
New Constructions of Statistical NIZKs:
Dual-Mode DV-NIZKs and More

Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu

May 2020



Non-Interactive Zero-Knowledge (NIZK)

NP language ℒ ⊆ 0,1 ∗

prover verifier

𝑥 ∈ 0,1 ∗ accept if 
𝑥 ∈ ℒ

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 𝑥 = accept ≤ 𝜀
“No prover can convince honest verifier of false statement”

[BFM88]

𝜋

can consider both computational and statistical variants



Non-Interactive Zero-Knowledge (NIZK)

𝜋

real distribution

𝒮(𝑥)

ideal distribution

≈𝑐

NP language ℒ

[BFM88]

Zero-Knowledge: for all efficient verifiers 𝑉∗, there exists an efficient simulator 𝒮 where

∀𝑥 ∈ ℒ ∶ 𝑃, 𝑉∗ 𝑥 ≈ 𝒮(𝑥)

can consider both computational and statistical variants



Designated-Verifier NIZKs

This work: focus primarily on the designated-verifier model

𝜎 𝑘𝑉

prover verifier

public CRS secret verification key

trusted setup



Designated-Verifier NIZKs

This work: focus primarily on the designated-verifier model

𝜋 = Prove(𝜎, 𝑥, 𝑤)

prover verifier

Requirement: soundness should 
hold even if the prover has access to 

the verification oracle
𝜎 𝑘𝑉



publicly-verifiable

The Landscape of (DV)-NIZKs

Construction AssumptionSoundness Zero-Knowledge

[FLS90] factoringcomputationalstatistical

[GOS06] 𝑘-Lin (pairing group)stat. comp. stat.comp.

[CHK03] CDH (pairing group)computationalstatistical

[PS19] LWEstat. comp. stat.comp.

[SW14] iO + OWFsstatisticalcomputational

[QRW19, CH19, KNYY19] CDHcomputationalstatistical

[LQRWW19] CDH/LWE/LPNcomputational computational

[CDIKLOV19] DCRstat. comp. stat.comp.

malicious designated-verifier



The Landscape of (DV)-NIZKs

publicly-verifiable

Construction AssumptionSoundness Zero-Knowledge

[GOS06] 𝑘-Lin (pairing group)stat. comp. stat.comp.

[PS19] LWEstat. comp. stat.comp.

[SW14] iO + OWFsstatisticalcomputational

[CDIKLOV19] DCRstat. comp. stat.comp.

malicious designated-verifier

Statistical zero-knowledge seems more difficult to achieve



This Work: Statistical NIZKs

𝜋
𝒮(𝑥)

≈𝑠

Statistical ZK provides everlasting privacy

This work: Compiling NIZKs in the hidden-bits model to statistical (DV)-NIZKs
• Statistical DV-NIZKs from DDH in pairing-free groups / QR / DCR



This Work: Statistical NIZKs

𝜋
𝒮(𝑥)

≈𝑠

Statistical ZK provides everlasting privacy

This work: Compiling NIZKs in the hidden-bits model to statistical (DV)-NIZKs
• Statistical DV-NIZKs from DDH in pairing-free groups / QR / DCR

More precisely: DV-NIZKs are
“dual-mode” and maliciously secure



This Work: Statistical NIZKs

𝜋
𝒮(𝑥)

≈𝑠

Statistical ZK provides everlasting privacy

This work: Compiling NIZKs in the hidden-bits model to statistical (DV)-NIZKs
• Statistical DV-NIZKs from DDH in pairing-free groups / QR / DCR
• Statistical NIZKs from 𝑘-Lin (𝔾1) + 𝑘-KerLin (𝔾2) in a pairing group

Weaker assumption compared to [GOS06] which 
required 𝑘-Lin in both groups (𝑘-KerLin is a search

assumption implied by 𝑘-Lin)



publicly-verifiable

The Landscape of (DV)-NIZKs

Construction AssumptionSoundness Zero-Knowledge

[FLS90] factoringcomputationalstatistical

[GOS06] 𝑘-Lin (𝔾1, 𝔾2)stat. comp. stat.comp.

[CHK03] CDH (pairing group)computationalstatistical

[PS19] LWEstat. comp. stat.comp.

