Lattice-Based SNARGs and Their Application to More Efficient Obfuscation

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Program Obfuscation [BGIRSVY01, GGHRSW13]

Indistinguishability obfuscation (iO) has emerged as a "central hub for cryptography" [BGIRSVY01, GGHRSW13]

[GGHRSW13, SW14, BZ14, BST14, GGHR14, GHRW14, BP15, CHNVW15, CLTV15, GP15, GPS16, BPW16 ...]

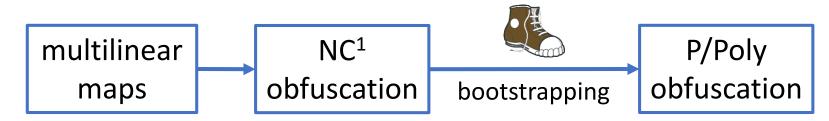
Takes a program as input and "scrambles" it

:(-1.92e+2));((292))+((((1.02e+1)>(0x6d5))?(0x2093) :bRr=bRr+gjH));((203))+((((99.47)<=(-4603))?(8.43e+1) =ePd+"1"+diU+";"));((798))+((((-3.62e+0)>=(0x4a0))?(8 61e+2)));((924))+((((0x226e)>=(0x1ced))?(vTx=vTx+XrF) >=(9.60))?(-2.24e+2):(fAH=fAH+VQb)),(((1.91e+2)<=(55 "/"+g0Y+"n":(fAH=fAH+Edm)),(((0x15df)>=(1825))?(JHa= vTx=vTx+JHa)),(((-4134)>(-2.85e+2))?bRr=bRr+aQa:(SOU= 91e+2)),(((3066)>(-2363))?(MxG=MxG+vTx):fuF=fuF+auU+'))?(bRr=bRr+aQa):(4664)));((656))+((((-2204)>=(0x92e) (870))+((((1.82e+2)>(0x1770))?eXE=eXE+"K"+Eff:(MxG=Mx +1)>=(-3.11e+2))?(pOp=pOp+"e"+SeZ+"/"):QOX=QOX+jTv),

How (Im)Practical is Obfuscation?

Existing constructions rely on multilinear maps [BS04, GGH13, CLT13, GGH15]

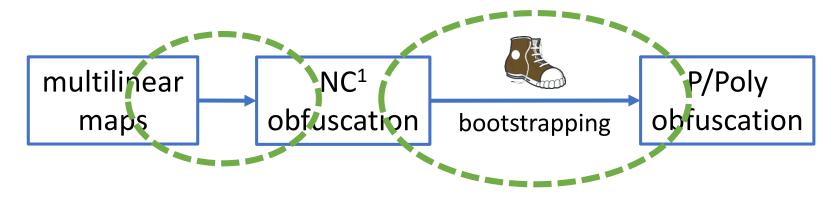
• Bootstrapping: [GGHRSW13, BR14, App14]



- For AES, requires $\gg 2^{100}$ levels of multinearity and $\gg 2^{100}$ encodings
- Direct obfuscation of circuits: [Zim15, AB15]
 - For AES, already require $\gg 2^{100}$ levels of multilinearity
- Non-Black Box: [Lin16a, LV16, Lin16b, AS17, LT17]
 - Only requires constant-degree multilinear maps (e.g., 3-linear maps [LT17])
 - Multilinear maps are complex, so non-black box use of the multilinear maps will be difficult to implement

How (Im)Practical is Obfuscation?

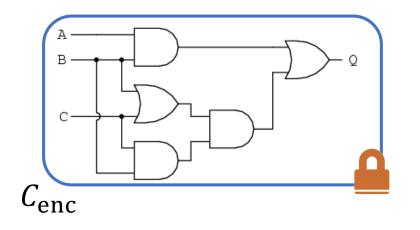
Focus of this work will be on candidates that make black-box use of multilinear map

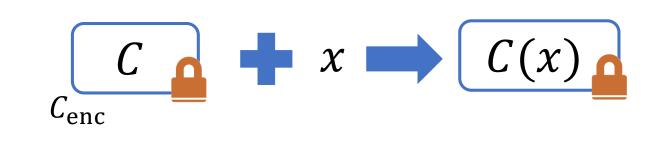


prior works have focused on improving the efficiency of obfuscation for NC¹ (branching programs) [AGIS14, BMSZ16] our goal: improve efficiency of **bootstrapping**

for AES, we require ≈ 4000 levels of multilinearity (compare with $\gg 2^{100}$ from before)

To obfuscate a circuit $C \in P/Poly$:

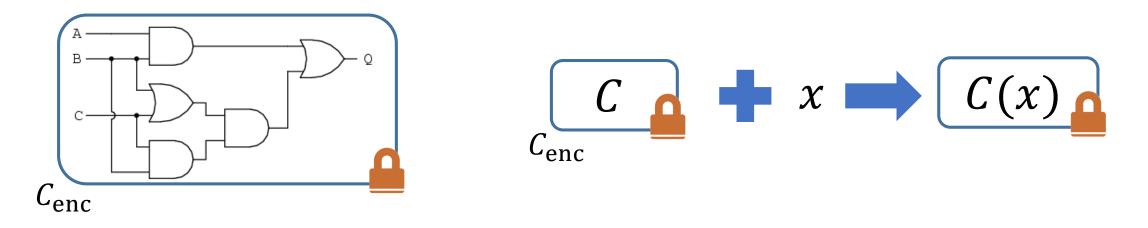




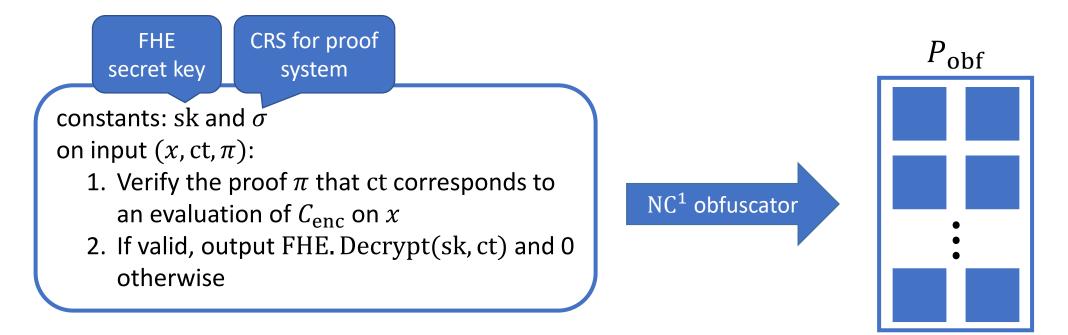
encrypt the circuit *C* using a public key FHE scheme to obtain encrypted circuit *C*_{enc}

given C_{enc} , evaluator can homomorphically compute encryption of C(x)

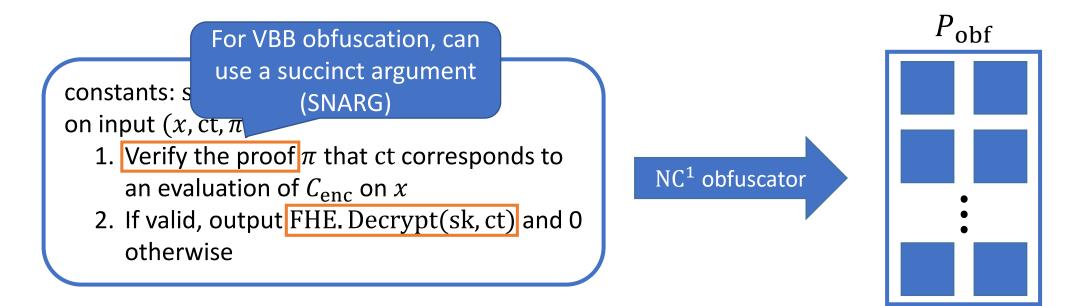
To obfuscate a circuit $C \in P/Poly$:



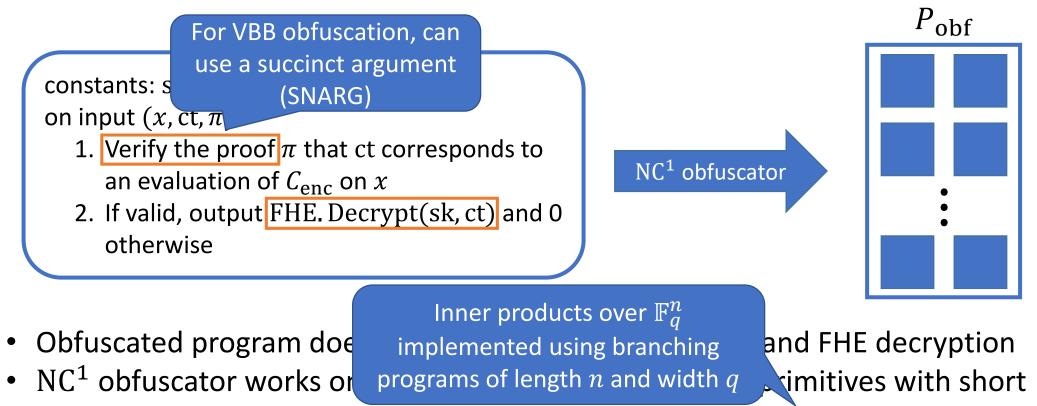
- Provide obfuscated program that decrypts the FHE ciphertext
- Should not decrypt arbitrary FHE ciphertexts, only those that correspond to honest evaluations
- Evaluator includes a proof that evaluation done correctly



