Computing with Lattices:

Commitments, Signatures, and Zero-Knowledge

David Wu

March 2020

Cryptography from Lattices

Computing on Encrypted Data

confidentiality for computations

Computing on Encrypted Data

confidentiality for computations

Computing on Signed Data

integrity for computations

Computing on Signed Data

integrity for computations

The GSW FHE Scheme

recall the GSW encryption scheme:

pk: $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$
public key is an LWE matrix (columns are LWE samples)

$$
\boldsymbol{s}^{T} \boldsymbol{A}=\boldsymbol{e}^{T} \approx \mathbf{0}^{T}
$$

sk: $\boldsymbol{s} \in \mathbb{Z}_{q}^{n}$
ciphertext for $x \in\{0,1\}$:
$\boldsymbol{C}=\boldsymbol{A} \boldsymbol{R}+x \boldsymbol{G} \quad$ where \boldsymbol{R} is random short matrix

The GSW FHE Scheme

recall the GSW encryption scheme:

ciphertext for $x \in\{0,1\}$:

The GSW FHE Scheme

recall the GSW encryption scheme:

pk: $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$
public key is an LWE matrix (columns are LWE samples)

$$
\boldsymbol{s}^{T} \boldsymbol{A}=\boldsymbol{e}^{T} \approx \mathbf{0}^{T}
$$

sk: $\boldsymbol{s} \in \mathbb{Z}_{q}^{n}$
ciphertext for $x \in\{0,1\}$:

$$
\boldsymbol{C}=\boldsymbol{A} \boldsymbol{R}+x \boldsymbol{G} \quad \text { where } \boldsymbol{R} \text { is random short matrix }
$$

decryption:

$$
\boldsymbol{s}^{\boldsymbol{T}} \boldsymbol{C}=\boldsymbol{s}^{T} \boldsymbol{A} \boldsymbol{R}+x \cdot \boldsymbol{s}^{T} \boldsymbol{G} \approx x \cdot \boldsymbol{s}^{T} \boldsymbol{G}
$$

Homomorphic Operations in GSW

[GSW13]

$$
\begin{gathered}
\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \quad \boldsymbol{C}_{2}=\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
\boldsymbol{C}_{+}=\boldsymbol{C}_{1}+\boldsymbol{C}_{2}=\boldsymbol{A} \underbrace{\left(\boldsymbol{R}_{1}+\boldsymbol{R}_{2}\right)}_{\boldsymbol{R}_{+}}+\left(x_{1}+x_{2}\right) \boldsymbol{G}
\end{gathered}
$$

Homomorphic Operations in GSW

$$
\begin{aligned}
& \boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \quad \boldsymbol{C}_{2}=\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
& \boldsymbol{C}_{+}=\boldsymbol{C}_{1}+\boldsymbol{C}_{2}=\boldsymbol{A}\left(\boldsymbol{R}_{1}+\boldsymbol{R}_{2}\right)+\left(x_{1}+x_{2}\right) \boldsymbol{G} \\
& =\boldsymbol{A} \boldsymbol{R}_{+}+\left(x_{1}+x_{2}\right) \boldsymbol{G} \\
& \boldsymbol{C}_{\times}=\boldsymbol{C}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right)=\boldsymbol{A R} \boldsymbol{R}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right)+x_{1} \boldsymbol{C}_{2} \\
& =\boldsymbol{A}(\underbrace{\boldsymbol{R}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right)+x_{1} \boldsymbol{R}_{2}})+x_{1} x_{2} \boldsymbol{G} \\
& \boldsymbol{R}_{\times}
\end{aligned}
$$

Homomorphic Operations in GSW

$$
\begin{aligned}
\boldsymbol{C}_{1}= & \boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \quad \boldsymbol{C}_{2}=\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
\boldsymbol{C}_{+}=\boldsymbol{C}_{1}+\boldsymbol{C}_{2} & =\boldsymbol{A}\left(\boldsymbol{R}_{1}+\boldsymbol{R}_{2}\right)+\left(x_{1}+x_{2}\right) \boldsymbol{G} \\
= & \boldsymbol{A} \boldsymbol{R}_{+}+\left(x_{1}+x_{2}\right) \boldsymbol{G} \\
\boldsymbol{C}_{\times}=\boldsymbol{C}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right) & =\boldsymbol{A} \boldsymbol{R}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right)+x_{1} \boldsymbol{C}_{2} \\
& =\boldsymbol{A}\left(\boldsymbol{R}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right)+x_{1} \boldsymbol{R}_{2}\right)+x_{1} x_{2} \boldsymbol{G} \\
& =\boldsymbol{A} \boldsymbol{R}_{\times}+x_{1} x_{2} \boldsymbol{G}
\end{aligned}
$$

