Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Interactive Arguments for NP

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

Completeness: $C(x, w)=1 \Rightarrow \operatorname{Pr}[\langle P(x, w), V(x)\rangle=1]=1$
Soundness: for all provers P^{\star} of size 2^{λ} :

$$
x \notin \mathcal{L}_{C} \Rightarrow \operatorname{Pr}\left[\left\langle P^{\star}(x), V(x)\right\rangle=1\right] \leq 2^{-\lambda}
$$

Interactive Arguments for NP

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

Completeness: $C(x, w)=1 \Longrightarrow \operatorname{Pr}[\langle P(x, w), V(x)\rangle=1]=1$
Soundness: for all provers P^{\star} of size $2^{\lambda}: \quad \lambda$ is a security parameter

$$
x \notin \mathcal{L}_{C} \Rightarrow \operatorname{Pr}\left[\left\langle P^{\star}(x), V(x)\right\rangle=1\right] \leq 2^{-\lambda}
$$

Succinct Arguments

$$
\mathcal{L}_{C}=\{x: C(x, w)=1 \text { for some } w\}
$$

Argument system is succinct if:

- Prover communication is poly $(\lambda+\log |C|)$
- V can be implemented by a circuit of size poly $(\lambda+|x|+\log |C|)$

Succinct Non-Interactive Arguments (SNARGs)

Instantiation: "CS proofs" in the random oracle model [mic94]

Succinct Non-Interactive Arguments (SNARGs)

Complexity Metrics for SNARGs

Soundness: for all provers P^{\star} of size 2^{λ} :

$$
x \notin \mathcal{L}_{C} \Rightarrow \operatorname{Pr}\left[\left\langle P^{\star}(x), V(x)\right\rangle=1\right] \leq 2^{-\lambda}
$$

How short can the proofs be?

$$
|\pi|=\Omega(\lambda)<\begin{gathered}
\begin{array}{c}
\text { Even in the designated- } \\
\text { verifier setting } \\
\text { [See paper for details] }
\end{array}
\end{gathered}
$$

How much work is needed to generate the proof?

$$
|P|=\Omega(|C|)
$$

Quasi-Optimal SNARGs

Soundness: for all provers P^{\star} of size 2^{λ} :

$$
x \notin \mathcal{L}_{C} \Rightarrow \operatorname{Pr}\left[\left\langle P^{\star}(x), V(x)\right\rangle=1\right] \leq 2^{-\lambda}
$$

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it satisfies the following properties:

- Quasi-optimal succinctness:

$$
|\pi|=\lambda \cdot \operatorname{polylog}(\lambda,|C|)=\tilde{O}(\lambda)
$$

- Quasi-optimal prover complexity:

$$
|P|=\tilde{O}(|C|)+\operatorname{poly}(\lambda, \log |C|)
$$

Quasi-Optimal SNARGs

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(\|C\|)$	$\tilde{O}\left(\lambda^{2}\right)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}\left(\lambda\|C\|^{2}+\|C\| \lambda^{2}\right)$	$\tilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Encryption
BISW (LWE/RLWE) [BISW17]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(\|C\|)$	$\tilde{O}\left(\lambda^{2}\right)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}\left(\lambda\|C\|^{2}+\|C\| \lambda^{2}\right)$	$\tilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Encryption
BISW (LWE/RLWE) [BISW17]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption

For simplicity, we ignore low order terms poly $(\lambda, \log |C|)$

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(\|C\|)$	$\tilde{O}\left(\lambda^{2}\right)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}\left(\lambda\|C\|^{2}+\|C\| \lambda^{2}\right)$	$\tilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Encryption
BISW (LWE/RLWE) [BISW17]	$\tilde{O}(\lambda\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption
This work	$\tilde{O}(\|C\|)$	$\tilde{O}(\lambda)$	Linear-Only Vector Encryption

This Work

New framework for building preprocessing SNARGs (following [BCIOP13, BISW17])

Step 1 (information-theoretic):

- Linear multi-prover interactive proofs (linear MIPs)
- This work: first construction of a quasi-optimal linear MIP

Step 2 (cryptographic):

- Linear-only vector encryption to simulate linear MIP model
- This work: linear MIP \Rightarrow preprocessing SNARG

Results yield the first quasi-optimal SNARG (from linear-only vector encryption over rings)

Linear PCPs [⿺𠃊оо7]

PCP where the proof oracle implements a linear function $\pi \in \mathbb{F}^{m}$

$$
\langle q, \pi\rangle \in \mathbb{F}
$$

(x, w)

In these instantiations, verifier is oblivious (queries independent of statement)

Instantiations:

- 3-query LPCP based on the WalshHadamard code: $m=O\left(|C|^{2}\right)$ [ALMss92]
- 3-query LPCP based on quadratic span programs: $m=O(|C|)$ [GGPR13]