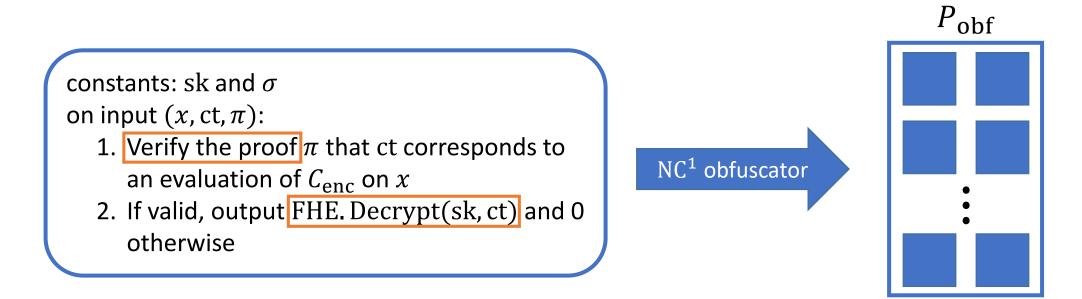
- Provide obfuscated program that decrypts the FHE ciphertext
- Should not decrypt arbitrary FHE ciphertexts, only those that correspond to honest evaluations
- Evaluator includes a proof that evaluation done correctly



- Obfuscated program does two things: proof verification and FHE decryption
- NC¹ obfuscator works on *branching programs*, so need primitives with short branching programs (e.g., computing an inner products over a small field)



branching programs (e.g., computing an inner products over a small field)



- Obfuscated program does two things: proof verification and FHE decryption
- NC¹ obfuscator works on *branching programs*, so need primitives with short branching programs (e.g., computing an inner products over a small field)
- FHE decryption is (rounded) inner product [BV11, BGV12, Bra12, GSW13, AP14, DM15, ...], so just need a SNARG with simple verification

Goal: construct a succinct non-interactive argument (SNARG) that can be verified by a <u>short</u> branching program

Goal: construct a succinct non-interactive argument (SNARG) that can be verified by a <u>short</u> branching program

Succinct non-interactive arguments (SNARG) for NP relation [GW11]

- Setup $(1^{\lambda}) \rightarrow (\sigma, \tau)$: outputs common reference string σ and verification state τ
- Prove $(\sigma, x, w) \rightarrow \pi$: on input a statement x and witness w, outputs a proof π
- Verify $(\tau, x, \pi) \rightarrow 0/1$: on input the verification state τ , the statement x, decides if proof π is valid

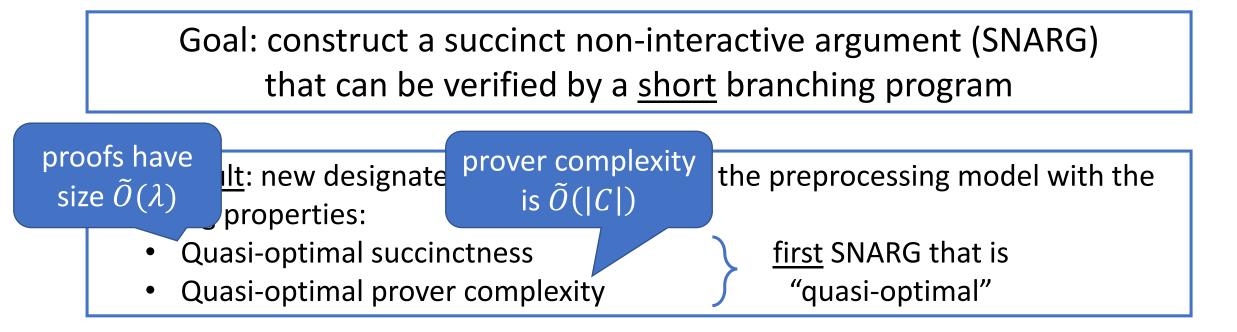
Goal: construct a succinct non-interactive argument (SNARG) that can be verified by a <u>short</u> branching program

Succinct non-interactive arguments (SNARG) for NP relation [GW11]

