New Constructions of Statistical NIZKs: Dual-Mode DV-NIZKs and More

Benoît Libert, Alain Passelègue, Hoeteck Wee, and <u>David J. Wu</u> May 2020

Non-Interactive Zero-Knowledge (NIZK)

Completeness:

 $\forall x \in \mathcal{L} : \Pr[\langle P, V \rangle(x) = \operatorname{accept}] = 1$

"Honest prover convinces honest verifier of true statements"

Soundness:

 $\forall x \notin \mathcal{L}, \ \forall P^* : \Pr[\langle P^*, V \rangle(x) = \operatorname{accept}] \leq \varepsilon$ "No prover can convince honest verifier of false statement"

can consider both <u>computational</u> and <u>statistical</u> variants

Non-Interactive Zero-Knowledge (NIZK)

NP language $\mathcal L$

real distribution

ideal distribution

Zero-Knowledge: for all efficient verifiers V^* , there exists an efficient simulator S where

 $\forall x \in \mathcal{L} : \langle P, V^* \rangle(x) \approx \mathcal{S}(x)$

can consider both computational and statistical variants

Designated-Verifier NIZKs

This work: focus primarily on the designated-verifier model

Designated-Verifier NIZKs

This work: focus primarily on the designated-verifier model

The Landscape of (DV)-NIZKs

Construction	Soundness	Zero-Knowledge	Assumption
[FLS90]	statistical	computational	factoring
[CHK03]	statistical	computational	CDH (pairing group)
[GOS06]	stat. comp.	comp. stat.	k-Lin (pairing group)
[PS19]	stat. comp.	comp. stat.	LWE
[SW14]	computational	statistical	iO + OWFs
			publicly-verifiable
[QRW19, CH19, KNYY19]	statistical	computational	CDH
[LQRWW19]	computational	computational	CDH/LWE/LPN
[CDIKLOV19]	stat. comp.	comp. stat.	DCR

malicious designated-verifier

The Landscape of (DV)-NIZKs

Construction	Soundness	Zero-Knowledge	Assumption	
[FLS90] Statistical zero-knowledge seems more difficult to achieve [CHK03]				
[GOS06]	stat. comp.	comp. stat.	k-Lin (pairing group)	
[PS19]	stat. comp.	comp. stat.	LWE	
[SW14]	computational	statistical	iO + OWFs	
			publicly-verifiable	
[QRW19, CH19, KNY)	'19] statistical	computational	CDH	
[LQRWW19]			CDH/LWE/LPN	
[CDIKLOV19]	stat. comp.	comp. stat.	DCR	
			malicious designated-verifier	

This Work: Statistical NIZKs

Statistical ZK provides <u>everlasting</u> privacy

This work: Compiling NIZKs in the hidden-bits model to statistical (DV)-NIZKs

• Statistical DV-NIZKs from DDH in pairing-free groups / QR / DCR

This Work: Statistical NIZKs

More precisely: DV-NIZKs are "dual-mode" and maliciously secure

des <u>everlasting</u> privacy

This work: Compositing NIZKs in the hidden-bits model to statistical (DV)-NIZKs

• Statistical DV-NIZKs from DDH in pairing-free groups / QR / DCR

This Work: Statistical NIZKs

<u>Weaker</u> assumption compared to [GOS06] which required k-Lin in <u>both</u> groups (k-KerLin is a <u>search</u> assumption implied by k-Lin)

<u>ting</u> privacy

to statistical (DV)-NIZKs

- Statistical DV-NIZKs from pairing-free groups / QR / DCR
- Statistical NIZKs from k-Lin (\mathbb{G}_1) + k-KerLin (\mathbb{G}_2) in a pairing group

The Landscape of (DV)-NIZKs

Construction	Soundness	Zero-Knowledge	Assumption
[FLS90]	statistical	computational	factoring
[CHK03]	statistical	computational	CDH (pairing group)
[GOS06]	stat. comp.	comp. stat.	k -Lin (\mathbb{G}_1 , \mathbb{G}_2)
This work	computational	statistical	k -Lin (\mathbb{G}_1), k -KerLin (\mathbb{G}_2)
[PS19]	stat. comp.	comp. stat.	LWE
[SW14]	computational	statistical	iO + OWFs
			publicly-verifiable
[QRW19, CH19, KNYY19]	statistical	computational	CDH
[LQRWW19]	computational	computational	CDH/LWE/LPN
[CDIKLOV19]	stat. comp.	comp. stat.	DCR
This work	stat. comp.	comp. stat.	DDH/QR/DCR
			malicious designated-verifier

verifier only sees the subset of the bits in I and proof π

[FLS90]: There exists a perfect NIZK proof for any NP language in the hidden-bits model

verifier

NIZKs in the CRS model

Main properties:

- **Binding:** Can only open σ to a single bit for each position
- Hiding: Unopened bits should be hidden
- Succinctness: $|\sigma| \ll n$

Soundness: If $|\sigma| \ll n$ and there are not too many "bad" hidden-bits strings \Rightarrow prover cannot find a "bad" σ that fools verifier

Zero-Knowledge: Unopened bits hidden to verifier

[FLS90]

Prover can selectively open σ to (i, b_i) for indices i of its choosing

[FLS90]

NIZKs in the CRS model

[FLS90]

NIZKs in the CRS model

This work: dual-mode hidden bits generator

- "Binding mode:" computational DV-NIZK proofs
- "Hiding mode:" statistical DV-NIZK arguments

Warm-Up: The FLS Compiler from CDH

[CHK03, QRW19, CH19, KNYY19]

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Committing to a hidden-bits string:

Prover samples $y \leftarrow \mathbb{Z}_p$ and commits to hidden bits string with $\sigma = g^y \in \mathbb{G}$ **Opening** σ to a bit b_i : reveal h_i^y and prove that (g, g^y, h_i, h_i^y) is a DDH tuple [CHK03]: Use a pairing: $e(g^y, h_i) = e(g, h_i^y)$ [QRW19, CH19, KNYY19]: Use Cramer-Shoup hash-proof system [CS98, CS02, CKS08] **designated-verifier**

Warm-Up: The FLS Compiler from CDH

[CHK03, QRW19, CH19, KNYY19]

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Committing to a hidden-bits string:

Prover samples $y \leftarrow \mathbb{Z}_p$ and commits to hidden bits string with $\sigma = g^y \in \mathbb{G}$

Statistical binding: choice of σ (with $h_1, ..., h_n$) <u>completely</u> defines $b_1, ..., b_n$ Resulting NIZK satisfies statistical soundness

Warm-Up: The FLS Compiler from CDH

[CHK03, QRW19, CH19, KNYY19]

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Resulting NIZK satisfies computational zero-knowledge

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Key idea: replace scalars in the CRS with vectors

Notation: for a vector $v \in \mathbb{Z}_p^n$, we write $[v] \coloneqq (g^{v_1}, ..., g^{v_n})$

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Observation: under DDH, these two distributions for w_i are computationally indistinguishable

similar principle as used to construct lossy PKE from DDH [HJR16]

Notation: for a vector
$$v \in \mathbb{Z}_p^n$$
, we write $[v] \coloneqq (g^{v_1}, ..., g^{v_n})$

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Statistically binding in binding mode: choice of σ (and CRS) <u>completely</u> defines $b_1, ..., b_n$ $y^T w_i = s_i y^T v = s_i \sigma$

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Statistically hiding in hiding mode: choice of σ (and CRS) <u>completely</u> hides $b_1, ..., b_n$ if $v, w_1, ..., w_n \in \mathbb{Z}_p^{n+1}$ are linearly independent and $y \leftarrow \mathbb{Z}_p^{n+1}, y^T w_i$ is <u>uniform</u> given $y^T v, y^T w_j$ for $j \neq i$

Ingredient: let **G** be a prime-group of order p with generator g

Prover's commitment: $[\sigma] = [\mathbf{y}^T \mathbf{v}] \in \mathbb{G}$

Binding mode \Rightarrow statistically-binding hidden bits \Rightarrow statistical soundness

Hiding mode \Rightarrow statistically-hiding hidden bits \Rightarrow statistical zero-knowledge

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Prover's commitment: $[\sigma] = [\mathbf{y}^T \mathbf{v}] \in \mathbb{G}$

Remaining ingredient: need a way for prover to open commitments to hidden bits

To open the commitment $[\sigma]$ to value b_i , prover sends $[t_i] = [\mathbf{y}^T \mathbf{w}_i]$ together with a proof that $\exists y \in \mathbb{Z}_p^{n+1}$ such that $[\sigma] = [y^T v]$ and $[t_i] = [y^T w_i]$

