Batch Arguments for NP from Standard Bilinear Group Assumptions

Brent Waters and <u>David Wu</u>

Batch Arguments for NP

Boolean circuit satisfiability

$$\mathcal{L}_C = \{x \in \{0,1\}^n : C(x, w) = 1 \text{ for some } w\}$$

prover

$$(x_1,\ldots,x_m)$$

prover has m statements and wants to convince verifier that $x_i \in \mathcal{L}_C$ for all $i \in [m]$

verifier

Batch Arguments for NP

Boolean circuit satisfiability

$$\mathcal{L}_C = \{x \in \{0,1\}^n : C(x, w) = 1 \text{ for some } w\}$$

prover

$$(x_1, \ldots, x_m)$$

$$\pi = (w_1, \dots, w_m)$$

verifier

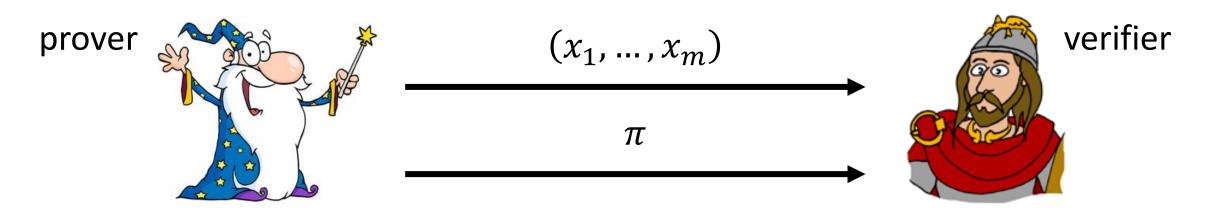
Can the proof size be sublinear in the number of instances m?

Naïve solution: send witnesses $w_1, ..., w_m$ and verifier checks $C(x_i, w_i) = 1$ for all $i \in [m]$

Goal: Amortize the Cost of NP Verification

Boolean circuit satisfiability

$$\mathcal{L}_C = \{x \in \{0,1\}^n : C(x, w) = 1 \text{ for some } w\}$$



Proof size: $|\pi| = |C| \cdot \text{poly}(\log m, \lambda)$

"Proof size for a single instance"

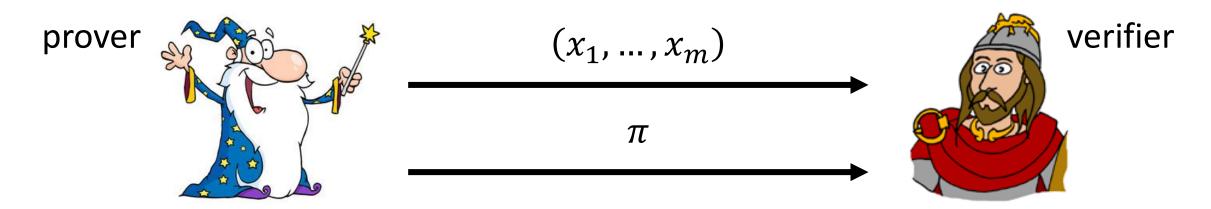
 λ : security parameter

Proof size scales sublinearly with the number of instances

Goal: Amortize the Cost of NP Verification

Boolean circuit satisfiability

$$\mathcal{L}_C = \{x \in \{0,1\}^n : C(x, w) = 1 \text{ for some } w\}$$



Proof size: $|\pi| = |C| \cdot \text{poly}(\log m, \lambda)$

Similar* requirement on verification time

*Verifier does need to read statements so we do allow a $poly(\lambda, m, n)$ dependence

Batch Arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGs)

Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation

Batch arguments from correlation intractable hash functions

Sub-exponential DDH (in pairing-free groups) + QR (with \sqrt{m} size proofs) [CJJ21a]

Learning with errors (LWE) [CJJ21b]

Batch arguments from pairing-based assumptions

Non-standard, but falsifiable q-type assumption on bilinear groups [KPY19]

This Work

New constructions of non-interactive batch arguments for NP

Batch arguments for NP from standard assumptions over bilinear maps

k-Linear assumption (for any $k \geq 1$) in prime-order bilinear groups

Subgroup decision assumption in composite-order bilinear groups

Key feature: Construction is "low-tech"

