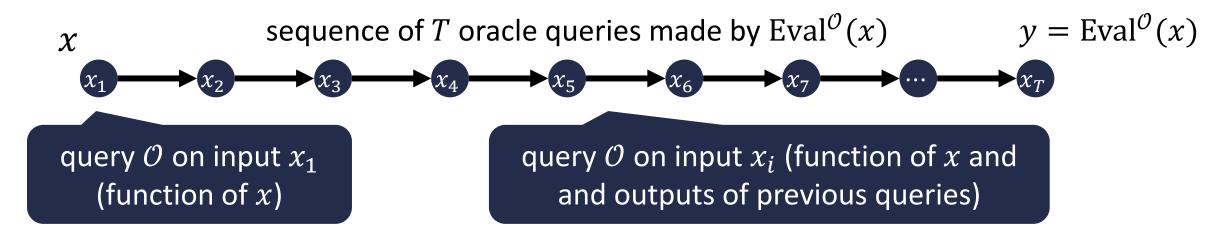
Conclusions:

- Lower bounds exist for certain types of VDFs in the random oracle model
- <u>Non-tight</u> VDFs with <u>computational uniqueness</u> still plausible from random oracles!

Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles

Argument uses similar ideas as lower bound for time-lock puzzles in the random oracle model [MMV11]

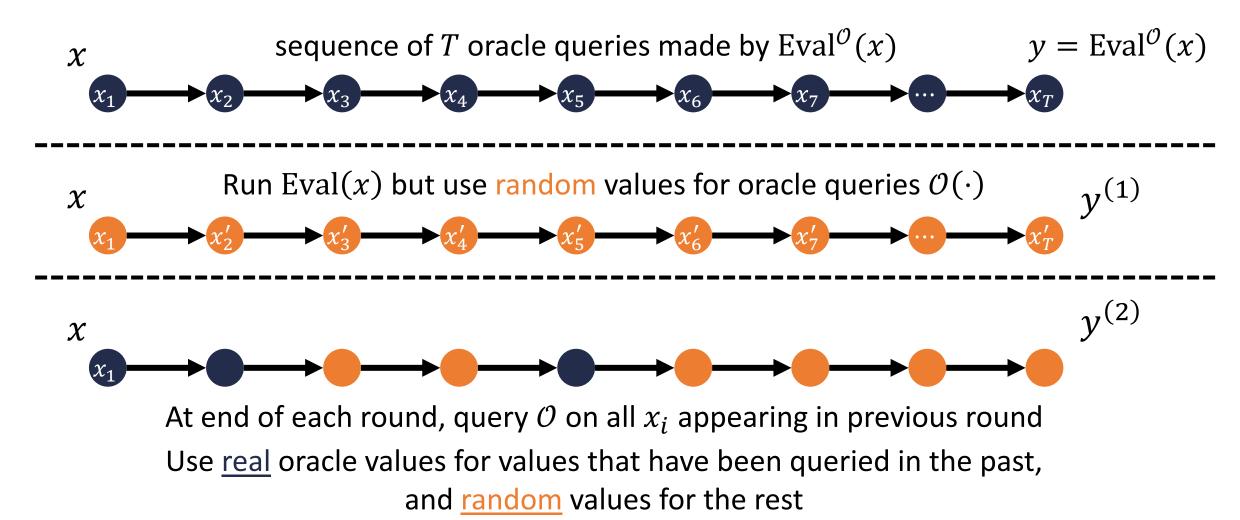
Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles



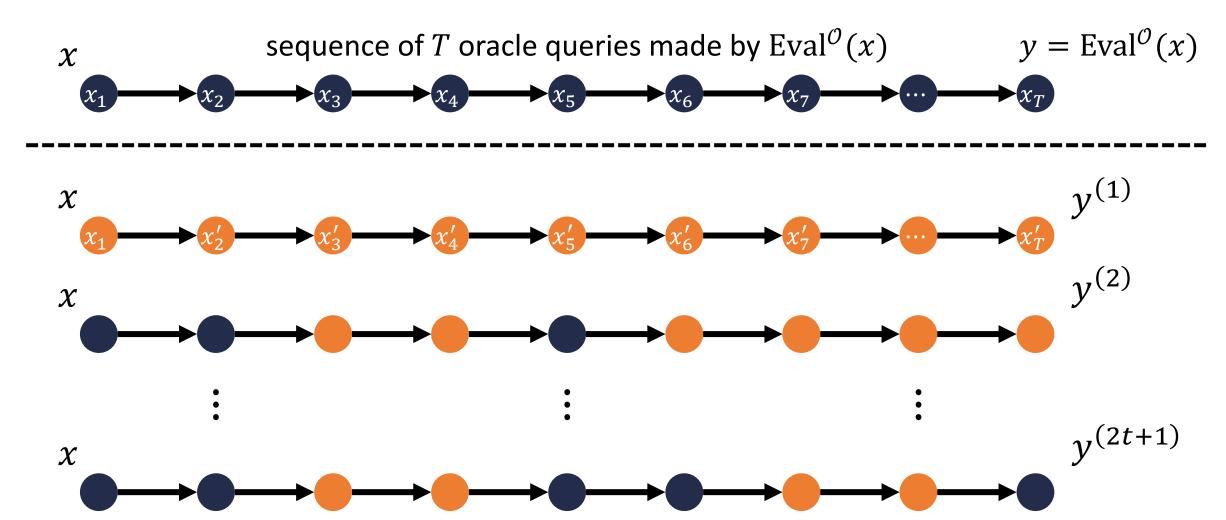
For simplicity, assume there are no public parameters pp or proof π [Same argument works in general case; see paper for details]

Approach: construct algorithm that uses honest evaluation algorithm, but substitutes "fake" responses for <u>some</u> of the random oracle queries

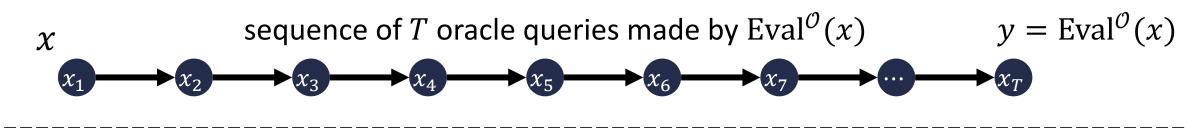
Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles



Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles



Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles



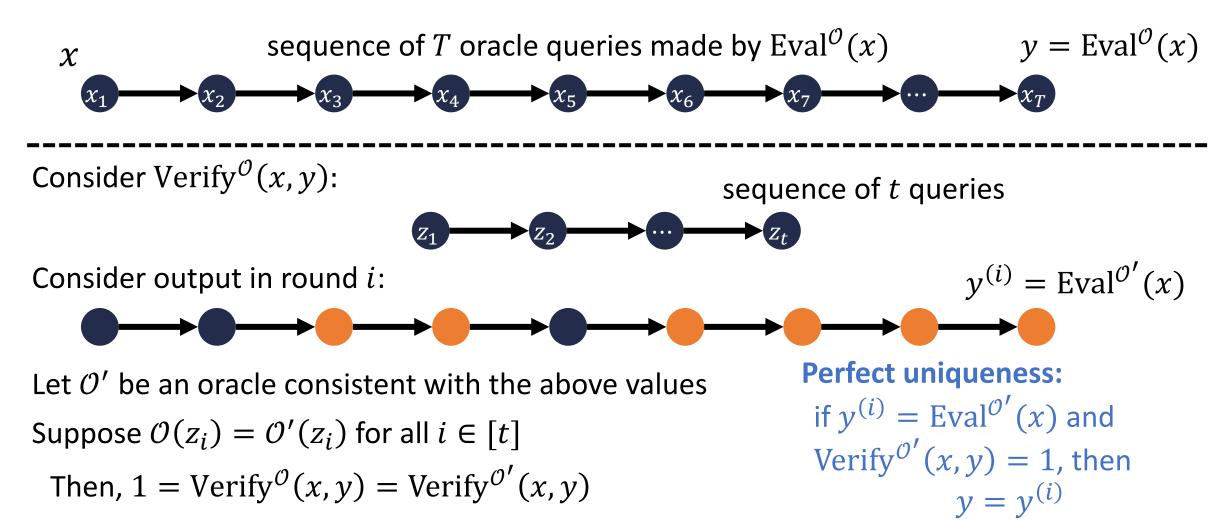
If algorithm succeeds, then break sequentiality of the VDF

2t + 1 <u>rounds</u> of queries $\leq (2t + 1)T$ queries in total $y^{(1)}$ $y^{(2)}$ $y^{(2t+1)}$