Ingredient: let **G** be a prime-group of order *p* with generator *g*

Remaining

CRS:
$$[v], [w_1], ..., [w_n]$$
 where $v, w_1, ..., w_n \in \mathbb{Z}_p^{n+1}$ $v \leftarrow \mathbb{Z}_p^{n+1}$ Each vector $y \in \mathbb{Z}_p^{n+1}$ defines a hidden bits stringImage: Sinding mode: $w_i \leftarrow s_i v$ where $s_i \leftarrow \mathbb{Z}_p$ $b_1 \ b_2 \ ... \ b_n$ $b_i \coloneqq H([y^T w_i])$ Image: Binding mode: $w_i \leftarrow \mathbb{Z}_p^{n+1}$ $b_1 \ b_2 \ ... \ b_n$ $b_i \coloneqq H([y^T w_i])$ Image: Binding mode: $w_i \leftarrow \mathbb{Z}_p^{n+1}$ Each vector $y \in \mathbb{Z}_p^n \lor v \in \mathbb{G}$ Prover's commitment: $[\sigma] = [y^T v] \in \mathbb{G}$ Remaining ingredient:
To open the commitme
together with a proof that $\exists y \in \mathbb{Z}_p^{n+1}$ such that $[\sigma] = [y^T v]$ and $[t_i] = [y^T w_i]$

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

CRS:
$$[v], [w_1], \dots, [w_n]$$
 where $v, w_1, \dots, w_n \in \mathbb{Z}_p^{n+1}$ $v \leftarrow \mathbb{Z}_p^{n+1}$ Each vector $y \in \mathbb{Z}_p^{n+1}$ Image: Second Second

Prover's commitment: $[\sigma] = [\mathbf{y}^T \mathbf{v}] \in \mathbb{G}$

Prover's opening: $[t_i] = [\mathbf{y}^T \mathbf{w}_i]$

Implication: dual-mode DV-NIZK from DDH
Binding mode: computational NIZK proofs
Hiding mode: statistical NIZK arguments

proof that $\exists y \in \mathbb{Z}_p^{n+1}$: $[\sigma] = [y^T v]$ and $[t_i] = [y^T w_i]$

Ingredient: let \mathbb{G} be a prime-group of order p with generator g

Extensions:

- Replace DDH with k-Lin family of assumptions (for any $k \ge 1$)
- Replace DDH with subgroup indistinguishability assumptions (e.g., QR/DCR)
- Use a pairing to <u>publicly</u> implement verification
 - Yields statistical NIZK argument (*not* dual-mode) from k-Lin (\mathbb{G}_1) and k-KerLin (\mathbb{G}_2)

Malicious Designated-Verifier Security

[QRW19]

Malicious Designated-Verifier Security

[QRW19]

common <u>random</u> string

11101001101111100110110000001

only trusted setup

All of our DV-NIZK constructions easily adapted to satisfy malicious security (MDV-NIZKs)

- Technique similar to [QRW19], but relies on a linear independence argument rather than a rewinding argument
- [QRW19]: computational MDV-NIZK proofs from "one-more CDH"
- This work: dual-mode MDV-NIZKs from DDH (or *k*-Lin) / QR / DCR

[see paper for details]

Summary

This work: Leverage the FLS compiler to achieve statistical zero-knowledge

- Dual-mode malicious DV-NIZKs from k-Lin in pairing-free groups / QR / DCR
- Statistical NIZKs from k-Lin $(\mathbb{G}_1) + k$ -KerLin (\mathbb{G}_2) in a pairing group

Open Questions

NIZKs in the hidden-bits model *n* bits long prover has access to uniformly random bit string of length *n* Prover outputs a prover outputs a Subset $I \subseteq [n]$ and a proof π

Statistical NIZK arguments from factoring?

- [FLS90]: computational NIZK proofs from factoring
- This work: dual-mode malicious DV-NIZKs from QR / DCR

Other assumptions: Statistical (DV)-NIZKs from LPN? from CDH?

The Landscape of (DV)-NIZKs

Construction	Soundness	Zero-Knowledge	Assumption
[FLS90]	statistical	computational	factoring
[CHK03]	statistical	computational	CDH (pairing group)
[GOS06]	stat. comp.	comp. stat.	k -Lin ($\mathbb{G}_1, \mathbb{G}_2$)
This work	computational	statistical	k -Lin (\mathbb{G}_1), k -KerLin (\mathbb{G}_2)
[PS19]	stat. comp.	comp. stat.	LWE
[SW14]	computational	statistical	iO + OWFs
			publicly-verifiable
[QRW19, CH19, KNYY19]	statistical	computational	CDH
[LQRWW19]	computational	computational	CDH/LWE/LPN
[CDIKLOV19]	stat. comp.	comp. stat.	DCR
This work	stat. comp.	comp. stat.	DDH/QR/DCR
	-		malicious designated-verifier

Thank you!

https://eprint.iacr.org/2020/265