[SW14] iO + OWFsstatisticalcomputational

[QRW19, CH19, KNYY19] CDHcomputationalstatistical

[LQRWW19] CDH/LWE/LPNcomputational computational

[CDIKLOV19] DCRstat. comp. stat.comp.

This work DDH/QR/DCRstat. comp. stat.comp.

This work 𝒌-Lin (𝔾𝟏), 𝒌-KerLin (𝔾𝟐)computational statistical

malicious designated-verifier



NIZKs in the Hidden Bits Model

0 1 1 1 0 0 1 0 1 1

prover

prover has access to 
uniformly random

bit string of length 𝑛

𝑛 bits long

[FLS90]



NIZKs in the Hidden Bits Model

0 1 1 1 0 0 1 0 1 1

prover

prover has access to 
uniformly random

bit string of length 𝑛

𝐼 ⊆ [𝑛], 𝜋

𝑛 bits long

prover outputs a
subset 𝐼 ⊆ [𝑛] and a proof 𝜋

[FLS90]



NIZKs in the Hidden Bits Model

1 0 0 0

verifier only sees the 
subset of the bits in 𝐼

and proof 𝜋

𝐼 ⊆ [𝑛], 𝜋

𝑛 bits long

verifierprover prover outputs a
subset 𝐼 ⊆ [𝑛] and a proof 𝜋

[FLS90]



NIZKs in the Hidden Bits Model

1 0 0 0

verifier only sees the 
subset of the bits in 𝐼

and proof 𝜋

𝐼 ⊆ [𝑛], 𝜋

𝑛 bits long

verifierprover prover outputs a
subset 𝐼 ⊆ [𝑛] and a proof 𝜋

[FLS90]: There exists a perfect NIZK proof for 
any NP language in the hidden-bits model

[FLS90]



The FLS Compiler

NIZKs in the hidden-bits model

NIZKs in the CRS model

cryptographic
compiler

CRS

𝑏1 𝑏2 ⋯ 𝑏𝑛

hidden-bits string

“commitment” 𝜎

Prover can selectively open 𝜎 to 
𝑖, 𝑏𝑖 for indices 𝑖 of its choosing

[FLS90]



The FLS Compiler

CRS

𝑏1 𝑏2 ⋯ 𝑏𝑛

hidden-bits string

“commitment” 𝜎

Prover can selectively open 𝜎 to 
𝑖, 𝑏𝑖 for indices 𝑖 of its choosing

Main properties:
• Binding: Can only open 𝜎 to a single bit 

for each position
• Hiding: Unopened bits should be hidden
• Succinctness: 𝜎 ≪ 𝑛

Soundness: If 𝜎 ≪ 𝑛 and there are not too 
many “bad” hidden-bits strings ⇒ prover 
cannot find a “bad” 𝜎 that fools verifier

Zero-Knowledge: Unopened bits hidden to 
verifier

[FLS90]



The FLS Compiler

NIZKs in the hidden-bits model

NIZKs in the CRS model

cryptographic
compiler

CRS

𝑏1 𝑏2 ⋯ 𝑏𝑛

hidden-bits string

“commitment” 𝜎

Instantiations:
[FLS90]: trapdoor permutations (computational NIZK proofs)
[CHK03]:CDH over a pairing group (computational NIZK proofs)
[QRW19, CH19, KNYY19]:hidden-bits generators from CDH

(computational DV-NIZK proofs)

[FLS90]



The FLS Compiler

NIZKs in the hidden-bits model

NIZKs in the CRS model

cryptographic
compiler

CRS

𝑏1 𝑏2 ⋯ 𝑏𝑛

hidden-bits string

“commitment” 𝜎

Possible to instantiate FLS 
to obtain statistical ZK?

