Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

<u>Completeness</u>: $C(x, w) = 1 \Longrightarrow \Pr[\langle P(x, w), V(x) \rangle = 1] = 1$

Soundness: for all provers P^* of size 2^{λ} :

$$x \notin \mathcal{L}_C \Longrightarrow \Pr[\langle P^*(x), V(x) \rangle = 1] \le 2^{-\lambda}$$

Completeness:
$$C(x, w) = 1 \Rightarrow \Pr[\langle P(x, w), V(x) \rangle = 1] = 1$$

Soundness: for all provers P^* of size 2^{λ} : λ is a security parameter $x \notin \mathcal{L}_C \Longrightarrow \Pr[\langle P^*(x), V(x) \rangle = 1] \le 2^{-\lambda}$

Argument system is *succinct* if:

- Prover communication is $poly(\lambda + \log|C|)$
- *V* can be implemented by a circuit of size $poly(\lambda + |x| + \log|C|)$

Verifier complexity significantly smaller than classic NP verifier

Succinct Non-Interactive Arguments (SNARGs)

Instantiation: "CS proofs" in the random oracle model [Mic94]

Succinct Non-Interactive Arguments (SNARGs)

Complexity Metrics for SNARGs

Soundness: for all provers P^* of size 2^{λ} :

$$x \notin \mathcal{L}_C \Longrightarrow \Pr[\langle P^*(x), V(x) \rangle = 1] \le 2^{-\lambda}$$

How short can the proofs be?

 $|\pi| = \Omega(\lambda)$

Even in the designatedverifier setting [See paper for details]

How much work is needed to generate the proof? $|P| = \Omega(|C|)$

Quasi-Optimal SNARGs

Soundness: for all provers P^* of size 2^{λ} :

$$x \notin \mathcal{L}_C \Longrightarrow \Pr[\langle P^*(x), V(x) \rangle = 1] \le 2^{-\lambda}$$

A SNARG (for Boolean circuit satisfiability) is <u>quasi-optimal</u> if it satisfies the following properties:

• Quasi-optimal succinctness:

$$|\pi| = \lambda \cdot \operatorname{polylog}(\lambda, |C|) = \tilde{O}(\lambda)$$

• Quasi-optimal prover complexity: $|P| = \tilde{O}(|C|) + \operatorname{poly}(\lambda, \log|C|)$

Quasi-Optimal SNARGs

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(C)$	$ ilde{O}(\lambda^2)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}(\lambda C ^2 + C \lambda^2)$	$ ilde{O}(\lambda)$	Knowledge of
GGPR [GGPR12]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Exponent
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Encryption
BISW (LWE/RLWE) [BISW17]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption

For simplicity, we ignore low order terms $poly(\lambda, log|C|)$

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(C)$	$\tilde{O}(\lambda^2)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}(\lambda C ^2 + C \lambda^2)$	$ ilde{O}(\lambda)$	Knowledge of Exponent
GGPR [GGPR12]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Encryption
BISW (LWE/RLWE) [BISW17]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption

For simplicity, we ignore low order terms $poly(\lambda, log|C|)$

Construction	Prover Complexity	Proof Size	Assumption
CS Proofs [Mic94]	$\tilde{O}(C)$	$\tilde{O}(\lambda^2)$	Random Oracle
Groth [Gro16]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Generic Group
Groth [Gro10]	$\tilde{O}(\lambda C ^2 + C \lambda^2)$	$ ilde{O}(\lambda)$	Knowledge of Exponent
GGPR [GGPR12]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	
BCIOP (Pairing) [BCIOP13]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Encryption
BISW (LWE/RLWE) [BISW17]	$\tilde{O}(\lambda C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption
This work	$\tilde{O}(C)$	$ ilde{O}(\lambda)$	Linear-Only Vector Encryption

This Work

New framework for building preprocessing SNARGs (following [BCIOP13, BISW17])

Step 1 (information-theoretic):

