
Quasi-Optimal SNARGs via
Linear Multi-Prover Interactive Proofs

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Interactive Arguments for NP

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

𝑃(𝑥, 𝑤) 𝑉(𝑥)⋮

accept / reject

Completeness: 𝐶 𝑥,𝑤 = 1 ⟹ Pr 𝑃 𝑥,𝑤 , 𝑉 𝑥 = 1 = 1

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆

Interactive Arguments for NP

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

𝑃(𝑥, 𝑤) 𝑉(𝑥)⋮

accept / reject

Completeness: 𝐶 𝑥,𝑤 = 1 ⟹ Pr 𝑃 𝑥,𝑤 , 𝑉 𝑥 = 1 = 1

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆
𝜆 is a security parameter

Succinct Arguments

𝑃(𝑥, 𝑤) 𝑉(𝑥)⋮

accept / reject
Argument system is succinct if:

• Prover communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

Verifier complexity significantly
smaller than classic NP verifier

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

Succinct Non-Interactive Arguments (SNARGs)

𝑃(𝑥, 𝑤) 𝑉(𝑥)

accept / reject

𝜋

Argument consists of a
single message

Instantiation: “CS proofs” in the
random oracle model [Mic94]

Succinct Non-Interactive Arguments (SNARGs)

𝑃(𝜎, 𝑥, 𝑤) 𝑉(𝜏, 𝑥)

accept / reject

𝜋

Argument consists of a
single message

common reference
string (CRS)

verification
state

Setup 1𝜆

𝜎 𝜏

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs:
allow “expensive” setup

Complexity Metrics for SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆

How short can the proofs be?

𝜋 = Ω 𝜆

How much work is needed to generate the proof?

𝑃 = Ω 𝐶

Even in the designated-
verifier setting

[See paper for details]

Quasi-Optimal SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑃⋆ 𝑥 , 𝑉 𝑥 = 1 ≤ 2−𝜆

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it
satisfies the following properties:

• Quasi-optimal succinctness:
𝜋 = 𝜆 ⋅ polylog 𝜆, 𝐶 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity:
𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶)

Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

BISW (LWE/RLWE) [BISW17] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

BISW (LWE/RLWE) [BISW17] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

For simplicity, we ignore low order
terms poly 𝜆, log 𝐶

Quasi-Optimal SNARGs

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

BISW (LWE/RLWE) [BISW17] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

This work ෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

For simplicity, we ignore low order
terms poly 𝜆, log 𝐶

This Work

New framework for building preprocessing SNARGs (following [BCIOP13, BISW17])

Step 1 (information-theoretic):
• Linear multi-prover interactive proofs (linear MIPs)
• This work: first construction of a quasi-optimal linear MIP

Step 2 (cryptographic):
• Linear-only vector encryption to simulate linear MIP model
• This work: linear MIP ⟹ preprocessing SNARG

Results yield the first quasi-optimal SNARG (from linear-only vector encryption
over rings)

Linear PCPs [IKO07]

𝜋 ∈ 𝔽𝑚

𝑞 ∈ 𝔽𝑚

𝑞, 𝜋 ∈ 𝔽

Instantiations:
• 3-query LPCP based on the Walsh-

Hadamard code: 𝑚 = 𝑂(𝐶 2) [ALMSS92]

• 3-query LPCP based on quadratic span
programs: 𝑚 = 𝑂(𝐶) [GGPR13]Verifier

𝑥, 𝑤PCP where the proof
oracle implements a

linear function 𝜋 ∈ 𝔽𝑚 In these instantiations,
verifier is oblivious (queries
independent of statement)

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

Encryption scheme that only
supports linear homomorphism

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes
responses to linear PCP queries

SNARG proof

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes
responses to linear PCP queries

Proof consists of a constant
number of ciphertexts: total length

𝑂(𝜆) bits

SNARG proof

Evaluating inner product requires
𝑂 𝑘𝑚 homomorphic operations
on ciphertexts: prover complexity

𝑂 𝜆 ⋅ 𝑂 𝑘𝑚 = 𝑂 𝜆 𝐶

From Linear PCPs to SNARGs [BCIOP13]

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Verifier encrypts its queries using
a linear-only encryption scheme

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover homomorphically computes
responses to linear PCP queries

Proof consists of a constant
number of ciphertexts: total length

𝑂(𝜆) bits

SNARG proof

Evaluating inner product requires
𝑂 𝑘𝑚 homomorphic operations
on ciphertexts: prover complexity

𝑂 𝜆 ⋅ 𝑂 𝑘𝑚 = 𝑂 𝜆 𝐶

We pay 𝑂(𝜆) for each
homomorphic

operation. Can we
reduce this?

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆)

with ciphertexts of size ෨𝑂(𝜆)

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆)

with ciphertexts of size ෨𝑂(𝜆)

Amortized cost of homomorphic
operation on a single field

element is polylog(𝜆)

Linear-Only Encryption over Rings

𝑞1 ∈ 𝔽𝑝
𝑚

𝑞2 ∈ 𝔽𝑝
𝑚

𝑞3 ∈ 𝔽𝑝
𝑚

⋮

𝑞ℓ ∈ 𝔽𝑝
𝑚

⟨𝜋1, 𝑞1⟩

⟨𝜋2, 𝑞2⟩

⟨𝜋3, 𝑞3⟩

⋮

⟨𝜋ℓ, 𝑞ℓ⟩

Given encrypted set of query vectors, prover can
homomorphically apply independent linear functions to each slot

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Verifier has oracle access to
multiple linear proof oracles

Can convert linear MIP to
preprocessing SNARG using linear-
only (vector) encryption over rings

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Suppose
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries to each 𝜋𝑖 is polylog(𝜆)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Suppose
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries to each 𝜋𝑖 is polylog(𝜆)

Then, linear MIP is quasi-optimal

Prover complexity:
෨𝑂 ℓ𝑚 = ෨𝑂 𝐶

Linear MIP size:

𝑂 ℓ ⋅ polylog 𝜆 = ෨𝑂(𝜆)

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

More provers, shorter (individual) proofs

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

Linear PCPs used in
[BCIOP13] require a field of

size 2Ω(𝜆)

Can we use existing
linear PCPs?