[FLS90]

Instantiations:
[FLS90]: trapdoor permutations (computational NIZK proofs)
[CHK03]:CDH over a pairing group (computational NIZK proofs)
[QRW19, CH19, KNYY19]:hidden-bits generators from CDH

(computational DV-NIZK proofs)



The FLS Compiler

NIZKs in the hidden-bits model NIZKs in the CRS model

cryptographic compiler

[FLS90]: trapdoor permutations (computational NIZK proofs)
[CHK03]: CDH over a pairing group (computational NIZK proofs)
[QRW19, CH19, KNYY19]: computational hidden-bits generators from CDH

(computational DV-NIZK arguments)

This work: dual-mode hidden bits generator
• “Binding mode:” computational DV-NIZK proofs
• “Hiding mode:” statistical DV-NIZK arguments

[FLS90]



Warm-Up: The FLS Compiler from CDH
[CHK03, QRW19, CH19, KNYY19]

CRS: 𝑔, ℎ1 = 𝑔𝑤1 , … , ℎ𝑛 = 𝑔𝑤𝑛 ∈ 𝔾

Each exponent 𝑦 ∈ ℤ𝑝
defines a hidden bits string

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ hc ℎ𝑖
𝑦

hard-core bit

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝑤1, … , 𝑤𝑛 ← ℤ𝑝

Prover samples 𝑦 ← ℤ𝑝 and commits to hidden bits string with 𝜎 = 𝑔𝑦 ∈ 𝔾

Committing to a hidden-bits string:

[CHK03]: Use a pairing: 𝑒 𝑔𝑦, ℎ𝑖 = 𝑒 𝑔, ℎ𝑖
𝑦

Opening 𝝈 to a bit 𝒃𝒊: reveal ℎ𝑖
𝑦

and prove that 𝑔, 𝑔𝑦, ℎ𝑖 , ℎ𝑖
𝑦

is a DDH tuple

[QRW19, CH19, KNYY19]: Use Cramer-Shoup hash-proof system [CS98, CS02, CKS08]

publicly-verifiable

designated-verifier



Warm-Up: The FLS Compiler from CDH
[CHK03, QRW19, CH19, KNYY19]

CRS: 𝑔, ℎ1 = 𝑔𝑤1 , … , ℎ𝑛 = 𝑔𝑤𝑛 ∈ 𝔾

Each exponent 𝑦 ∈ ℤ𝑝
defines a hidden bits string

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ hc ℎ𝑖
𝑦

hard-core bit

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝑤1, … , 𝑤𝑛 ← ℤ𝑝

Statistical binding: choice of 𝜎 (with ℎ1, … , ℎ𝑛) completely defines 𝑏1, … , 𝑏𝑛

Prover samples 𝑦 ← ℤ𝑝 and commits to hidden bits string with 𝜎 = 𝑔𝑦 ∈ 𝔾

Committing to a hidden-bits string:

Resulting NIZK satisfies statistical soundness



Warm-Up: The FLS Compiler from CDH
[CHK03, QRW19, CH19, KNYY19]

CRS: 𝑔, ℎ1 = 𝑔𝑤1 , … , ℎ𝑛 = 𝑔𝑤𝑛 ∈ 𝔾

Each exponent 𝑦 ∈ ℤ𝑝
defines a hidden bits string

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ hc ℎ𝑖
𝑦

hard-core bit

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝑤1, … , 𝑤𝑛 ← ℤ𝑝

Computational hiding: unopened bits computationally hidden since hc is hard-core

Resulting NIZK satisfies computational zero-knowledge

Prover samples 𝑦 ← ℤ𝑝 and commits to hidden bits string with 𝜎 = 𝑔𝑦 ∈ 𝔾

Committing to a hidden-bits string: Need to compute 𝑔𝑤𝑖𝑦 from 𝑔𝑤𝑖

and 𝑔𝑦 which is precisely CDH



Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

Notation: for a vector 𝒗 ∈ ℤ𝑝
𝑛, we write 𝒗 ≔ 𝑔𝑣1 , … , 𝑔𝑣𝑛

[𝒗] plays the role of 
the family 𝑔

𝒘1 , … , 𝒘𝑛 play the role 
of 𝑔𝑤1 , … , 𝑔𝑤𝑛

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

Key idea: replace scalars in the CRS with vectors



Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

Notation: for a vector 𝒗 ∈ ℤ𝑝
𝑛, we write 𝒗 ≔ 𝑔𝑣1 , … , 𝑔𝑣𝑛

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

Observation: under DDH, these two distributions for 𝒘𝑖 are
computationally indistinguishable

similar principle as used to construct lossy PKE from DDH [HJR16]

