
Lattice-Based SNARGs and Their
Application to More Efficient Obfuscation

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Program Obfuscation [BGIRSVY01, GGHRSW13]

Takes a program as input and “scrambles” it

𝑖𝒪

Indistinguishability obfuscation (𝑖𝒪) has emerged as a “central hub for
cryptography” [BGIRSVY01, GGHRSW13]

[GGHRSW13, SW14, BZ14, BST14, GGHR14, GHRW14, BP15, CHNVW15, CLTV15, GP15, GPS16, BPW16 …]

How (Im)Practical is Obfuscation?

Existing constructions rely on multilinear maps [BS04, GGH13, CLT13, GGH15]

• Bootstrapping: [GGHRSW13, BR14, App14]

• For AES, requires ≫ 2100 levels of multinearity and ≫ 2100 encodings

• Direct obfuscation of circuits: [Zim15, AB15]

• For AES, already require ≫ 2100 levels of multilinearity

• Non-Black Box: [Lin16a, LV16, Lin16b, AS17, LT17]

• Only requires constant-degree multilinear maps (e.g., 3-linear maps [LT17])
• Multilinear maps are complex, so non-black box use of the multilinear maps will be

difficult to implement

multilinear
maps

NC1

obfuscation
P/Poly

obfuscationbootstrapping

How (Im)Practical is Obfuscation?

multilinear
maps

NC1

obfuscation
P/Poly

obfuscationbootstrapping

Focus of this work will be on candidates that make black-box use of
multilinear map

our goal: improve efficiency
of bootstrapping

prior works have focused on
improving the efficiency of

obfuscation for NC1 (branching
programs) [AGIS14, BMSZ16]

for AES, we require ≈ 4000 levels of
multilinearity (compare with ≫ 2100

from before)

Bootstrapping Obfuscation [GGHRSW13, BR14]

To obfuscate a circuit 𝐶 ∈ P/Poly:

encrypt the circuit 𝐶 using a
public key FHE scheme to

obtain encrypted circuit 𝐶enc

given 𝐶enc, evaluator can
homomorphically compute

encryption of 𝐶(𝑥)

𝐶enc

𝐶(𝑥)𝑥𝐶
𝐶enc

Bootstrapping Obfuscation [GGHRSW13, BR14]

To obfuscate a circuit 𝐶 ∈ P/Poly:

𝐶enc

𝐶(𝑥)𝑥𝐶
𝐶enc

• Provide obfuscated program that decrypts the FHE ciphertext
• Should not decrypt arbitrary FHE ciphertexts, only those that

correspond to honest evaluations
• Evaluator includes a proof that evaluation done correctly

Bootstrapping Obfuscation [GGHRSW13, BR14]

constants: sk and 𝜎
on input (𝑥, ct, 𝜋):

1. Verify the proof 𝜋 that ct corresponds to
an evaluation of 𝐶enc on 𝑥

2. If valid, output FHE. Decrypt(sk, ct) and 0
otherwise

• Provide obfuscated program that decrypts the FHE ciphertext
• Should not decrypt arbitrary FHE ciphertexts, only those that

correspond to honest evaluations
• Evaluator includes a proof that evaluation done correctly

NC1 obfuscator

⋮

𝑃obf
FHE

secret key
CRS for proof

system

Bootstrapping Obfuscation [GGHRSW13, BR14]

constants: sk and 𝜎
on input (𝑥, ct, 𝜋):

1. Verify the proof 𝜋 that ct corresponds to
an evaluation of 𝐶enc on 𝑥

2. If valid, output FHE. Decrypt(sk, ct) and 0
otherwise

NC1 obfuscator

⋮

𝑃obf

• Obfuscated program does two things: proof verification and FHE decryption
• NC1 obfuscator works on branching programs, so need primitives with short

branching programs (e.g., computing an inner products over a small field)

For VBB obfuscation, can
use a succinct argument

(SNARG)

Bootstrapping Obfuscation [GGHRSW13, BR14]

constants: sk and 𝜎
on input (𝑥, ct, 𝜋):