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

Linear PCPs used in
[BISW17] have query

complexity Ω(𝜆)

Can we use existing
linear PCPs?

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 2−𝜆) and following properties:
• Number of provers is ෨𝑂 𝜆
• Each proof has length ෨𝑂 Τ𝐶 𝜆
• Proofs are over a polynomial-size field: 𝑝 = poly 𝜆
• Query complexity is polylog 𝜆

This work: Construction of a quasi-optimal linear MIP for Boolean circuit
satisfiability

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit
satisfiability

Robust
Decomposition

Consistency
Check

Quasi-Optimal
Linear MIP

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Only depends on 𝑥

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Only depends on 𝑥

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Only depends on 𝑥

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Completeness: If 𝐶 𝑥,𝑤 = 1,
then 𝑓𝑖 𝑥

′, 𝑤′ = 1 for all 𝑖

Robustness: If 𝑥 ∉ ℒ, then for all
𝑤′, at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

Efficiency: (𝑥′, 𝑤′) can be
computed by a circuit of size ෨𝑂(𝑠)

Only depends on 𝑥

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Using constant-query linear PCP
based on QSPs [GGPR13], 𝜋𝑖 ∈
𝔽𝑝
𝑚 where 𝑚 = 𝑂 Τ𝐶 ℓ and

provides soundness 1/poly 𝜆

(𝑥, 𝑤)
Statement-witness

for 𝐶
Statement-witness

for 𝑓1, … , 𝑓ℓ

Encode (𝑥′, 𝑤′)

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Verifier invokes linear PCP verifier
for each instance

(𝑥, 𝑤)
Statement-witness

for 𝐶
Statement-witness

for 𝑓1, … , 𝑓ℓ

Encode (𝑥′, 𝑤′)

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Completeness: Follows by
completeness of decomposition and
linear PCPs

Soundness: Each linear PCP provides
Τ1 poly 𝜆 soundness and for false

statement, at least 1/3 of the
statements are false, so if ℓ = Ω(𝜆),
verifier accepts with probability

2−Ω 𝜆

Robust Decomposition

Completeness: Follows by
completeness of decomposition and
linear PCPs

Soundness: Each linear PCP provides
Τ1 poly 𝜆 soundness and for false

statement, at least 1/3 of the
statements are false, so if ℓ = Ω(𝜆),
verifier accepts with probability

2−Ω 𝜆

Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′,
at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

For false 𝑥, no single 𝑤′ can
simultaneously satisfy 𝑓𝑖 𝑥

′,⋅ ;
however, all of the 𝑓𝑖(𝑥

′,⋅) could
individually be satisfiable

Problematic however if prover
uses different 𝑥′, 𝑤′ to

construct proofs for different 𝑓𝑖’s

Consistency Checking

Require that linear PCPs are systematic: linear PCP 𝜋 contains a copy of the witness:

𝜋1

𝜋2

𝜋3

𝑤1
′ 𝑤3

′

𝑤1
′ 𝑤2

′

𝑤2
′ 𝑤3

′

other components

other components

other components

First few components of proof
correspond to witness associated

with the statement

Goal: check that assignments
to 𝑤′ are consistent via

linear queries to 𝜋𝑖

Each proof induces an
assignment to a few bits of

the common witness 𝑤′

[See paper for details]

Quasi-Optimal Linear MIPs

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking
satisfiability of 𝑓1, … , 𝑓ℓ (each
of which can be checked by a
circuit of size Τ𝐶 ℓ)

• For a false statement, no
single witness can
simultaneously satisfy more
than a constant fraction of 𝑓𝑖

Consistency Check

• Check that consistent witness is
used to prove satisfiability of
each 𝑓𝑖

• Relies on pairwise consistency
checks and permuting the
entries to obtain a “nice”
replication structure

Quasi-Optimal Linear MIPs

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking
satisfiability of 𝑓1, … , 𝑓ℓ (each
of which can be checked by a
circuit of size Τ𝐶 ℓ)

• For a false statement, no
single witness can
simultaneously satisfy more
than a constant fraction of 𝑓𝑖

Robust decomposition can be instantiated by
combining “MPC-in-the-head” paradigm
[IKOS07] with a robust MPC protocol with
polylogarithmic overhead [DIK10]

More generally: viewing a general MPC
protocol as a PCP over a large alphabet

[See paper for details]

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

• Quasi-optimal succinctness: 𝜋 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity: 𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶)

New framework for building quasi-optimal SNARGs by combining quasi-optimal
linear MIP with linear-only vector encryption

• Construction of a quasi-optimal linear MIP possible by combining robust
decomposition and consistency check

What if we had a 1-bit SNARG? Implies a form of witness encryption!

[See paper for details]

Open Problems

Quasi-optimal SNARGs with additional properties:
• Publicly-verifiable / multi-theorem (in designated verifier setting)

• Zero-knowledge

Thank you!