Correctness: $\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, x_{1}$ short $\Rightarrow \boldsymbol{R}_{+}, \boldsymbol{R}_{\times}$also short

Homomorphic Operations in GSW

$$
\begin{aligned}
\boldsymbol{C}_{1} & =\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2} & =\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
& \vdots \\
\boldsymbol{C}_{n} & =\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{aligned}
$$

"input-independent" evaluation
\boldsymbol{C}_{f} is a function of $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}, f$ (and independent of x)

Homomorphic Operations in GSW

$$
\begin{aligned}
\boldsymbol{C}_{1} & =\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \quad \boldsymbol{C}_{2}=\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
\boldsymbol{C}_{+}=\boldsymbol{C}_{1}+\boldsymbol{C}_{2} & =\boldsymbol{A}\left(\boldsymbol{R}_{1}+\boldsymbol{R}_{2}\right)+\left(x_{1}+x_{2}\right) \boldsymbol{G} \\
& =\boldsymbol{A} \boldsymbol{R}_{+}+\left(x_{1}+x_{2}\right) \boldsymbol{G}
\end{aligned}
$$

There is another

$$
\begin{aligned}
\boldsymbol{C}_{\times}=\boldsymbol{C}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right) & =\boldsymbol{A}\left(\boldsymbol{R}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right)+x_{1} \boldsymbol{R}_{2}\right)+x_{1} x_{2} \boldsymbol{G} \\
& =\boldsymbol{A} \boldsymbol{R}_{\times}+x_{1} x_{2} \boldsymbol{G}
\end{aligned}
$$

Homomorphic Operations in GSW

$$
\begin{aligned}
\boldsymbol{C}_{1}= & \boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \quad \boldsymbol{C}_{2}=\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
\boldsymbol{C}_{+}=\boldsymbol{C}_{1}+\boldsymbol{C}_{2} & =\boldsymbol{A}\left(\boldsymbol{R}_{1}+\boldsymbol{R}_{2}\right)+\left(x_{1}+x_{2}\right) \boldsymbol{G} \\
& =\boldsymbol{A} \boldsymbol{R}_{+}+\left(x_{1}+x_{2}\right) \boldsymbol{G}
\end{aligned}
$$

There is another

$$
\begin{aligned}
\boldsymbol{C}_{\times}=\boldsymbol{C}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right) & =\boldsymbol{A}\left(\boldsymbol{R}_{1} \boldsymbol{G}^{-1}\left(\boldsymbol{C}_{2}\right)+x_{1} \boldsymbol{R}_{2}\right)+x_{1} x_{2} \boldsymbol{G} \\
& =\boldsymbol{A} \boldsymbol{R}_{\times}+x_{1} x_{2} \boldsymbol{G}
\end{aligned}
$$

observation: \boldsymbol{R}_{+}and \boldsymbol{R}_{\times}is a short linear combination of \boldsymbol{R}_{1} and \boldsymbol{R}_{2}

The BGG+ Homomorphisms

$$
\begin{aligned}
& \qquad \boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \quad \cdots \quad \boldsymbol{C}_{n}=\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G} \\
& \qquad \begin{array}{lll}
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+\boldsymbol{f}(x) \boldsymbol{G} & \text { where } & \boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x} \\
\text { and } & \boldsymbol{H}_{f, x} \text { is short }
\end{array} \\
& \text { equivalently: }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\boldsymbol{A} \boldsymbol{R}_{1}|\cdots| \boldsymbol{A} \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}=\boldsymbol{A} \boldsymbol{R}_{f, x}} \\
& {\left[\boldsymbol{C}_{1}-x_{1} \boldsymbol{G}|\cdots| \boldsymbol{C}_{n}-x_{n} \boldsymbol{G}\right] \boldsymbol{H}_{f, x}=\boldsymbol{C}_{f}-f(x) \boldsymbol{G}}
\end{aligned}
$$