1. Verify the proof 𝜋 that ct corresponds to
an evaluation of 𝐶enc on 𝑥

2. If valid, output FHE. Decrypt(sk, ct) and 0
otherwise

NC1 obfuscator

⋮

𝑃obf

• Obfuscated program does two things: proof verification and FHE decryption
• NC1 obfuscator works on branching programs, so need primitives with short

branching programs (e.g., computing an inner products over a small field)

For VBB obfuscation, can
use a succinct argument

(SNARG)

Inner products over 𝔽𝑞
𝑛

implemented using branching
programs of length 𝑛 and width 𝑞

Bootstrapping Obfuscation [GGHRSW13, BR14]

constants: sk and 𝜎
on input (𝑥, ct, 𝜋):

1. Verify the proof 𝜋 that ct corresponds to
an evaluation of 𝐶enc on 𝑥

2. If valid, output FHE. Decrypt(sk, ct) and 0
otherwise

NC1 obfuscator

⋮

𝑃obf

• Obfuscated program does two things: proof verification and FHE decryption
• NC1 obfuscator works on branching programs, so need primitives with short

branching programs (e.g., computing an inner products over a small field)
• FHE decryption is (rounded) inner product [BV11, BGV12, Bra12, GSW13, AP14, DM15, …], so

just need a SNARG with simple verification

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Succinct non-interactive arguments (SNARG) for NP relation [GW11]

• Setup 1𝜆 → 𝜎, 𝜏 : outputs common reference string 𝜎 and

verification state 𝜏
• Prove 𝜎, 𝑥, 𝑤 → 𝜋: on input a statement 𝑥 and witness 𝑤,

outputs a proof 𝜋
• Verify 𝜏, 𝑥, 𝜋 → 0/1: on input the verification state 𝜏, the

statement 𝑥, decides if proof 𝜋 is valid

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Succinct non-interactive arguments (SNARG) for NP relation [GW11]

• Must satisfy usual notions of completeness and computational
soundness

• Succinctness: proof size and verifier run-time should be
polylogarithmic in the circuit size (for circuit satisfiability)
• Verifier run-time: poly 𝜆 + 𝑥 + log 𝐶
• Proof size: poly 𝜆 + log 𝐶

Branching-Program-Friendly SNARGs

Main result: new designated-verifier SNARGs in the preprocessing model with the
following properties:

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching programVerification state 𝜏

must be secret
Allow Setup algorithm to
run in time poly(𝜆 + 𝐶)

Branching-Program-Friendly SNARGs

Main result: new designated-verifier SNARGs in the preprocessing model with the
following properties:

• Quasi-optimal succinctness
• Quasi-optimal prover complexity

first SNARG that is
“quasi-optimal”

Asymptotics based on achieving negl(𝜆) soundness

error against provers of size 2𝜆

proofs have
size 𝑂(𝜆)

prover complexity
is 𝑂 𝐶

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Branching-Program-Friendly SNARGs

Main result: new designated-verifier SNARGs in the preprocessing model with the
following properties:

• Quasi-optimal succinctness
• Quasi-optimal prover complexity
• Post-quantum security
• Works over polynomial-size fields

first SNARG that is
“quasi-optimal”

New SNARG candidates are lattice-based
• Over integer lattices, verification is branching-program friendly
• Over ideal lattices, SNARGs are quasi-optimal

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Starting point: preprocessing SNARGs from [BCIOP13]

linear PCP
2-round linear

interactive proof
preprocessing SNARG

information-
theoretic compiler

cryptographic compiler
(linear-only encryption)

Linear PCPs (LPCPs) [IKO07]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

𝜋 ∈ 𝔽𝑚

𝑞 ∈ 𝔽𝑚

𝑞, 𝜋 ∈ 𝔽

verifier

• Verifier given oracle access to a linear
function 𝜋 ∈ 𝔽𝑚

• Several instantiations:
• 3-query LPCP based on the Walsh-

Hadamard code: 𝑚 = 𝑂(𝐶 2) [ALMSS92]

• 3-query LPCP based on quadratic span
programs: 𝑚 = 𝑂(𝐶) [GGPR13]

Require large fields, but can be
adapted to operate over small fields.

[See paper for details.]