No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs

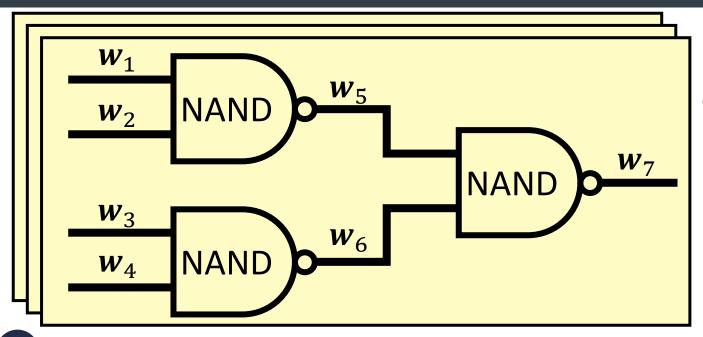
Direct "commit-and-prove" approach à la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS from standard bilinear map assumptions

Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]

Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions

Previous bilinear map constructions: random oracle based [BGLS03]



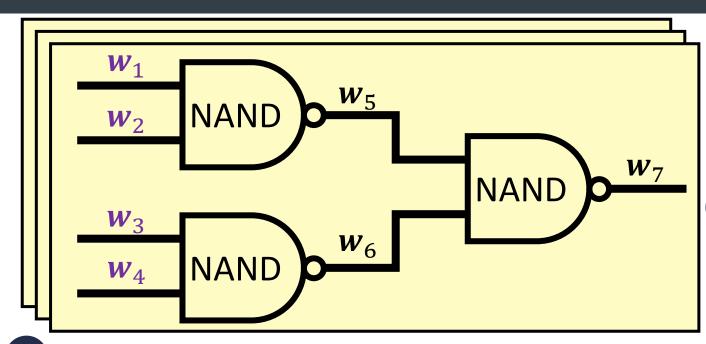
Let $\mathbf{w}_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i across the m instances

1 Prover commits to each vector of wire assignments

$$\boldsymbol{w}_i = \begin{bmatrix} w_{i,1} & w_{i,2} & \cdots & w_{i,m} \end{bmatrix} \quad \boldsymbol{\sigma}_i$$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$



1 Prover commits to each vector of wire assignments

$$\boldsymbol{w}_i = \begin{bmatrix} w_{i,1} & w_{i,2} & \cdots & w_{i,m} \end{bmatrix} \quad \boldsymbol{\sigma}_i$$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$

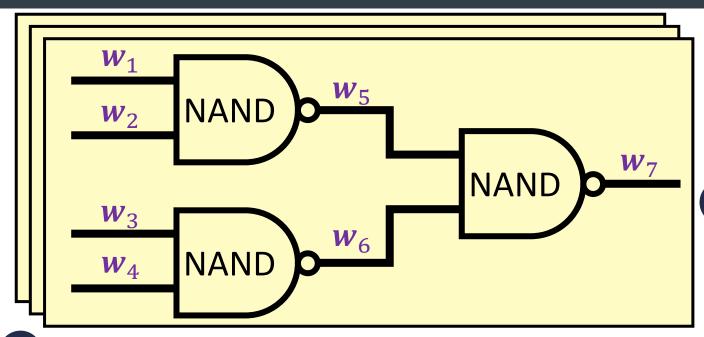
Let $\mathbf{w}_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i across the m instances

Prover constructs the following proofs:

Input validity

Commitments to the statement wires are correctly computed

Commitments in our scheme are *deterministic*, so verifier can directly check



1 Prover commits to each vector of wire assignments

$$\boldsymbol{w}_i = \begin{bmatrix} w_{i,1} & w_{i,2} & \cdots & w_{i,m} \end{bmatrix} \quad \boldsymbol{\sigma}_i$$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$