[𝒗] plays the role of 
the generator 𝑔

𝒘1 , … , 𝒘𝑛 play the role 
of 𝑔𝑤1 , … , 𝑔𝑤𝑛



Each vector 𝒚 ∈ ℤ𝑝
𝑛+1

defines a hidden bits string

Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ 𝐻 𝒚𝑇𝒘𝑖

Prover’s commitment: 𝜎 = 𝒚𝑇𝒗 ∈ 𝔾

Statistically binding in binding mode: choice of 𝜎 (and CRS) completely defines 𝑏1, … , 𝑏𝑛

𝒚𝑇𝒘𝑖 = 𝑠𝑖𝒚
𝑇𝒗 = 𝑠𝑖𝜎

𝐻:𝔾 → 0,1 is 
universal hash



Each vector 𝒚 ∈ ℤ𝑝
𝑛+1

defines a hidden bits string

Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ 𝐻 𝒚𝑇𝒘𝑖

Prover’s commitment: 𝜎 = 𝒚𝑇𝒗 ∈ 𝔾

Statistically hiding in hiding mode: choice of 𝜎 (and CRS) completely hides 𝑏1, … , 𝑏𝑛
if 𝒗,𝒘1, … , 𝒘𝑛 ∈ ℤ𝑝

𝑛+1 are linearly independent and 𝒚 ← ℤ𝑝
𝑛+1, 𝒚𝑇𝒘𝑖 is uniform given 𝒚𝑇𝒗, 𝒚𝑇𝒘𝑗 for 𝑗 ≠ 𝑖

𝐻:𝔾 → 0,1 is 
universal hash



Each vector 𝒚 ∈ ℤ𝑝
𝑛+1

defines a hidden bits string

Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ 𝐻 𝒚𝑇𝒘𝑖

Prover’s commitment: 𝜎 = 𝒚𝑇𝒗 ∈ 𝔾

Binding mode ⇒ statistically-binding hidden bits ⇒ statistical soundness

Hiding mode ⇒ statistically-hiding hidden bits ⇒ statistical zero-knowledge

𝐻:𝔾 → 0,1 is 
universal hash



Each vector 𝒚 ∈ ℤ𝑝
𝑛+1

defines a hidden bits string

Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ 𝐻 𝒚𝑇𝒘𝑖

Prover’s commitment: 𝜎 = 𝒚𝑇𝒗 ∈ 𝔾

Remaining ingredient: need a way for prover to open commitments to hidden bits

To open the commitment 𝜎 to value 𝑏𝑖, prover sends 𝑡𝑖 = 𝒚𝑇𝒘𝑖

together with a proof that ∃𝒚 ∈ ℤ𝑝
𝑛+1 such that 𝜎 = [𝒚𝑇𝒗] and 𝑡𝑖 = 𝒚𝑇𝒘𝑖

𝐻:𝔾 → 0,1 is 
universal hash



Each vector 𝒚 ∈ ℤ𝑝
𝑛+1

defines a hidden bits string

Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ 𝐻 𝒚𝑇𝒘𝑖

Prover’s commitment: 𝜎 = 𝒚𝑇𝒗 ∈ 𝔾

Remaining ingredient: need a way for prover to open commitments to hidden bits

To open the commitment 𝜎 to value 𝑏𝑖, prover sends 𝑡𝑖 = 𝒚𝑇𝒘𝑖

together with a proof that ∃𝒚 ∈ ℤ𝑝
𝑛+1 such that 𝜎 = [𝒚𝑇𝒗] and 𝑡𝑖 = 𝒚𝑇𝒘𝑖

Can use Cramer-Shoup techniques

𝐻:𝔾 → 0,1 is 
universal hash



Each vector 𝒚 ∈ ℤ𝑝
𝑛+1

defines a hidden bits string

Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ 𝐻 𝒚𝑇𝒘𝑖

Prover’s commitment: 𝜎 = 𝒚𝑇𝒗 ∈ 𝔾

Prover’s opening: 𝑡𝑖 = 𝒚𝑇𝒘𝑖

proof that ∃𝒚 ∈ ℤ𝑝
𝑛+1 ∶ 𝜎 = [𝒚𝑇𝒗] and 𝑡𝑖 = 𝒚𝑇𝒘𝑖

Implication: dual-mode DV-NIZK from DDH
• Binding mode: computational NIZK proofs
• Hiding mode: statistical NIZK arguments