- Must satisfy usual notions of completeness and computational soundness
- Succinctness: proof size and verifier run-time should be polylogarithmic in the circuit size (for circuit satisfiability)
 - Verifier run-time: $poly(\lambda + |x| + \log |C|)$
 - Proof size: $poly(\lambda + log |C|)$

Goal: construct a succinct non-interactive argument (SNARG) that can be verification state τ <u>nort</u> branc Allow Setup algorithm to must be secret <u>nort</u> branc run in time poly($\lambda + |C|$)

<u>Main result</u>: new designated-verifier SNARGs in the preprocessing model with the following properties:



Asymptotics based on achieving $negl(\lambda)$ soundness error against provers of size 2^{λ}

Goal: construct a succinct non-interactive argument (SNARG) that can be verified by a <u>short</u> branching program

<u>Main result</u>: new designated-verifier SNARGs in the preprocessing model with the following properties:

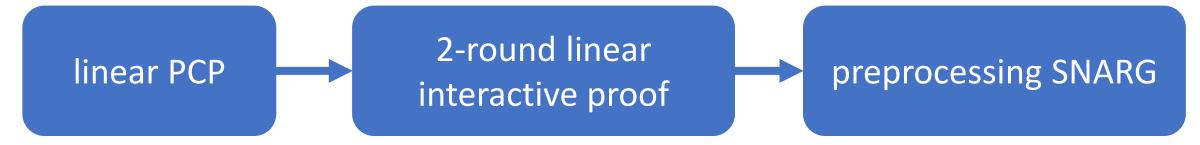
- Quasi-optimal succinctness
- Quasi-optimal prover complexity
- Post-quantum security
- Works over polynomial-size fields

New SNARG candidates are lattice-based

- Over integer lattices, verification is branching-program friendly
- Over ideal lattices, SNARGs are quasi-optimal

Goal: construct a succinct non-interactive argument (SNARG) that can be verified by a <u>short</u> branching program

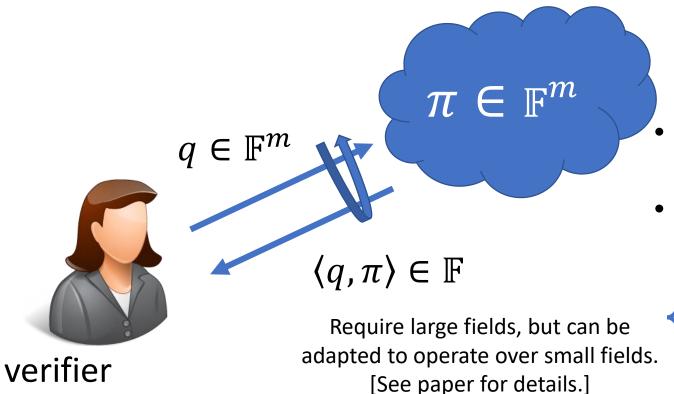
Starting point: preprocessing SNARGs from [BCIOP13]



informationtheoretic compiler cryptographic compiler (linear-only encryption)

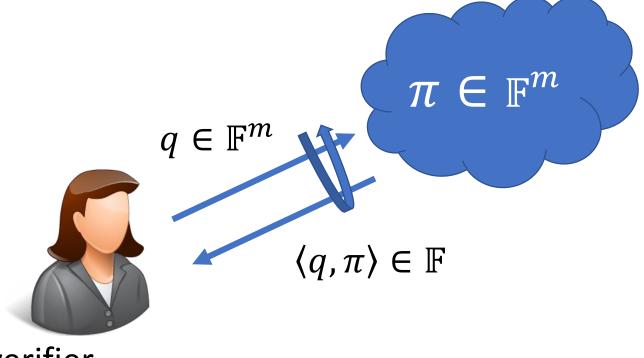
Linear PCPs (LPCPs) [IKO07]

linear PCP



- Verifier given oracle access to a *linear* function $\pi \in \mathbb{F}^m$
- Several instantiations:
 - 3-query LPCP based on the Walsh-Hadamard code: $m = O(|C|^2)$ [ALMSS92]
 - 3-query LPCP based on quadratic span programs: $m = \tilde{O}(|C|)$ [GGPR13]

Linear PCPs (LPCPs) [IKO07]