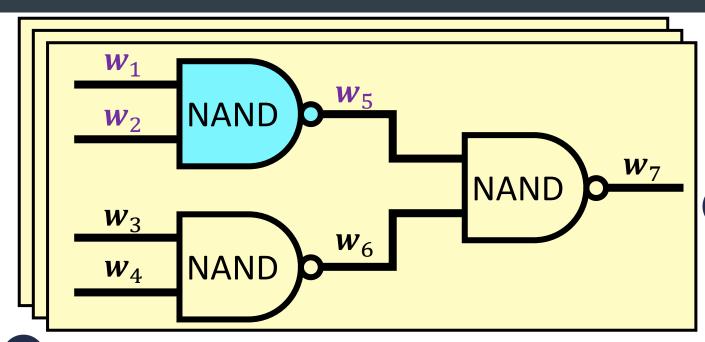
Let $\mathbf{w}_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i across the m instances

Prover constructs the following proofs:

Input validity

Wire validity

Commitment for each wire is a commitment to a 0/1 vector



1 Prover commits to each vector of wire assignments

$$\boldsymbol{w}_i = \begin{bmatrix} w_{i,1} & w_{i,2} & \cdots & w_{i,m} \end{bmatrix} \quad \boldsymbol{\sigma}_i$$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$

Let $\mathbf{w}_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i across the m instances

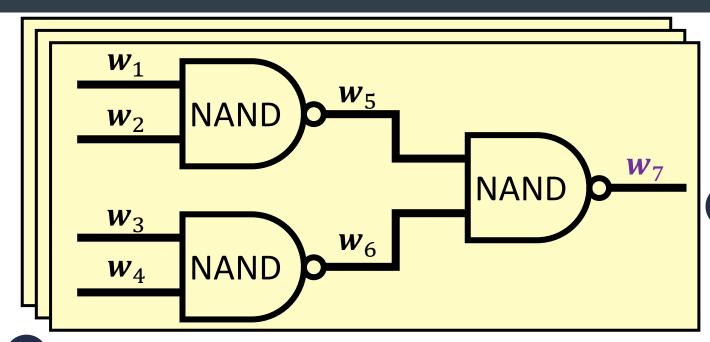
2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires



1 Prover commits to each vector of wire assignments

$$\boldsymbol{w}_i = \begin{bmatrix} w_{i,1} & w_{i,2} & \cdots & w_{i,m} \end{bmatrix} \quad \boldsymbol{\sigma}_i$$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$

Let $\mathbf{w}_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i across the m instances

Prover constructs the following proofs:

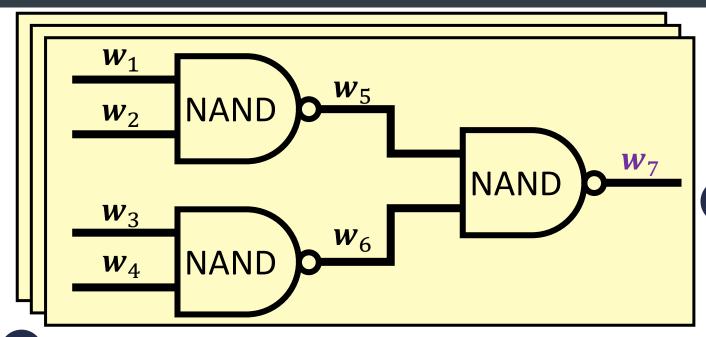
Input validity

Wire validity

Gate validity

Output validity

Commitment to output wire is a commitment to the all-ones vector



1 Prover commits to each vector of wire assignments

$$\boldsymbol{w}_i = \begin{bmatrix} w_{i,1} & w_{i,2} & \cdots & w_{i,m} \end{bmatrix} \quad \boldsymbol{\sigma}_i$$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$

Let $\mathbf{w}_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i across the m instances

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Key idea: Validity checks are quadratic and can be checked in the exponent

Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)

Let \mathbb{G} be a group of order N = pq (composite order)