The BGG+ Homomorphisms

"input-independent" evaluation (given $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}, f$):

$$
\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n} \mapsto \boldsymbol{C}_{f}
$$

sufficient for FHE

"input-dependent" evaluation (given $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}, f, x$):

$$
\left[\boldsymbol{C}_{1}-x_{1} \boldsymbol{G}|\cdots| \boldsymbol{C}_{\boldsymbol{n}}-x_{n} \boldsymbol{G}\right] \boldsymbol{H}_{f, x}=\boldsymbol{C}_{f}-f(x) \boldsymbol{G}
$$

applications:
input-independent evaluation (\boldsymbol{A}_{f})
input-dependent evaluation ($\boldsymbol{H}_{f, x}$)
attribute-based encryption key-generation decryption
signing
constrained PRFs [BV15]

GSW as a Homomorphic Commitment

public parameters $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$ (LWE matrix)

encryption of x with randomness R

$$
\mathcal{L}
$$

commitment to x with opening R

GSW as a Homomorphic Commitment

public parameters $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$ (LWE matrix)

statistically binding: correctness of GSW (in fact, extractable)
computationally hiding: security of GSW (under LWE)

GSW as a Homomorphic Commitment

computing on committed values:

$$
\begin{aligned}
\boldsymbol{C}_{1} & =\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2} & =\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
& \vdots \\
\boldsymbol{C}_{n} & =\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{aligned}
$$

goal: open the committed value to $y=f(x)$
syntax: Open (pp, $c,(f, y), r)$
pp: public parameters $\quad(f, y)$: value
c: commitment
r : opening

binding:

adversary cannot open c to $(f, y) \neq\left(f, y^{\prime}\right)$

Openings are with respect to a value y and a function f

GSW as a Homomorphic Commitment

computing on committed values:

$$
\begin{aligned}
\boldsymbol{C}_{1} & =\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2} & =\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
& \vdots \\
\boldsymbol{C}_{n} & =\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{aligned}
$$

goal: open the committed value to $y=f(x)$
syntax: Open (pp, $c,(f, y), r)$
$\begin{array}{ll}\text { pp: public parameters } & (f, y) \text { : value } \\ c \text { : commitment } & r \text { : opening }\end{array}$

binding:

adversary cannot open c to $(f, y) \neq\left(f, y^{\prime}\right)$

Application: preprocessing NIZKs

GSW as a Homomorphic Commitment

computing on committed values:

$$
\begin{aligned}
\boldsymbol{C}_{1} & =\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2} & =\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
& \vdots \\
\boldsymbol{C}_{n} & =\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{aligned}
$$

commitment:

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+f(x) \boldsymbol{G}
$$

\boldsymbol{C}_{f} is a commitment to $f(x)$ with opening $\boldsymbol{R}_{f, x}$

GSW as a Homomorphic Commitment

computing on committed values:

$$
\begin{aligned}
\boldsymbol{C}_{1} & =\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2} & =\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
& \vdots \\
\boldsymbol{C}_{n} & =\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{aligned}
$$

commitment:

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+f(x) \boldsymbol{G}
$$

opening:

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

GSW as a Homomorphic Commitment

computing on committed values:

$$
\begin{gathered}
\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2}=\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
\quad \vdots \\
\boldsymbol{C}_{n}=\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{gathered}
$$

commitment:

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+f(x) \boldsymbol{G}
$$

opening:

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

"input-independent" evaluation (given $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}, f$):

$$
\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n} \mapsto \boldsymbol{C}_{f}
$$

"input-dependent" evaluation (given $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}, f, x$):

$$
\left[\boldsymbol{C}_{1}-x_{1} \boldsymbol{G}|\cdots| \boldsymbol{C}_{\boldsymbol{n}}-x_{n} \boldsymbol{G}\right] \boldsymbol{H}_{f, x}=\boldsymbol{C}_{f}-f(x) \boldsymbol{G}
$$

From Commitments to Proofs

homomorphic commitments can be used to prove relations on secret values

compute opening for $C_{\mathcal{R}, x}$ to $\mathcal{R}(x)$
compute commitment $C_{\mathcal{R}, x}$ from C_{x}
Goal: prove that a (secret) statement x satisfies some relation \mathcal{R}

From Commitments to NIZKs (Dream Version)

$$
\mathcal{R}(x, w): \text { NP relation }
$$

common reference string

$$
C_{w} \leftarrow \operatorname{Commit}(\mathrm{pp}, w)
$$

opening for $C_{\mathcal{R}_{x}, w}$

prover
(x, w)

$$
\mathcal{R}_{x}(w):=\mathcal{R}(x, w)
$$

function that depends
only on the statement x
verifier x
verifier checks
$C_{\mathcal{R}_{x}, w}$ opens to 1

From Commitments to NIZKs (Dream Version)

$\mathcal{R}(x, w)$: NP relation

Zero-Knowledge ("proof hides w "):