- Linear multi-prover interactive proofs (linear MIPs)
- This work: first construction of a <u>quasi-optimal</u> linear MIP Step 2 (cryptographic):
 - Linear-only vector encryption to simulate linear MIP model
 - This work: linear MIP \implies preprocessing SNARG

Results yield the first quasi-optimal SNARG (from linear-only vector encryption over rings)

Linear PCPs [IKO07]

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

Encryption scheme that only supports linear homomorphism CPS to SNARGS [BCIOP13]

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

Prover constructs linear PCP π from (*x*, *w*)

Prover homomorphically computes responses to linear PCP queries

Evaluating inner product requires O(km) homomorphic operations on ciphertexts: prover complexity $O(\lambda) \cdot O(km) = O(\lambda|C|)$

$$Q = q_1 q_2 q_3 \cdots q_k$$

Prover constructs linear PCP π from (x, w)

Proof consists of a <u>constant</u> number of ciphertexts: total length $O(\lambda)$ bits Prover homomorphically computes responses to linear PCP queries

$$\langle \pi, q_1 \rangle \langle \pi, q_2 \rangle \cdots \langle \pi, q_k \rangle$$

SNARG proof

Evaluating inner product requires O(km) homomorphic operations on ciphertexts: prover complexity $O(\lambda) \cdot O(km) = O(\lambda|C|)$

$$Q = q_1 q_2 q_3 \cdots q_k$$

Proof consists of a constant number of ciphertexts: total length $O(\lambda)$ bits

Prover constructs linear PCP π from (*x*, *w*)

We pay $O(\lambda)$ for each homomorphic operation. Can we reduce this?

S:

eries

 (π, q)

Prove response

 $\langle \pi, q_1$

 (π, q_2) **SNARG** proof

• • •

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring $R_p = \mathbb{Z}_p[x]/\Phi_\ell(x) \cong \mathbb{F}_p^\ell$

Homomorphic operations correspond to <u>component-wise</u> additions and scalar multiplications

Plaintext space can be viewed as a vector of field elements

Using RLWE-based encryption schemes, can encrypt $\ell = \tilde{O}(\lambda)$ field elements ($p = \text{poly}(\lambda)$) with ciphertexts of size $\tilde{O}(\lambda)$

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring $R_p = \mathbb{Z}_p[x]/\Phi_\ell(x) \cong \mathbb{F}_p^\ell$

Plaintext space can be viewed as a vector of field elements

Using RLWE-based encryption schemes, can encrypt $\ell = \tilde{O}(\lambda)$ field elements ($p = \text{poly}(\lambda)$) with ciphertexts of size $\tilde{O}(\lambda)$

Linear-Only Encryption over Rings

Given encrypted set of query vectors, prover can homomorphically apply independent linear functions to each slot

Verifier has oracle access to <u>multiple</u> linear proof oracles

Can convert linear MIP to preprocessing SNARG using linearonly (vector) encryption over rings

 π_1

(x,w)

• • •

 $\pi_{
ho}$

 π_2

Suppose

- Number of provers $\ell = \tilde{O}(\lambda)$
- Proofs $\pi_1, \ldots, \pi_\ell \in \mathbb{F}_p^m$ where $m = |C|/\ell$
- Number of queries to each π_i is polylog(λ)

Then, linear MIP is quasi-optimal

Goal: Construct quasi-optimal linear MIP (with soundness $2^{-\lambda}$) and following properties:

- Number of provers is $\tilde{O}(\lambda)$
- Each proof has length $\tilde{O}(|C|/\lambda)$
- Proofs are over a polynomial-size field: $p = poly(\lambda)$
- Query complexity is $polylog(\lambda)$

More provers, shorter (individual) proofs

Goal: Construct quasi-optimal linear MIP (with soundness $2^{-\lambda}$) and following properties:

- Number of provers is $\tilde{O}(\lambda)$
- Each proof has length $\tilde{O}(|C|/\lambda)$
- Proofs are over a polynomial-size field: $p = poly(\lambda)$
- Query complexity is $polylog(\lambda)$

Linear PCPs used in [BCIOP13] require a field of size $2^{\Omega(\lambda)}$

Can we use existing linear PCPs?