Let $\mathbb{G}_p \subset \mathbb{G}$ be the subgroup of order p and let g_p be a generator of \mathbb{G}_p

crs: sample $\alpha_1, ..., \alpha_m \leftarrow \mathbb{Z}_N$ output $A_1 \leftarrow g_n^{\alpha_1}, \dots, A_m \leftarrow g_n^{\alpha_m}$ denotes encodings in \mathbb{G}_n

$$[\alpha_1]$$
 $[\alpha_2]$ $[\cdots]$ $[\alpha_m]$

commitment to $x = (x_1, ..., x_m) \in \{0,1\}^m$:

$$\sigma_{\mathbf{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$

 $\sigma_{\mathbf{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$ (subset product of the A_i 's)

$$[\sigma_x] = [\Sigma_{i \in [m]} \alpha_i x_i]$$

common reference string

$$[\alpha_1] \quad A_1 = g_p^{\alpha_1}$$

$$\left[\left[\alpha_m \right] \right] A_m = g_p^{\alpha_m}$$

commitment to $(x_1, ..., x_m)$

$$\left[\Sigma_{i\in[m]}\alpha_ix_i\right]$$

$$\sigma_{x} = A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}}$$
$$= g_{p}^{\alpha_{1} x_{1} + \cdots + \alpha_{m} x_{m}}$$

Wire validity

Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an <u>efficiently-computable</u> bilinear map on \mathbb{G} : $e(g^x, g^y) = e(g, g)^{xy}$

$$e([x],[y]) \longrightarrow [xy]$$

Multiplies exponents in the target group

common reference string

$$[\alpha_1]$$

$$A_1 = g_p^{\alpha_1}$$

$$\left[\left[\alpha_m \right] \right] A_m = g_p^{\alpha_m}$$

commitment to $(x_1, ..., x_m)$

$\left[\Sigma_{i\in[m]}\alpha_ix_i\right]$

$$\sigma_{\mathbf{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

Wire validity

Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

Approach: consider the following pairing relations:

$$e(\sigma_{x}, \sigma_{x})$$
 and $e(\sigma_{x}, \Pi_{i \in [m]}A_{i})$

$$A = \prod_{i \in [m]} A_i = g_p^{\sum_{i \in [m]} \alpha_i}$$

(commitment to all-ones vector)

common reference string

$$[\alpha_1] \quad A_1 = g_p^{\alpha_1}$$

$$[\alpha_m] \quad A_m = g_p^{\alpha_m}$$

commitment to $(x_1, ..., x_m)$

$$\left[\Sigma_{i\in[m]}\alpha_ix_i\right]$$

$$\sigma_{\mathbf{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

Wire validity

Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

Approach: consider the following pairing relations:

$$e(\sigma_x, \sigma_x)$$
 and $e(\sigma_x, \Pi_{i \in [m]} A_i)$

$$e([\Sigma_{i\in[m]}\alpha_ix_i],[\Sigma_{i\in[m]}\alpha_ix_i])$$

common reference string

$$[\alpha_1] \quad A_1 = g_p^{\alpha_1}$$

$$\begin{bmatrix} \alpha_m \end{bmatrix} A_m = g_p^{\alpha_m}$$

Wire validity

Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

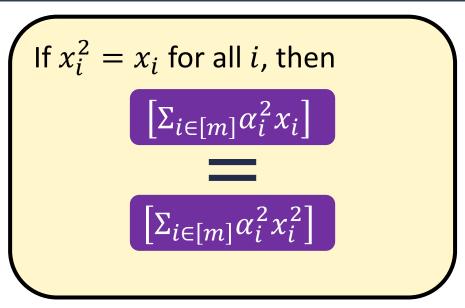
Approach: consider the following pairing relations:

$$e(\sigma_{\!\scriptscriptstyle \mathcal{X}},\sigma_{\!\scriptscriptstyle \mathcal{X}})$$
 and $e(\sigma_{\!\scriptscriptstyle \mathcal{X}},\Pi_{i\in[m]}A_i)$

$$\mathcal{C}\left[\left[\Sigma_{i\in[m]}\alpha_ix_i\right]\right],\left[\left[\Sigma_{i\in[m]}\alpha_i\right]\right]$$

$$e([\Sigma_{i\in[m]}\alpha_ix_i],[\Sigma_{i\in[m]}\alpha_ix_i])$$

$$= \begin{bmatrix} \Sigma_{i \in [m]} \alpha_i^2 x_i^2 \end{bmatrix} \times \begin{bmatrix} \Sigma_{i \neq j} \alpha_i \alpha_j x_i x_j \end{bmatrix}$$
non-cross terms cross terms