- C_{w} hides w (commitment is hiding)
- $C_{\mathcal{R}_{x}, w}$ is a public function of C_{w}
- opening to $C_{\mathcal{R}_{x}, w}$ might leak information about w (can be fixed)

From Commitments to NIZKs (Dream Version)

$\mathcal{R}(x, w)$: NP relation

Soundness (for x where $\mathcal{R}_{x}(w)=0$ for all w):

- if $C_{w^{*}}$ is an honestly-generated commitment to some value w^{*}, then $C_{\mathcal{R}_{x}, w^{*}}$ is a commitment to $\mathcal{R}_{x}\left(w^{*}\right)=0$ by correctness
- statistical soundness follows by statistical binding

From Commitments to NIZKs (Dream Version)

Open Problem: NIZK proof of well-formedness of GSW ciphertext $C \in \mathbb{Z}_{q}^{n \times m}$

$$
\exists x \in\{0,1\}, \text { short } \boldsymbol{R} \in \mathbb{Z}_{q}^{m \times m}: \boldsymbol{C}=\boldsymbol{A} \boldsymbol{R}+x \boldsymbol{G}
$$

Would yield direct construction of NIZK for NP (lattice "analog" of [GOS06])

- Construction makes black-box use of cryptography (in contrast to Fiat-Shamir approach [CCHLRRW19, PS19])

Soundness (for x where $\pi_{x},=0$ for all w):

- if $C_{w^{*}}$ is an honestly-generated commitment to some value w^{*}, then $C_{\mathcal{R}_{x}, w^{*}}$ is a commitment to $\mathcal{R}_{x}\left(w^{*}\right)=0$ by correctness
- statistical soundness follows by statistical binding

From Commitments to Preprocessing NIZKs

$\mathcal{R}(x, w):$ NP relation

Can we still use this approach to obtain some type of NIZK? Yes! But in a weaker "preprocessing" or "correlated randomness" model

NIZKs in the Preprocessing Model

(trusted) setup algorithm generates both proving key k_{P} and a verification key k_{V} (statement-independent)

NIZKs in the Preprocessing Model

main requirement: reusability
suffices for many applications of NIZKs
simpler than CRS model:

- soundness holds assuming k_{V} is hidden

CRS model: k_{P} and k_{V} are both public

- zero-knowledge holds assuming k_{P} is hidden

From Commitments to Preprocessing NIZKs

challenge: proving that C_{w} is a valid commitment solution: have a trusted party generate it!

From Commitments to Preprocessing NIZKs

problem: preprocessing is witness-dependent
solution: add a layer of indirection

From Commitments to Preprocessing NIZKs

 and opening to an encryption key k
From Commitments to Preprocessing NIZKs

$\left(k, C_{k}, R_{k}\right)$
verifier given commitment to $k \quad C_{k}$

From Commitments to Preprocessing NIZKs

solution: add a layer of indirection

From Commitments to Preprocessing NIZKs

[ct is an encryption of the witness w]
verifier computes $C_{f_{x, \mathrm{ct}}, k}$ from $\left(x, \mathrm{ct}, C_{k}\right)$ and checks that it opens to 1

From Commitments to Preprocessing NIZKs

Soundness: $\quad C_{f_{x, \mathrm{ct}}, k}$ is a commitment on $f_{x, \mathrm{ct}}(k)=0$ for all k and a false x; soundness follows by statistical binding of commitment scheme

From Commitments to Preprocessing NIZKs

Zero-Knowledge: commitment + opening hide k and encryption scheme hides w

From Commitments to Preprocessing NIZKs

designated-prover NIZK from homomorphic commitments (under LWE)

From Commitments to Preprocessing NIZKs

designated-prover NIZK from homomorphic commitments (under LWE)

Back to Homomorphic Commitments

computing on committed values:
commitment:

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+f(x) \boldsymbol{G}
$$

opening:

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

$$
\begin{aligned}
\boldsymbol{C}_{1} & =\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2} & =\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
& \vdots \\
\boldsymbol{C}_{n} & =\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{aligned}
$$

Requirement (for ZK): openings hides x up to what is revealed by $f(x)$ ("context-hiding")
not true as written since $\boldsymbol{R}_{f, x}$ leaks information about $\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{n}$

Back to Homomorphic Commitments

computing on committed values:
commitment:

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+f(x) \boldsymbol{G}
$$

opening:

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

$$
\begin{aligned}
\boldsymbol{C}_{1} & =\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2} & =\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
& \vdots \\
\boldsymbol{C}_{n} & =\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{aligned}
$$