Each vector 𝒚 ∈ ℤ𝑝
𝑛+1

defines a hidden bits string

Dual-Mode Instantiation from DDH

CRS: 𝒗 , 𝒘1 , … , [𝒘𝑛] where 𝒗,𝒘1, … ,𝒘𝑛 ∈ ℤ𝑝
𝑛+1

Ingredient: let 𝔾 be a prime-group of order 𝑝 with generator 𝑔

𝒗 ← ℤ𝑝
𝑛+1

Two distributions for 𝒘𝑖:
• Binding mode: 𝒘𝑖 ← 𝑠𝑖𝒗 where 𝑠𝑖 ← ℤ𝑝
• Hiding mode: 𝒘𝑖 ← ℤ𝑝

𝑛+1

𝑏1 𝑏2 ⋯ 𝑏𝑛 𝑏𝑖 ≔ 𝐻 𝒚𝑇𝒘𝑖

Extensions:
• Replace DDH with 𝑘-Lin family of assumptions (for any 𝑘 ≥ 1)
• Replace DDH with subgroup indistinguishability assumptions (e.g., QR/DCR)
• Use a pairing to publicly implement verification

• Yields statistical NIZK argument (not dual-mode) from 𝑘-Lin (𝔾1) and 𝑘-KerLin (𝔾2) 



Malicious Designated-Verifier Security

11101001101111100110110000001

common random string

𝜋1 𝜋4

𝜋2 𝜋3

only
trusted setup

vk1

vk2 vk3

vk4

verifiers can choose their own verification key;
zero-knowledge should hold even if vk𝑖 chosen maliciously

[QRW19]



Malicious Designated-Verifier Security

11101001101111100110110000001

common random string

𝜋1 𝜋4

𝜋2 𝜋3

only
trusted setup

vk1

vk2 vk3

vk4

verifiers can choose their own verification key;
zero-knowledge should hold even if vk𝑖 chosen maliciously

[QRW19]

All of our DV-NIZK constructions easily adapted to satisfy 
malicious security (MDV-NIZKs)

• Technique similar to [QRW19], but relies on a linear independence 
argument rather than a rewinding argument

• [QRW19]: computational MDV-NIZK proofs from “one-more CDH”
• This work: dual-mode MDV-NIZKs from DDH (or 𝑘-Lin) / QR / DCR

[see paper for details]



Summary

NIZKs in the hidden-bits model NIZKs in the CRS model

cryptographic compiler

This work: Leverage the FLS compiler to achieve statistical zero-knowledge
• Dual-mode malicious DV-NIZKs from 𝑘-Lin in pairing-free groups / QR / DCR
• Statistical NIZKs from 𝑘-Lin (𝔾1) + 𝑘-KerLin (𝔾2) in a pairing group



Open Questions

NIZKs in the hidden-bits model NIZKs in the CRS model

Other assumptions: Statistical (DV)-NIZKs from LPN? from CDH?

Statistical NIZK arguments from factoring?
• [FLS90]: computational NIZK proofs from factoring
• This work: dual-mode malicious DV-NIZKs from QR / DCR



The Landscape of (DV)-NIZKs

publicly-verifiable

Construction AssumptionSoundness Zero-Knowledge

[FLS90] factoringcomputationalstatistical

[GOS06] 𝑘-Lin (𝔾1, 𝔾2)stat. comp. stat.comp.

[CHK03] CDH (pairing group)computationalstatistical

[PS19] LWEstat. comp. stat.comp.

[SW14] iO + OWFsstatisticalcomputational

[QRW19, CH19, KNYY19] CDHcomputationalstatistical

[LQRWW19] CDH/LWE/LPNcomputational computational

[CDIKLOV19] DCRstat. comp. stat.comp.

This work DDH/QR/DCRstat. comp. stat.comp.

This work 𝒌-Lin (𝔾𝟏), 𝒌-KerLin (𝔾𝟐)computational statistical

malicious designated-verifier

Thank you!
https://eprint.iacr.org/2020/265