Wire validity

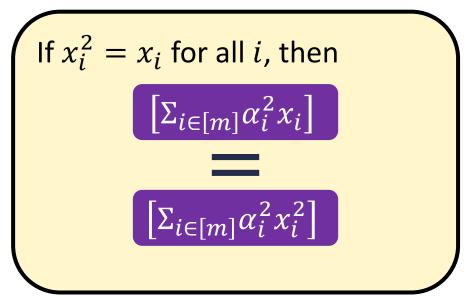
Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

Approach: consider the following pairing relations:

$$e(\sigma_x, \sigma_x)$$
 and $e(\sigma_x, \Pi_{i \in [m]} A_i)$

$$e([\Sigma_{i\in[m]}\alpha_ix_i],[\Sigma_{i\in[m]}\alpha_i])$$

$$e^{\left[\Sigma_{i\in[m]}\alpha_ix_i\right]}$$
 , $\left[\Sigma_{i\in[m]}\alpha_ix_i\right]$



Wire validity

Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

Approach: consider the following pairing relations:

$$e(\sigma_x, \sigma_x)$$
 and $e(\sigma_x, \Pi_{i \in [m]} A_i)$

$$e^{\left[\Sigma_{i\in[m]}\alpha_ix_i\right]}, \left[\Sigma_{i\in[m]}\alpha_i\right]$$

$$e^{\left[\Sigma_{i\in[m]}\alpha_ix_i\right]}$$
 , $\left[\Sigma_{i\in[m]}\alpha_ix_i\right]$

When $x_i^2 = x_i$, difference between these terms is

$$\left[\Sigma_{i\neq j}\alpha_i\alpha_j(x_i-x_ix_j)\right]$$

Give prover ability to eliminate cross-terms only

Augment CRS with cross-terms

$$\left[\alpha_i \alpha_j\right] B_{i,j} = g_p^{\alpha_i \alpha_j} \quad \forall i \neq j$$

Prover now computes additional group component in the base group

$$\begin{bmatrix} \Sigma_{i\neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix} \quad \text{Pair with } g_p \qquad \begin{bmatrix} \Sigma_{i\neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix}$$

$$V = B_{i,j}^{x_i - x_i x_j} \qquad e(g_p, V)$$

$$e([\Sigma_{i\in[m]}\alpha_ix_i],[\Sigma_{i\in[m]}\alpha_i])$$
 $e([\Sigma_{i\in[m]}\alpha_ix_i],[\Sigma_{i\in[m]}\alpha_ix_i])$

When $x_i^2 = x_i$, difference between these terms is

$$\left[\Sigma_{i\neq j}\alpha_i\alpha_j(x_i-x_ix_j)\right]$$

Give prover ability to <u>eliminate</u> cross-terms *only*

Augment CRS with cross-terms

$$\begin{bmatrix} \alpha_i \alpha_j \end{bmatrix} B_{i,j} = g_p^{\alpha_i \alpha_j} \quad \forall i \neq j$$

Prover now computes additional group component in the base group

$$\begin{bmatrix} \Sigma_{i\neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix} \qquad \text{Pair with } g_p \qquad \begin{bmatrix} \Sigma_{i\neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix}$$

$$V = B_{i,j}^{x_i - x_i x_j} \qquad e(g_p, V)$$

Overall verification relation: $e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$ $A = \prod_{i \in [m]} A_i$

Prover now computes additional group component in the base group

$$\begin{bmatrix} \Sigma_{i\neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix} \quad \text{Pair with } g_p \qquad \left[\Sigma_{i\neq j} \alpha_i \alpha_j (x_i - x_i x_j) \right] \\
V = B_{i,j}^{x_i - x_i x_j} \qquad e(g_p, V)$$

Overall verification relation: $e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$ $A = \prod_{i \in [m]} A_i$