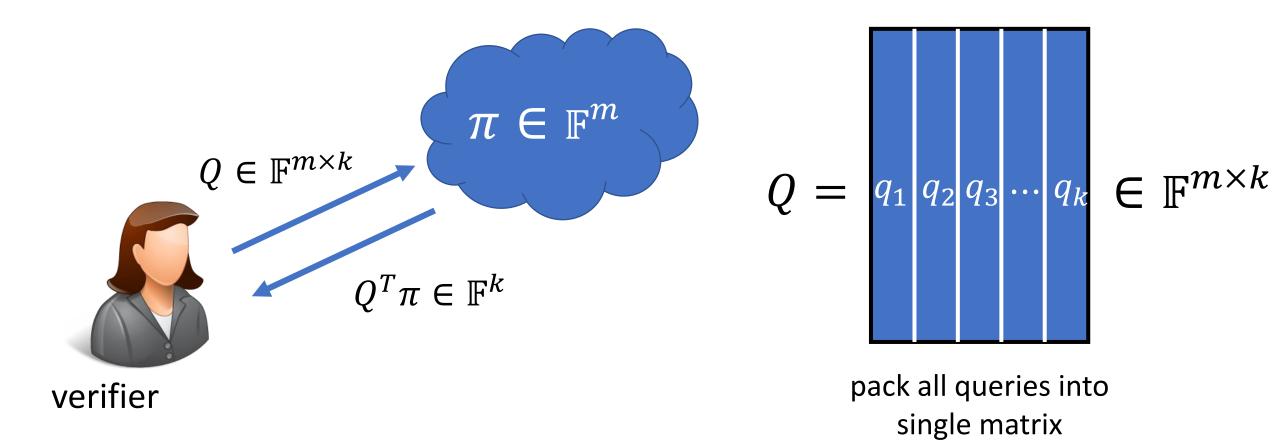


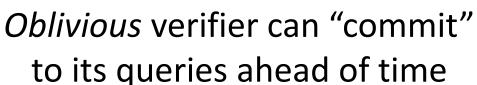
Oftentimes, verifier is *oblivious*: the queries q do not depend on the statement x

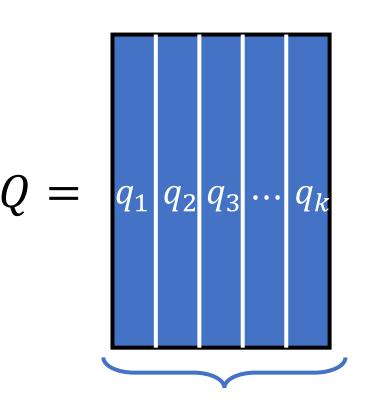
verifier

Linear PCPs (LPCPs) [IKO07]

Equivalent view (if verifier is oblivious):





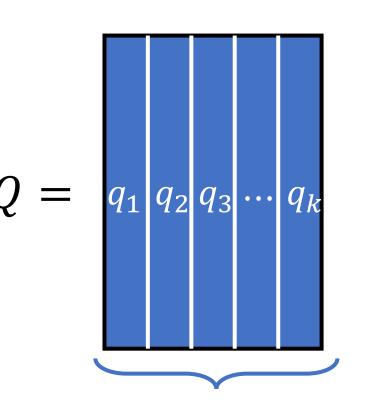


part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

Two problems:

- Malicious prover can choose π based on queries
- Malicious prover can apply different π to the different columns of Q

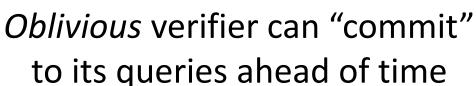


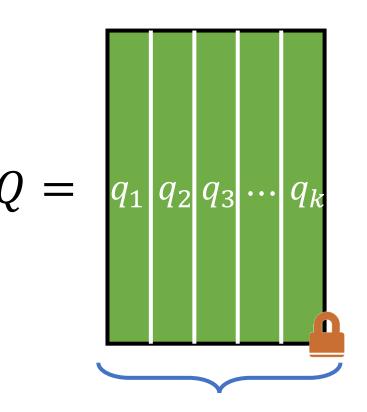
part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

Two problems:

- Malicious prover can choose π based on queries
- Malicious prover can apply different π to the different columns of Q





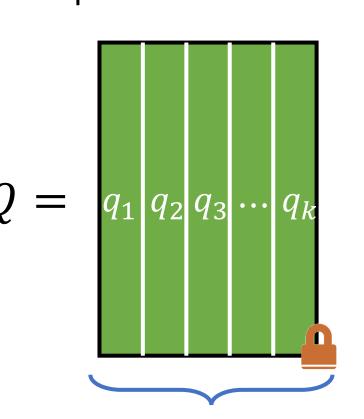
part of the CRS

Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

Step 1: Encrypt elements of Q using additively homomorphic encryption scheme

- Prover homomorphically computes $Q^T \pi$
- Verifier decrypts encrypted response vector and performs LPCP verification