Linear PCPs (LPCPs) [IKO07]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

𝜋 ∈ 𝔽𝑚

𝑞 ∈ 𝔽𝑚

𝑞, 𝜋 ∈ 𝔽

verifier

Oftentimes, verifier is oblivious:
the queries 𝑞 do not depend on

the statement 𝑥

Linear PCPs (LPCPs) [IKO07]

Equivalent view (if verifier is oblivious):

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯𝑄 = ∈ 𝔽𝑚×𝑘

𝜋 ∈ 𝔽𝑚

𝑄 ∈ 𝔽𝑚×𝑘

𝑄𝑇𝜋 ∈ 𝔽𝑘

verifier pack all queries into
single matrix

From Linear PCPs to Preprocessing SNARGs [BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝜋 ∈ 𝔽𝑚 and
computes 𝑄T𝜋

𝑄 = Two problems:
• Malicious prover can choose 𝜋 based

on queries
• Malicious prover can apply different 𝜋

to the different columns of 𝑄

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝜋 ∈ 𝔽𝑚 and
computes 𝑄T𝜋

𝑄 = Two problems:
• Malicious prover can choose 𝜋 based

on queries
• Malicious prover can apply different 𝜋

to the different columns of 𝑄

From Linear PCPs to Preprocessing SNARGs [BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝜋 ∈ 𝔽𝑚 and
computes 𝑄T𝜋

𝑄 =
Step 1: Encrypt elements of 𝑄 using
additively homomorphic encryption scheme
• Prover homomorphically computes 𝑄𝑇𝜋
• Verifier decrypts encrypted response

vector and performs LPCP verification

From Linear PCPs to Preprocessing SNARGs [BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝜋 ∈ 𝔽𝑚 and
computes 𝑄T𝜋

𝑄 = Two problems:
• Malicious prover can choose 𝜋 based

on queries
• Malicious prover can apply different 𝜋

to the different columns of 𝑄

From Linear PCPs to Preprocessing SNARGs [BCIOP13]

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝜋 ∈ 𝔽𝑚 and
computes 𝑄T𝜋

𝑄 =
Step 2: Conjecture that the encryption scheme
only supports a limited subset of homomorphic
operations (linear-only vector encryption)

Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

plaintext space is a
vector space

Linear-Only Vector Encryption

⋮

plaintext space is a
vector space

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

𝑖∈[𝑛]

𝛼𝑖𝑣𝑖 ∈ 𝔽𝑘

encryption scheme is
semantically-secure and
additively homomorphic

Linear-Only Vector Encryption

⋮

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

ct

For all adversaries, there is an efficient extractor such that if ct is valid, then
the extractor is able to produce a vector of coefficients 𝛼1, … , 𝛼𝑚 ∈ 𝔽𝑚

and 𝑏 ∈ 𝔽𝑘 such that Decrypt sk, ct = 𝑖∈[𝑛] 𝛼𝑖𝑣𝑖 + 𝑏

Weaker property also suffices. [See paper for details.]

𝛼1, … , 𝛼𝑚 ∈ 𝔽, 𝑏 ∈ 𝔽𝑘

adversary

extractor

Linear-Only Vector Encryption

⋮

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

ct

For all adversaries, there is an efficient extractor such that if ct is valid, then
the extractor is able to produce a vector of coefficients 𝛼1, … , 𝛼𝑚 ∈ 𝔽𝑚

and 𝑏 ∈ 𝔽𝑘 such that Decrypt sk, ct = 𝑖∈[𝑛] 𝛼𝑖𝑣𝑖 + 𝑏

Weaker property also suffices. [See paper for details.]

𝛼1, … , 𝛼𝑚 ∈ 𝔽, 𝑏 ∈ 𝔽𝑘

adversary

extractor

extractor can “explain” the
ciphertexts as an affine

function of its inputs

From Linear PCPs to Preprocessing SNARGs

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝜋 ∈ 𝔽𝑚 and
computes 𝑄T𝜋

𝑄 =
Step 2: Conjecture that the encryption scheme
only supports a limited subset of homomorphic
operations (linear-only vector encryption)

Linear-only vector encryption ⇒ all prover
strategies can be explained by (𝜋, 𝑏) as 𝑄𝑇𝜋 + 𝑏

encrypt
row by row

[See paper for full details.]