Goal: Construct quasi-optimal linear MIP (with soundness $2^{-\lambda}$) and following properties:

- Number of provers is $\tilde{O}(\lambda)$
- Each proof has length $\tilde{O}(|C|/\lambda)$
- Proofs are over a polynomial-size field: $p = poly(\lambda)$
- Query complexity is $polylog(\lambda)$

Linear PCPs used in [BISW17] have query complexity $\Omega(\lambda)$

Can we use existing linear PCPs?

Goal: Construct quasi-optimal linear MIP (with soundness $2^{-\lambda}$) and following properties:

- Number of provers is $\tilde{O}(\lambda)$
- Each proof has length $\tilde{O}(|C|/\lambda)$
- Proofs are over a polynomial-size field: $p = poly(\lambda)$
- Query complexity is $polylog(\lambda)$

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability

a circuit of size s/ℓ

 π_i : linear PCP that $f_i(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

 π_i : linear PCP that $f_i(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

<u>Completeness</u>: Follows by completeness of decomposition and linear PCPs

Soundness: Each linear PCP provides 1/poly(λ) soundness and for false statement, at least 1/3 of the statements are false, so if $\ell = \Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$

 π_i : linear PCP that $f_i(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

Robustness: If $x \notin \mathcal{L}$, then for all w', at most 2/3 of $f_i(x', w') = 1$

For false x, no single w' can simultaneously satisfy $f_i(x', \cdot)$; however, all of the $f_i(x', \cdot)$ could individually be satisfiable <u>Completeness</u>: Follows by completeness of decomposition and linear PCPs

Soundness: Each linear PCP provides $1/\text{poly}(\lambda)$ soundness and for false statement, at least 1/3 of the statements are false, so if $\ell = \Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$

Problematic however if prover uses different (x', w') to construct proofs for different f_i 's

Consistency Checking

Require that linear PCPs are <u>systematic</u>: linear PCP π contains a copy of the witness:

Goal: check that assignments to w' are consistent via linear queries to π_i

First few components of proof correspond to witness associated with the statement

Each proof induces an assignment to a few bits of the common witness w'

[See paper for details]

Quasi-Optimal Linear MIPs

- Checking satisfiability of C corresponds to checking satisfiability of f_1, \ldots, f_ℓ (each of which can be checked by a circuit of size $|C|/\ell$)
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_i

- Check that consistent witness is used to prove satisfiability of each f_i
- Relies on pairwise consistency checks and permuting the entries to obtain a "nice" replication structure

Quasi-Optimal Linear MIPs

- Checking satisfiability of C corresponds to checking satisfiability of f_1, \ldots, f_ℓ (each of which can be checked by a circuit of size $|C|/\ell$)
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_i

Robust decomposition can be instantiated by combining "MPC-in-the-head" paradigm [IKOS07] with a robust MPC protocol with polylogarithmic overhead [DIK10]

More generally: viewing a general MPC protocol as a PCP over a large alphabet

[See paper for details]

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

- Quasi-optimal succinctness: $|\pi| = \tilde{O}(\lambda)$
- Quasi-optimal prover complexity: $|P| = \tilde{O}(|C|) + \text{poly}(\lambda, \log|C|)$

New framework for building quasi-optimal SNARGs by combining quasi-optimal linear MIP with linear-only vector encryption

 Construction of a quasi-optimal linear MIP possible by combining robust decomposition and consistency check

What if we had a 1-bit SNARG? Implies a form of witness encryption!

[See paper for details]

Open Problems

Quasi-optimal SNARGs with additional properties:

- Publicly-verifiable / multi-theorem (in designated verifier setting)
- Zero-knowledge

Thank you!