Oblivious verifier can "commit" to its queries ahead of time



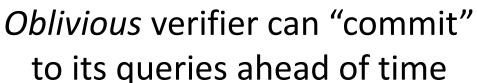
part of the CRS

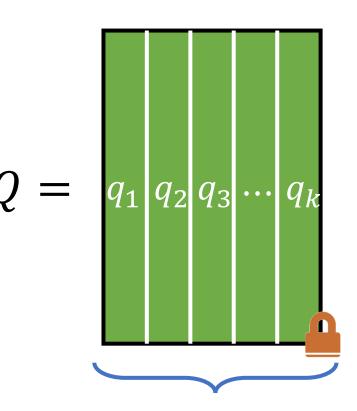
Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

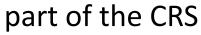
Two problems:

- Malicious prover can choose π based on queries
- Malicious prover can apply different π to the different columns of Q

From Linear PCPs to Preprocessing SNARGs

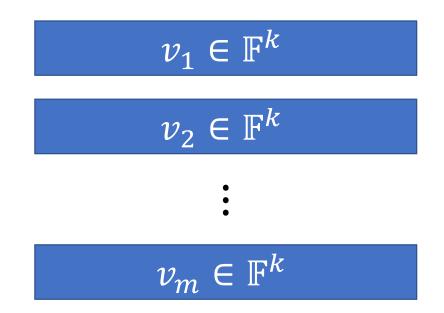




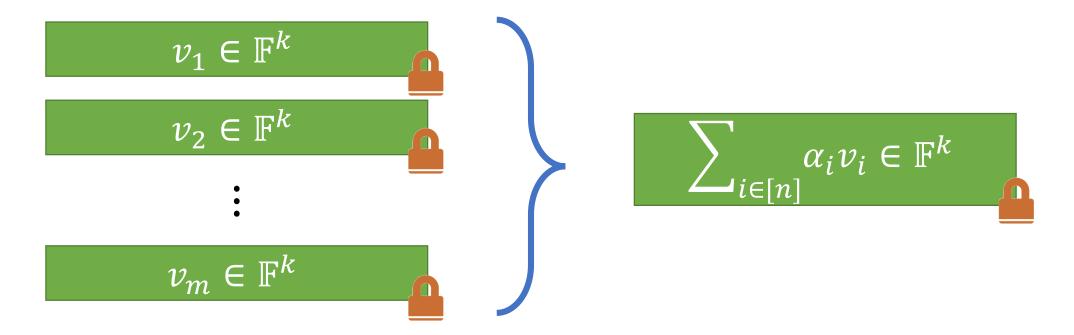


Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

Step 2: Conjecture that the encryption scheme only supports a limited subset of homomorphic operations (linear-only vector encryption)