Comparison with [BCIOP13]

Preprocessing SNARGs from [BCIOP13]:

linear PCP
2-round linear

interactive proof
preprocessing SNARG

introduce additional consistency
check to force prover to apply

consistent linear function –
soundness only over a large field

relies on weaker cryptographic
assumption: linear-only

encryption rather than linear-
only vector encryption

Comparison with [BCIOP13]

Preprocessing SNARGs from [BCIOP13]:

linear PCP
2-round linear

interactive proof
preprocessing SNARG

Our construction

linear PCP preprocessing SNARG

Comparison with [BCIOP13]

Preprocessing SNARGs from [BCIOP13]:

linear PCP
2-round linear

interactive proof
preprocessing SNARG

Our construction

linear PCP preprocessing SNARG

stronger cryptographic assumption,
but enables new constructions with

better efficiency

Instantiating Linear-Only Vector Encryption

Conjecture: Regev-based encryption (specifically, the [PVW08] variant)
is a linear-only vector encryption scheme.

PVW decryption (for plaintexts with dimension 𝑘):

𝑆

𝑆 ∈ ℤ𝑞
𝑘×(𝑛+𝑘)

𝑐

𝑐 ∈ ℤ𝑞
𝑛+𝑘

round

Each row of 𝑆 can be is an independent Regev secret key

Concrete Instantiations

Using QSP-based linear PCP [GGPR12] and PVW encryption scheme:
• Prover complexity: 𝑂(𝐶) homomorphic operations ⇒ 𝑂 𝜆 𝐶
• Proof size: single ciphertext ⇒ 𝑂(𝜆) bits

• Soundness error: 2−𝜆-soundness against 2𝜆-bounded provers

Matches existing pairing-based constructions [GGPR12, BCIOP13]

Concrete Instantiations

Using QSP-based linear PCP [GGPR12] and PVW encryption scheme:
• Prover complexity: 𝑂(𝐶) homomorphic operations ⇒ 𝑂 𝜆 𝐶
• Proof size: single ciphertext ⇒ 𝑂(𝜆) bits

• Soundness error: 2−𝜆-soundness against 2𝜆-bounded provers

Matches existing pairing-based constructions [GGPR12, BCIOP13]
Direct instantiation of BCIOP compiler with
Regev encryption yields 𝑂(𝜆2 𝐶) prover

complexity and 𝑂(𝜆2) proof size to achieve
same soundness guarantees

Towards Quasi-Optimality

Consider vector encryption where plaintext space is a ring 𝑅:
𝑅 ≅ 𝔽𝑝 × 𝔽𝑝 × ⋯× 𝔽𝑝

splits into 𝜆 copies of 𝔽𝑝

𝑣 ∈ 𝑅𝑘

𝑣11

𝑣21

⋮

𝑣𝜆1

𝑣12

𝑣22

⋮

𝑣𝜆2

𝑣13

𝑣23

⋮

𝑣𝜆3

⋯

⋯

⋱

⋯

𝑣1𝑘

𝑣2𝑘

⋮

𝑣𝜆𝑘

CRT decomposition

Can embed 𝜆 sets of linear PCP queries in
the slots of the CRT decomposition ⇒ batch

proof verification

Towards Quasi-Optimality

Consider vector encryption where plaintext space is a ring 𝑅:
𝑅 ≅ 𝔽𝑝 × 𝔽𝑝 × ⋯× 𝔽𝑝

splits into 𝜆 copies of 𝔽𝑝

1. For circuit satisfiability, take circuit 𝐶 and
reduce it to checking 𝜆 formulas each of size
𝑂(𝐶 𝜆).

2. Each formula can be verified by a LPCP of
length 𝑂(𝐶 𝜆).

3. Verify 𝜆 proofs in parallel using batching.

𝑣 ∈ 𝑅𝑘

𝑣11

𝑣21

⋮

𝑣𝜆1

𝑣12

𝑣22

⋮

𝑣𝜆2

𝑣13

𝑣23

⋮

𝑣𝜆3

⋯

⋯

⋱

⋯

𝑣1𝑘

𝑣2𝑘

⋮

𝑣𝜆𝑘

CRT decomposition [See paper for full details.]