From Linear PCPs to SNARGs [bciop 13$]$

Verifier encrypts its queries using a linear-only encryption scheme

Encryption scheme that only supports linear homomorphism

Verifier encrypts its queries using a linear-only encryption scheme

From Linear PCPs to SNARGs [Bciop13]

Verifier encrypts its queries using a linear-only encryption scheme

Prover constructs linear PCP π from (x, w)

Prover homomorphically computes responses to linear PCP queries

From Linear PCPs to SNARGs [BcIop13]

Evaluating inner product requires O(km) homomorphic operations on ciphertexts: prover complexity $O(\lambda) \cdot O(\mathrm{~km})=O(\lambda|\mathrm{C}|)$

Proof consists of a constant
number of ciphertexts: total length $O(\lambda)$ bits

Prover constructs linear PCP π from (x, w)

Prover homomorphically computes responses to linear PCP queries

$\left\langle\pi, q_{1}\right\rangle$	$\left\langle\pi, q_{2}\right\rangle$	\cdots	$\left\langle\pi, q_{k}\right\rangle$
SNARG proof			

From Linear PCPs to SNARGs [bciop 13$]$

Evaluating inner product requires O(km) homomorphic operations on ciphertexts: prover complexity $O(\lambda) \cdot O(\mathrm{~km})=O(\lambda|\mathrm{C}|)$ $Q=\left|q_{1}\right| q_{2}\left|q_{3}\right| \ldots\left|q_{k}\right|$

Prover constructs linear PCP π from (x, w)
(x, w)
We pay $O(\lambda)$ for each

Proof consists of a constant number of ciphertexts: total length $O(\lambda)$ bits

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring $R_{p}=\mathbb{Z}_{p}[x] / \Phi_{\ell}(x) \cong \mathbb{F}_{p}^{\ell}$

Plaintext space can be viewed as a vector of field elements

Homomorphic operations correspond to component-wise additions and scalar multiplications

Using RLWE-based encryption schemes, can encrypt $\ell=\tilde{O}(\lambda)$ field elements $(p=\operatorname{poly}(\lambda))$ with ciphertexts of size $\tilde{O}(\lambda)$

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring $R_{p}=\mathbb{Z}_{p}[x] / \Phi_{\ell}(x) \cong \mathbb{F}_{p}^{\ell}$

x_{1}
x_{2}
x_{3}
\vdots
x_{ℓ}

Plaintext space can be viewed as a vector of field elements

Using RLWE-based encryption schemes, can encrypt $\ell=\tilde{O}(\lambda)$ field elements $(p=\operatorname{poly}(\lambda))$ with ciphertexts of size $\widetilde{O}(\lambda)$

Linear-Only Encryption over Rings

Given encrypted set of query vectors, prover can homomorphically apply independent linear functions to each slot

Linear Multi-Prover Interactive Proofs (MIPs)

Verifier has oracle access to multiple linear proof oracles

Can convert linear MIP to preprocessing SNARG using linearonly (vector) encryption over rings

Linear Multi-Prover Interactive Proofs (MIPs)

Linear Multi-Prover Interactive Proofs (MIPs)

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness $2^{-\lambda}$) and following properties:

- Number of provers is $\tilde{O}(\lambda)$
- Each proof has length $\tilde{O}(|C| / \lambda)$

More provers, shorter (individual) proofs

- Proofs are over a polynomial-size field: $p=\operatorname{poly}(\lambda)$
- Query complexity is polylog(λ)

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness $2^{-\lambda}$) and following properties:

- Number of provers is $\tilde{O}(\lambda)$
- Each proof has length $\tilde{O}(|C| / \lambda)$
- Proofs are over a polynomial-size field: $p=\operatorname{poly}(\lambda)$
- Query complexity is polylog(λ)

Linear PCPs used in
[BCIOP13] require a field of size $2^{\Omega(\lambda)}$

Can we use existing linear PCPs?

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness $2^{-\lambda}$) and following properties:

- Number of provers is $\tilde{O}(\lambda)$
- Each proof has length $\tilde{O}(|C| / \lambda)$
- Proofs are over a polynomial-size field: $p=\operatorname{poly}(\lambda)$
- Query complexity is polylog(λ)

Linear PCPs used in
[BISW17] have query complexity $\Omega(\lambda)$

Can we use existing linear PCPs?