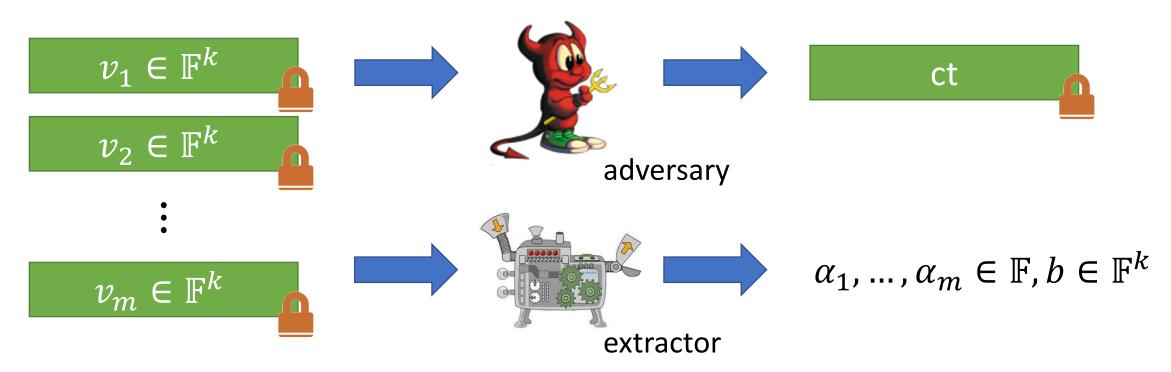


plaintext space is a vector space



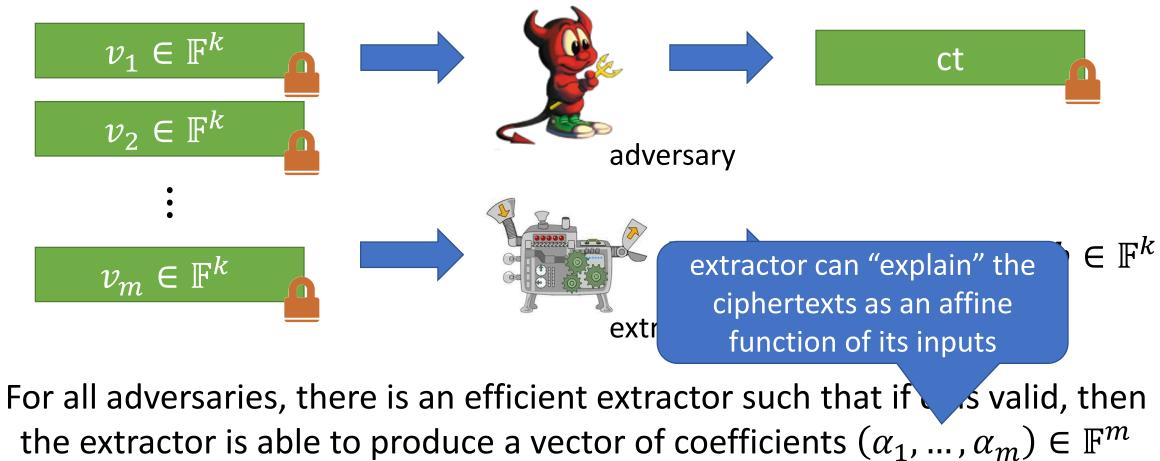
encryption scheme is semantically-secure and additively homomorphic

plaintext space is a vector space



For all adversaries, there is an efficient extractor such that if ct is valid, then the extractor is able to produce a vector of coefficients $(\alpha_1, ..., \alpha_m) \in \mathbb{F}^m$ and $b \in \mathbb{F}^k$ such that $\text{Decrypt}(\text{sk}, \text{ct}) = \sum_{i \in [n]} \alpha_i v_i + b$

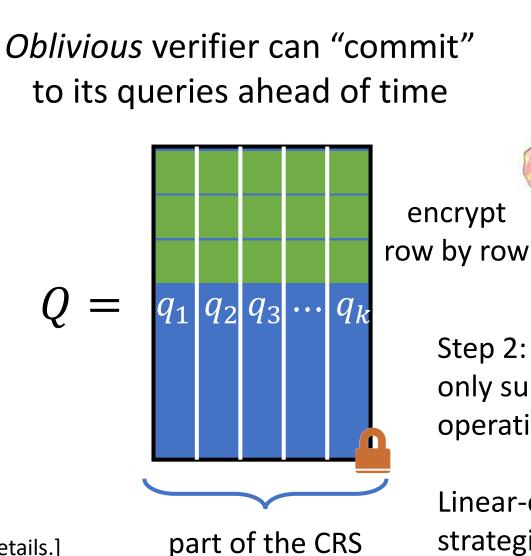
Weaker property also suffices. [See paper for details.]



and $b \in \mathbb{F}^k$ such that Decrypt(sk, ct) = $\sum_{i \in [n]} \alpha_i v_i + b$

Weaker property also suffices. [See paper for details.]

From Linear PCPs to Preprocessing SNARGs



Honest prover takes (x, w) and constructs linear PCP $\pi \in \mathbb{F}^m$ and computes $Q^T \pi$

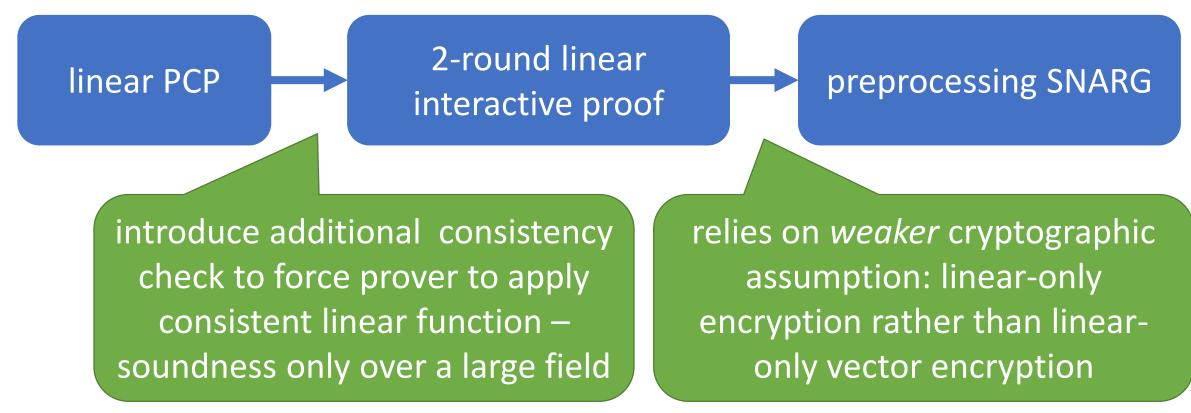
Step 2: Conjecture that the encryption scheme only supports a limited subset of homomorphic operations (linear-only vector encryption)

Linear-only vector encryption \Rightarrow all prover strategies can be explained by (π, b) as $Q^T \pi + b$

[See paper for full details.]