Towards Quasi-Optimality

Consider vector encryption where plaintext space is a ring 𝑅:
𝑅 ≅ 𝔽𝑝 × 𝔽𝑝 × ⋯× 𝔽𝑝

splits into 𝜆 copies of 𝔽𝑝

1. For circuit satisfiability, take circuit 𝐶 and
reduce it to checking 𝜆 formulas each of size
𝑂(𝐶 𝜆).

2. Each formula can be verified by a LPCP of
length 𝑂(𝐶 𝜆).

3. Verify 𝜆 proofs in parallel using batching.

𝑣 ∈ 𝑅𝑘

𝑣11

𝑣21

⋮

𝑣𝜆1

𝑣12

𝑣22

⋮

𝑣𝜆2

𝑣13

𝑣23

⋮

𝑣𝜆3

⋯

⋯

⋱

⋯

𝑣1𝑘

𝑣2𝑘

⋮

𝑣𝜆𝑘

CRT decomposition

Using Regev-style encryption over rings,
prover complexity is now 𝑂(𝐶) and

proof size is still 𝑂(𝜆) – the first quasi-
optimal SNARG from any assumption

[See paper for full details.]

Concrete Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

Public vs.
Designated

CS Proofs [Mic00]

Groth [Gro10]

GGPR [GGPR12]

BCIOP (Pairing) [BCIOP13]

BCIOP (LWE) [BCIOP13]

Our Construction (LWE)

Our Construction (RLWE)

Public

Public

Public

Designated

Designated

 𝑂(𝐶 + 𝜆2)

 𝑂(𝐶 2𝜆 + 𝐶 𝜆2)

 𝑂(𝐶 𝜆)

 𝑂(𝐶 𝜆)

 𝑂(𝐶 𝜆)

 𝑂(𝐶 𝜆)

 𝑂(𝐶)

 𝑂(𝜆2)

 𝑂(𝜆)

 𝑂(𝜆)

 𝑂(𝜆)

 𝑂(𝜆)

 𝑂(𝜆)

 𝑂(𝜆)

Public

Designated

Random Oracle

Knowledge of
Exponent

Linear-Only
Encryption

Linear-Only
Vector Encryption

Only negl 𝜆 -soundness (instead of 2−𝜆-soundness) against 2𝜆-bounded provers

Concrete Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

Public vs.
Designated

CS Proofs [Mic00]

Groth [Gro10]

GGPR [GGPR12]

BCIOP (Pairing) [BCIOP13]

BCIOP (LWE) [BCIOP13]

Our Construction (LWE)

Our Construction (RLWE)

Public

Public

Public

Designated

Designated

 𝑂(𝐶 + 𝜆2)

 𝑂(𝐶 2𝜆 + 𝐶 𝜆2)

 𝑂(𝐶 𝜆)

 𝑂(𝐶 𝜆)

 𝑂(𝐶 𝜆)

 𝑂(𝐶 𝜆)

 𝑂(𝐶)

 𝑂(𝜆2)

 𝑂(𝜆)

 𝑂(𝜆)

 𝑂(𝜆)

 𝑂(𝜆)

 𝑂(𝜆)

 𝑂(𝜆)

Public

Designated

Random Oracle

Knowledge of
Exponent

Linear-Only
Encryption

Linear-Only
Vector Encryption

Post-quantum resistant!

Back to Obfuscation…

For bootstrapping obfuscation…
• Obfuscate FHE decryption and SNARG verification
• Degree of multilinearity: ≈ 212

• Number of encodings: ≈ 244 Still infeasible, but much, much
better than 2100 for previous

black-box constructions!

Looking into obfuscation gave us new insights into constructing better
SNARGs:

• More direct framework of building SNARGs from linear PCPs
• First quasi-succinct construction from standard lattices
• First quasi-optimal construction from ideal lattices

Many optimizations. [See paper for details.]

Open Problems

Publicly-verifiable SNARGs from lattice-based assumptions?

Stronger notion of quasi-optimality (achieve 2−𝜆 soundness
rather than negl(𝜆) soundness)?

Concrete efficiency of new lattice-based SNARGs?

Thank you!
http://eprint.iacr.org/2017/240