Requirement (for ZK): openings hides x up to what is revealed by $f(x)$ ("context-hiding")

Context-Hiding: public parameters \boldsymbol{A}, commitments $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}$ and opening $\boldsymbol{R}_{f, x}$ can be simulated given only $(f, f(x))$

Another Ingredient: Lattice Trapdoors

[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]
gadget trapdoors [MP12]

short matrix (trapdoor) \boldsymbol{R}
gadget matrix \boldsymbol{G}

Another Ingredient: Lattice Trapdoors

[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]

gadget trapdoors [MP12]

short \boldsymbol{R} such that $\boldsymbol{A R}=\boldsymbol{G}$
enables preimage sampling for SIS:

- let $f_{A}(\boldsymbol{x}):=\boldsymbol{A} \boldsymbol{x}$
- given $\boldsymbol{u}=f_{A}(\boldsymbol{x})$ and \boldsymbol{R}, can sample short \boldsymbol{x}^{\prime} where

$$
f_{A}\left(\boldsymbol{x}^{\prime}\right)=\boldsymbol{u}
$$

and \boldsymbol{x}^{\prime} is Gaussian-distributed

Another Ingredient: Lattice Trapdoors

[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]
suppose $\boldsymbol{A}=\left[\boldsymbol{A}_{1} \mid \boldsymbol{A}_{2}\right]$
two possible trapdoors:

- if \boldsymbol{R}_{1} is trapdoor for \boldsymbol{A}_{1}, then $\boldsymbol{A}_{1} \boldsymbol{R}_{1}=\boldsymbol{G}$ and

$$
\left[A_{1} \mid A_{2}\right] \cdot\left[\begin{array}{c}
\boldsymbol{R}_{1} \\
\mathbf{0}
\end{array}\right]=G
$$

simulation

- if $\boldsymbol{A}_{2}=\boldsymbol{A}_{1} \boldsymbol{R}_{2} \pm \boldsymbol{G}$ for short \boldsymbol{R}_{2}, then

$$
\left[A_{1} \mid A_{2}\right] \cdot\left[\begin{array}{c}
\overline{+} R_{2} \\
I
\end{array}\right]=G
$$

two statistically-indistinguishable ways to sample $f_{A}^{-1}(\boldsymbol{u})$

Context-Hiding for Commitments

computing on committed values:

$$
\begin{gathered}
\boldsymbol{C}_{1}=\boldsymbol{A} \boldsymbol{R}_{1}+x_{1} \boldsymbol{G} \\
\boldsymbol{C}_{2}=\boldsymbol{A} \boldsymbol{R}_{2}+x_{2} \boldsymbol{G} \\
\quad \vdots \\
\boldsymbol{C}_{n}=\boldsymbol{A} \boldsymbol{R}_{n}+x_{n} \boldsymbol{G}
\end{gathered}
$$

commitment:

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+f(x) \boldsymbol{G}
$$

opening:

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

Context-Hiding for Commitments

for simplicity: only support openings to $f(x)=1$
suffices for zero-knowledge (can consider f, \bar{f} more generally)
commitment:

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+f(x) \boldsymbol{G}
$$

opening:

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

Context-Hiding: public parameters \boldsymbol{A}, commitments $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}$ and opening $\boldsymbol{R}_{f, x}$ can be simulated given only $(f, f(x))$

Context-Hiding for Commitments

for simplicity: only support openings to $f(x)=1$
opening can be used to obtain trapdoor for

$$
\left[A \mid C_{f}\right]=\left[A \mid A R_{f, x}+G\right]
$$

if simulator chooses \boldsymbol{A}, can choose \boldsymbol{A} with
trapdoor
if commitments are well-formed, committer also has trapdoor
commitment:

$$
\boldsymbol{C}_{f}=\boldsymbol{A} \boldsymbol{R}_{f, x}+f(x) \boldsymbol{G}
$$

opening:

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

Context-Hiding: public parameters \boldsymbol{A}, commitments $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}$ and opening $\boldsymbol{R}_{f, x}$ can be simulated given only $(f, f(x))$

Context-Hiding for Commitments

for simplicity: only support openings to $f(x)=1$
opening can be used to obtain trapdoor for

$$
\left[A \mid C_{f}\right]=\left[A \mid A R_{f, x}+G\right]
$$

idea: include random target vector \boldsymbol{u} in public parameters
opening: short vector v such that

$$
\left[A \mid C_{f}\right] v=u
$$

Context-Hiding: public parameters \boldsymbol{A}, commitments $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}$ and opening $\boldsymbol{R}_{f, x}$ can be simulated given only $(f, f(x))$