Output: majority value y' of $y^{(1)}, \dots, y^{(2t+1)}$

Claim: $y' = \text{Eval}^{\mathcal{O}}(x)$

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

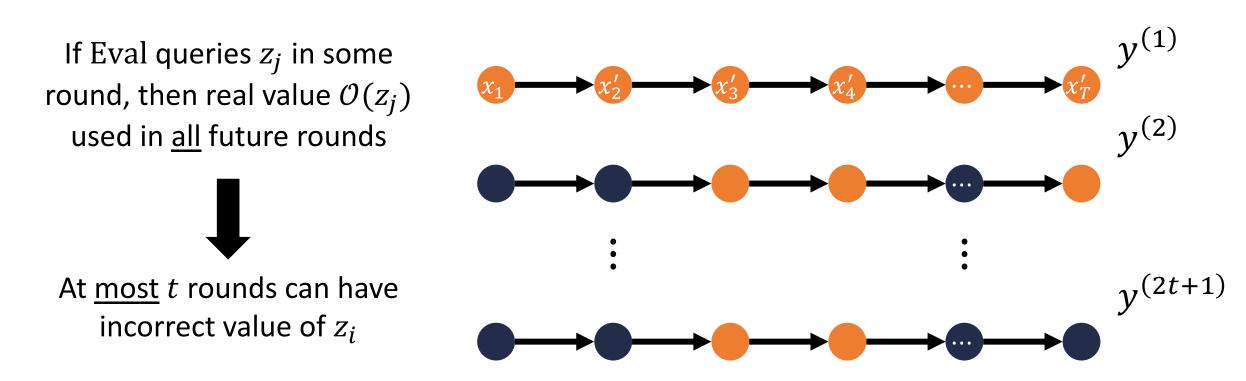


Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles

If Eval queries z_j in some round, then real value $\mathcal{O}(z_j)$ used in <u>all</u> future rounds \bigcup_{i} At <u>most</u> *t* rounds can have incorrect value of z_i

Property: If oracle values agree on $z_1, ..., z_t$, then $y^{(i)}$ is correct

Theorem. VDFs with perfect uniqueness cannot be based solely on random oracles



There are 2t + 1 rounds, at most t rounds incorrect \Rightarrow majority is correct

Ruling out Tight VDFs

Theorem. VDFs with <u>tight sequentiality</u> cannot be based solely on random oracles

Tight sequentiality: parallel adversary running in time $\sigma = T - T^{\rho}$ for $\rho < 1$ cannot find y = Eval(pp, x)

Ruling out Tight VDFs

Theorem. VDFs with <u>tight sequentiality</u> cannot be based solely on random oracles

Main idea:

- Choose random subset of the queries $S \subseteq [T]$
- Output $\operatorname{Eval}^{\mathcal{O}}(x)$ using \mathcal{O} to answer queries outside S and random values for queries in S

Verification algorithm makes t queries to \mathcal{O} :

- Important queries that can "affect" verification are those queried by Verify
- With probability $1 t \cdot |S|/T$, all queries Verify makes are outside S

Algorithm makes T - |S| queries and succeeds with probability at least $1 - t \cdot |S|/T$

Ruling out Tight VDFs

Theorem. VDFs with <u>tight sequentiality</u> cannot be based solely on random oracles

Main idea:

- Choose random subset of the q
- Output $\operatorname{Eval}^{\mathcal{O}}(x)$ using \mathcal{O} to ans

Verification algorithm makes t que

- Important queries that can "affe
- With probability $1 t \cdot |S|/T$, as

For tight sequentiality, $\sigma = T - T^{
ho}$

• Set
$$|S| = T^{\rho}$$

• Attack makes $T - T^{\rho}$ queries and succeeds with probability $1 - t/T^{1-\rho}$ which is noticeable since $t = \text{polylog}(T) \ll T^{1-\rho}$

For non-tight sequentiality (e.g., $\sigma = T/2$), the success probability is vacuous

Algorithm makes T - |S| queries and succeeds with probability at least $1 - t \cdot |S|/T$

Can we construct VDFs from a random oracle?

Negative results (in several <u>specific</u> settings):

Theorem. VDFs with <u>perfect uniqueness</u> cannot be based solely on random oracles (e.g., [LW15, AKKPW19])

Theorem. VDFs with <u>tight sequentiality</u> cannot be based solely on random oracles (e.g., [DGMV19]) (*lower bound also appeared in concurrent work of [DGMV19]*)

Open questions:

- Strengthen lower bounds to rule out VDFs in random oracle?
- Construct <u>non-tight</u> VDFs with <u>computational uniqueness</u> from random oracles?

Thank you!

https://eprint.iacr.org/2019/663