Non-cross terms ensure that $x_i^2 = x_i$

Prover now computes additional group component in the base group

$$\begin{bmatrix} \Sigma_{i\neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix} \qquad \text{Pair with } g_p \qquad \begin{bmatrix} \Sigma_{i\neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix}$$

$$V = B_{i,j}^{x_i - x_i x_j} \qquad e(g_p, V)$$

Overall verification relation: $e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$ $A = \prod_{i \in [m]} A_i$

Non-cross terms ensure that $x_i^2 = x_i$ Correction factor to correct for cross terms

Common reference string:

$$[\alpha_1 + \cdots \alpha_m] \qquad A = \prod_{i \in [m]} A_i$$

$$\left[\alpha_i \alpha_j\right] \quad B_{i,j} = g_p^{\alpha_i \alpha_j} \ \forall i \neq j$$

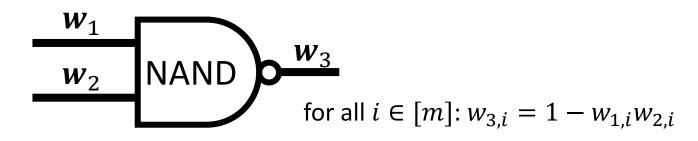
Commitment to $(x_1, ..., x_m)$:

$$\left[\Sigma_{i\in[m]}\alpha_ix_i\right]$$

$$\sigma_{x} = A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}}$$
$$= g_{n}^{\alpha_{1} x_{1} + \cdots + \alpha_{m} x_{m}}$$

Gate validity

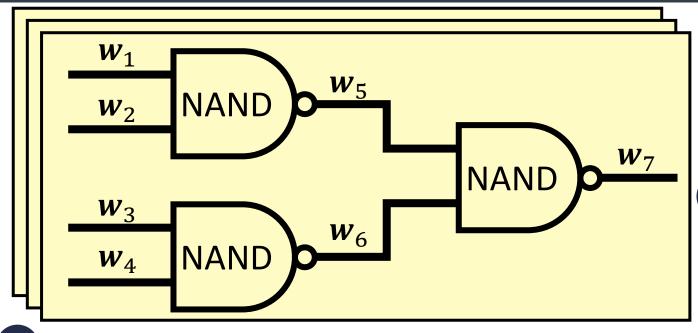
For each gate, commitment to output wires is consistent with gate operation and commitment to input wires



Relation is <u>quadratic</u> in the inputs

Can leverage similar approach as before

Proof Size



Let $\mathbf{w}_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i

2 Prover constructs the following proofs:

Input validity

Wire validity One group element

Gate validity One group element

Output validity

1 Prover commits to each vector of wire assignments

$$w_i = \begin{vmatrix} w_{i,1} \end{vmatrix} w_{i,2} \end{vmatrix} \cdots \end{vmatrix} w_{i,m}$$

Commitment size: $|\sigma_i| = \text{poly}(\lambda)$ Single group element Overall proof size (t wires, s gates): $(2t + s) \cdot \text{poly}(\lambda) = |C| \cdot \text{poly}(\lambda)$

Is This Sound?

Common reference string:

$$[\alpha_1 + \cdots \alpha_m] \quad A = \prod_{i \in [m]} A_i$$

$$\left[\alpha_i \alpha_j\right] \quad B_{i,j} = g_p^{\alpha_i \alpha_j} \ \forall i \neq j$$

Commitment to $(x_1, ..., x_m)$:

$$\left[\Sigma_{i\in[m]}\alpha_ix_i\right]$$

$$\sigma_{x} = A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}}$$
$$= g_{p}^{\alpha_{1} x_{1} + \cdots + \alpha_{m} x_{m}}$$

Soundness requires some care:

Groth-Ostrovsky-Sahai NIZK based on similar commit-and-prove strategy

Soundness in GOS is possible by <u>extracting</u> a witness from the commitment

For a false statement, no witness exists

Our setting: commitments are *succinct* – <u>cannot</u> extract a full witness

Solution: "local extractability" [KPY19] or "somewhere extractability" [CJJ21]

Somewhere Soundness

CRS will have two modes:

Normal mode: used in the real scheme

If proof π verifies, then we can extract a witness w_i such that $C(x_i, w_i) = 1$