Context-Hiding for Commitments

real scheme:

public parameters:

- LWE matrix A
- sample random \boldsymbol{u}
commitments:
- $\boldsymbol{C}_{i} \leftarrow \boldsymbol{A} \boldsymbol{R}_{i}+x_{i} \boldsymbol{G}$
opening:
- compute \boldsymbol{C}_{f} from $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}$
- sample short v such that
$\left[A \mid C_{f}\right] v=u$
using $\boldsymbol{R}_{f, x} \leftarrow\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}$
to simulate:
public parameters:
- sample \boldsymbol{A} with trapdoor \boldsymbol{R}
- sample random \boldsymbol{u}
commitments:
- sample random matrices C_{i} opening:
- compute \boldsymbol{C}_{f} from $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}$
- sample short v such that
$\left[A \mid C_{f}\right] v=u$
using \boldsymbol{R}

Context-Hiding: public parameters \boldsymbol{A}, commitments $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}$ and opening $\boldsymbol{R}_{f, x}$ can be simulated given only $(f, f(x))$

Dual-Mode Homomorphic Commitments

public parameters $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$ (LWE matrix)

statistically binding: correctness of GSW (in fact, extractable)
computationally hiding: security of GSW (under LWE)

Dual-Mode Homomorphic Commitments

public parameters $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$ (uniformly random)

statistically hiding: leftover hash lemma (in fact, equivocable)
computational binding: switch \boldsymbol{A} to LWE matrix

Homomorphic Signatures

public parameters $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$ (uniformly random)

equivocation \Rightarrow signature

Homomorphic Signatures

public parameters $\boldsymbol{A} \in \mathbb{Z}_{q}^{n \times m}$ (uniformly random)

verification key: random $\boldsymbol{A}, \boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}$
signing key: trapdoor for \boldsymbol{A}

Homomorphic Signatures

vk: $\boldsymbol{A}, \boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n} \in \mathbb{Z}_{q}^{n \times m}$
sk: trapdoor for \boldsymbol{A}
signature on $x \in\{0,1\}^{n}$:

$$
\begin{aligned}
& \text { short } \boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{n} \in \mathbb{Z}_{q}^{n \times m} \\
& \text { where } \boldsymbol{C}_{i}=\boldsymbol{A} \boldsymbol{R}_{i}+x_{i} \boldsymbol{G}
\end{aligned}
$$

compute f on signatures:

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

verify signature \boldsymbol{R} on $(f, f(x))$

$$
\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}, f \mapsto \boldsymbol{C}_{f}
$$

$$
\text { check } \boldsymbol{A} \boldsymbol{R}+f(x) \boldsymbol{G}=\boldsymbol{C}_{f}
$$

unforgeability follows from binding property of the commitment scheme

Summary

GSW ciphertexts:

$$
\boldsymbol{C}_{i}=\boldsymbol{A} \boldsymbol{R}_{i}+x_{i} \boldsymbol{G}
$$

"input-independent" evaluation (given $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}, f$):

$$
\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n} \mapsto \boldsymbol{C}_{f}
$$

"input-dependent" evaluation (given $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{n}, f, x$):

$$
\left[\boldsymbol{C}_{1}-x_{1} \boldsymbol{G}|\cdots| \boldsymbol{C}_{n}-x_{n} \boldsymbol{G}\right] \boldsymbol{H}_{f, x}=\boldsymbol{C}_{f}-f(x) \boldsymbol{G}
$$

\boldsymbol{A} is LWE matrix \Rightarrow extractable commitments
\boldsymbol{A} is uniform \Rightarrow equivocable commitments (homomorphic signatures) homomorphic commitments/signatures \Rightarrow designated-prover NIZKs

Open Questions

NIZK proof of well-formedness of GSW ciphertexts?

Fully homomorphic commitments/signatures from lattices?

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

$\left\|H_{f, x}\right\|$ scales with exponentially in the depth d of the function f, so modulus $q>2^{O(d)}$

Open Questions

NIZK proof of well-formedness of GSW ciphertexts?

Fully homomorphic commitments/signatures from lattices?

$$
\boldsymbol{R}_{f, x}=\left[\boldsymbol{R}_{1}|\cdots| \boldsymbol{R}_{n}\right] \boldsymbol{H}_{f, x}
$$

Short public parameters without random oracles?

Thank you!