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness $2^{-\lambda}$) and following properties:

- Number of provers is $\tilde{O}(\lambda)$
- Each proof has length $\tilde{O}(|C| / \lambda)$
- Proofs are over a polynomial-size field: $p=\operatorname{poly}(\lambda)$
- Query complexity is polylog(λ)

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability

Robust Decomposition

Statement-
witness for C

Only depends on x

Each constraint only needs to

 read a subset of the input bitsDecompose C into constraint functions f_{1}, \ldots, f_{ℓ}, where each constraint can be computed by a circuit of size s / ℓ

Boolean circuit C of size s

Robust Decomposition

Statement-
witness for C

Only depends on x

Each constraint only needs to read a subset of the input bits

Decompose C into constraint functions f_{1}, \ldots, f_{ℓ}, where each constraint can be computed by a circuit of size s / ℓ

Boolean circuit C of size s

Robust Decomposition

Statement-
witness for C
$(x, w) \quad$ Encode

Only depends on x

Boolean circuit C of size s

 a circuit of size s / ℓ
Robust Decomposition

Statementwitness for C

Only depends on x

Completeness: If $C(x, w)=1$, then $f_{i}\left(x^{\prime}, w^{\prime}\right)=1$ for all i

Robustness: If $x \notin \mathcal{L}$, then for all w^{\prime}, at most $2 / 3$ of $f_{i}\left(x^{\prime}, w^{\prime}\right)=1$ Efficiency: $\left(x^{\prime}, w^{\prime}\right)$ can be

Boolean circuit C of size s

 computed by a circuit of size $\tilde{O}(s)$
Robust Decomposition

π_{i} : linear PCP that $f_{i}\left(x^{\prime}, \cdot\right)$ is satisfiable (instantiated over \mathbb{F}_{p} where $p=\operatorname{poly}(\lambda)$)

Robust Decomposition

$\pi_{i}:$ linear PCP that $f_{i}\left(x^{\prime}, \cdot\right)$ is satisfiable
(instantiated over \mathbb{F}_{p} where $p=\operatorname{poly}(\lambda)$)

Robust Decomposition

π_{i} : linear PCP that $f_{i}\left(x^{\prime}, \cdot\right)$ is satisfiable (instantiated over \mathbb{F}_{p} where $p=\operatorname{poly}(\lambda)$)

Robust Decomposition

Robustness: If $x \notin \mathcal{L}$, then for all w^{\prime}, at most $2 / 3$ of $f_{i}\left(x^{\prime}, w^{\prime}\right)=1$

For false x, no single w^{\prime} can simultaneously satisfy $f_{i}\left(x^{\prime},\right)$; however, all of the $f_{i}\left(x^{\prime}, \cdot\right)$ could individually be satisfiable

Completeness: Follows by
completeness of decomposition and linear PCPs

Soundness: Each linear PCP provides $1 / \operatorname{poly}(\lambda)$ soundness and for false statement, at least $1 / 3$ of the statements are false, so if $\ell=\Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$

Problematic however if prover uses different (x^{\prime}, w^{\prime}) to construct proofs for different f_{i}^{\prime} 's

Consistency Checking

Require that linear PCPs are systematic: linear PCP π contains a copy of the witness:

π_{1}	w_{1}^{\prime}	w_{3}^{\prime}	other components
π_{2}	w_{1}^{\prime}	w_{2}^{\prime}	other components
π_{3}	w_{2}^{\prime}	w_{3}^{\prime}	other components

Goal: check that assignments to w^{\prime} are consistent via linear queries to π_{i}

First few components of proof correspond to witness associated with the statement

Each proof induces an assignment to a few bits of the common witness w^{\prime}

Quasi-Optimal Linear MIPs

Robust Decomposition

- Checking satisfiability of C corresponds to checking satisfiability of f_{1}, \ldots, f_{ℓ} (each of which can be checked by a circuit of size $|C| / \ell)$
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_{i}

Consistency Check

- Check that consistent witness is used to prove satisfiability of each f_{i}
- Relies on pairwise consistency checks and permuting the entries to obtain a "nice" replication structure

Quasi-Optimal Linear MIPs

Robust Decomposition

- Checking satisfiability of C corresponds to checking satisfiability of f_{1}, \ldots, f_{ℓ} (each of which can be checked by a circuit of size $|C| / \ell)$
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_{i}

Robust decomposition can be instantiated by combining "MPC-in-the-head" paradigm [IKOSO7] with a robust MPC protocol with polylogarithmic overhead [DIK10]

More generally: viewing a general MPC protocol as a PCP over a large alphabet
[See paper for details]

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

- Quasi-optimal succinctness: $|\pi|=\tilde{O}(\lambda)$
- Quasi-optimal prover complexity: $|P|=\tilde{O}(|C|)+\operatorname{poly}(\lambda, \log |C|)$

New framework for building quasi-optimal SNARGs by combining quasi-optimal linear MIP with linear-only vector encryption

- Construction of a quasi-optimal linear MIP possible by combining robust decomposition and consistency check

What if we had a 1-bit SNARG? Implies a form of witness encryption!

Open Problems

Quasi-optimal SNARGs with additional properties:

- Publicly-verifiable / multi-theorem (in designated verifier setting)
- Zero-knowledge

Thank you!