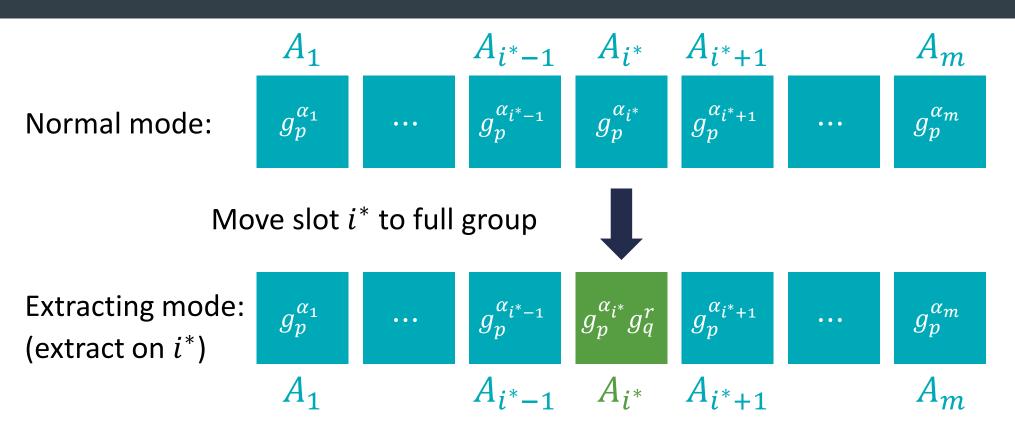
Extracting on index i: supports witness extraction for instance i (given a trapdoor)

CRS in the two modes are computationally indistinguishable

Similar to "dual-mode" proof systems and somewhere statistically binding hash functions

Implies non-adaptive soundness

Local Extraction



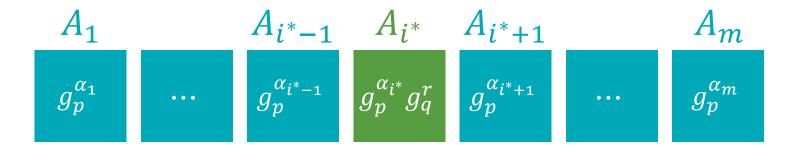
Subgroup decision assumption [BGN05]:

Random element in subgroup (\mathbb{G}_p)

Random element in full group (G)

Local Extraction

CRS in extraction mode (for index i^*):



Trapdoor: g_q (generator of \mathbb{G}_q)

Can extract by projecting into \mathbb{G}_q

Extracted bit for a commitment $oldsymbol{\sigma}$ is 1 if $oldsymbol{\sigma}$ has a (non-zero) component in \mathbb{G}_q

Consider wire validity check:

$$e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$$

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_{p}, V)$$

Adversary chooses commitment σ_x and proof V

Consider wire validity check:

$$e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$$

Adversary chooses commitment σ_x and proof V

Generator g_p and aggregated component A part of the CRS (honestly-generated)

If this relation holds, it must hold in **both** the order-p subgroup **and** the order-q subgroup of \mathbb{G}_T

Key property: $e(g_p, V)$ is **always** in the order-p subgroup; adversary **cannot** influence the verification relation in the order-q subgroup

Write
$$\sigma_x = g_p^s g_q^t$$

Write
$$A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$$

In the <u>order-q</u> subgroup, exponents must satisfy:

$$t^2 = tr \bmod q$$

Consider wire validity check:

$$e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$$

Adversary chooses commitment σ_x and proof V

Generator g_p and aggregated component A part of the CRS (honestly-generated)

If this relation holds, it must hold in both

the order-p subgroup and the order-a subgroup of G

If wire validity checks pass, then $t = b_i r$ where $b_i \in \{0,1\}$

Key property: $e(g_p, V)$ is **alw**:

verification relation in the ord ob

Observe: $b_i \in \{0,1\}$ is also the extracted bit

Write
$$\sigma_x = g_p^s g_q^t$$

Write
$$A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$$

In the <u>order-q</u> subgroup, exponents must satisfy:

$$t^2 = tr \bmod q$$

Consider gate validity check:

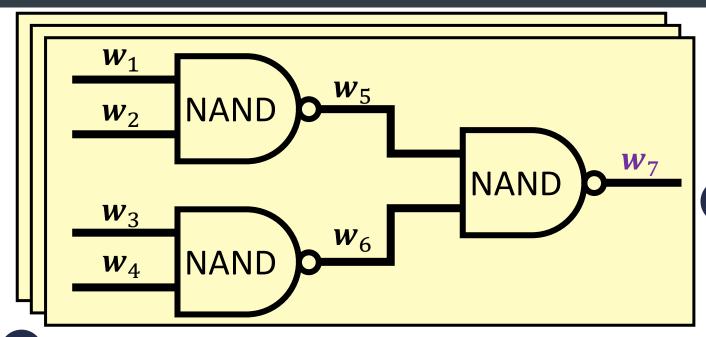
$$e(\sigma_{w_3}, A)e(\sigma_{w_1}, \sigma_{w_2}) = e(A, A)e(g_p, W)$$

Adversary chooses commitment σ_{w_1} , σ_{w_2} , σ_{w_3} and proof W

Generator g_p and aggregated component A part of the CRS (honestly-generated)

Similar analysis shows that extracted bits satisfy $b_3 = 1 - b_1 b_2 = \text{NAND}(b_1, b_2)$

[See paper for details]



1 Prover commits to each vector of wire assignments

$$\boldsymbol{w}_i = \begin{bmatrix} w_{i,1} & w_{i,2} & \cdots & w_{i,m} \end{bmatrix} \quad \boldsymbol{\sigma}_i$$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$

Our construction: $|\sigma_i| = \text{poly}(\lambda)$

Let $\mathbf{w}_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire i across the m instances

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Key idea: Validity checks are quadratic and can be checked in the exponent

From Composite-Order to Prime-Order

Batch argument for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

$$\mathbb{G} \cong \mathbb{G}_p \times \mathbb{G}_q$$

composite-order group

Simulate subgroups with subspaces

Conclusion:

k-Linear assumption (for any $k \ge 1$) in prime-order asymmetric bilinear groups

Reducing CRS Size

Common reference string:

 $A_1 \mid A_2 \mid$

$$B_{m-1,m}$$

Size of CRS is $m^2 \cdot \text{poly}(\lambda)$

Can rely on recursive composition to reduce CRS size:

$$m^2 \cdot \operatorname{poly}(\lambda) \to m^{\varepsilon} \cdot \operatorname{poly}(\lambda)$$

for any constant $\varepsilon > 0$

Similar approach as [KPY19]

Choudhuri et al. [CJJ21] showed:

succinct argument for polynomial-time computations

Batch argument for NP*

Somewhere extractable commitment

Delegation scheme for RAM programs

succinct vector commitment that allows extracting on single index

^{*}Needs a split verification property [see paper for details]

Choudhuri et al. [CJJ21] showed:

succinct argument for polynomial-time computations

Batch argument for NP*

Somewhere extractable commitment

Delegation scheme for RAM programs

This work (from k-Lin)

succinct vector commitment that allows extracting on single index

^{*}Needs a split verification property [see paper for details]

Choudhuri et al. [CJJ21] showed:

Batch argument for NP*

Somewhere extractable commitment

This work + [OPWW15] (from SXDH)

Delegation scheme for RAM programs

^{*}Needs a split verification property [see paper for details]

Choudhuri et al. [CJJ21] showed:

Batch argument for NP*

Somewhere extractable commitment

Delegation scheme for RAM programs

This work (from k-Lin)

This work + [OPWW15] (from SXDH)

Corollary. RAM delegation from SXDH on prime-order pairing groups

To verify a time-T RAM computation:

• **CRS size:** $|\operatorname{crs}| = T^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ for any constant $\varepsilon > 0$

• Proof size: $|\pi| = \text{poly}(\lambda, \log T)$

• **Verification time:** $|Verify| = poly(\lambda, \log T)$

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]

Summary

Batch arguments for NP from standard assumptions over bilinear maps

Key feature: Construction is "low-tech"

Direct "commit-and-prove" approach like classic pairing-based proof systems

Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS

Corollary: Aggregate signature with bounded aggregation in the plain model

https://eprint.iacr.org/2022/336

Thank you!