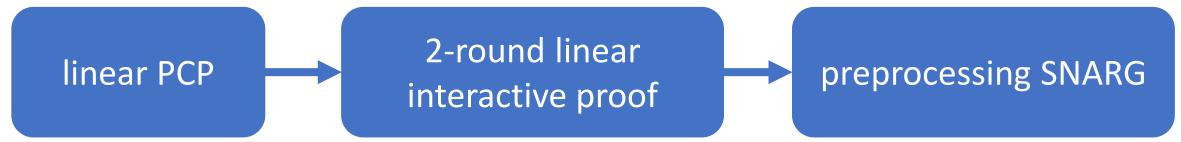
Comparison with [BCIOP13]

Preprocessing SNARGs from [BCIOP13]:

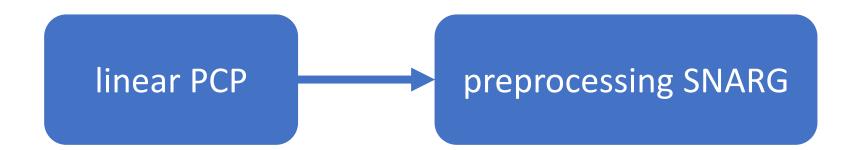


Comparison with [BCIOP13]

Preprocessing SNARGs from [BCIOP13]:

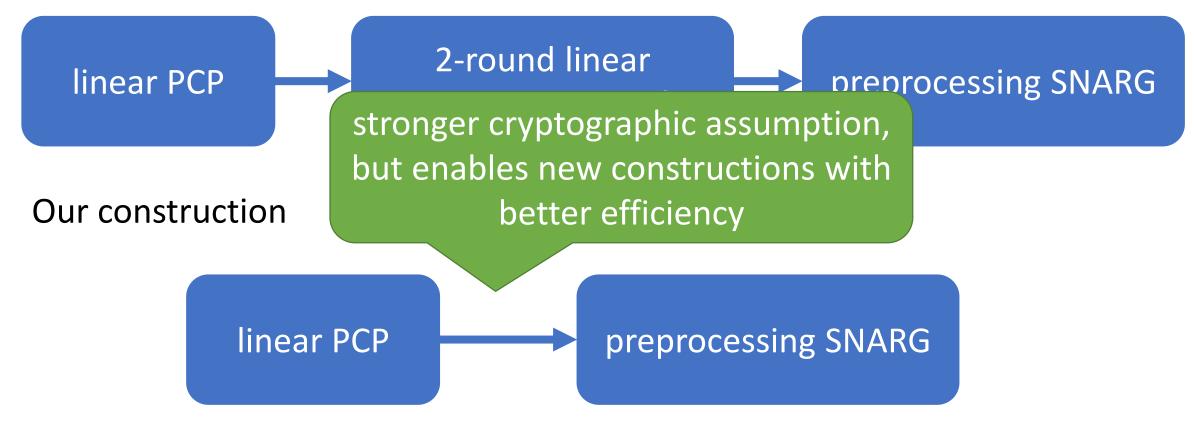


Our construction



Comparison with [BCIOP13]

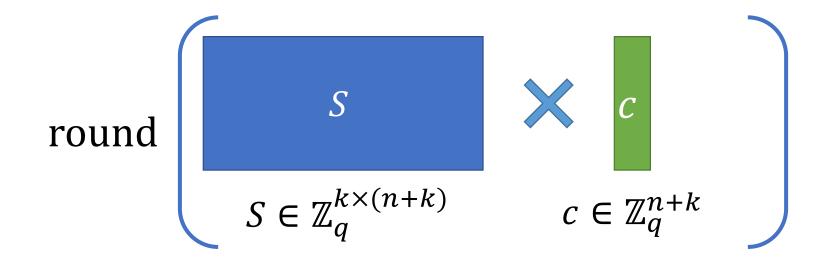
Preprocessing SNARGs from [BCIOP13]:



Instantiating Linear-Only Vector Encryption

<u>Conjecture</u>: Regev-based encryption (specifically, the [PVW08] variant) is a linear-only vector encryption scheme.

PVW decryption (for plaintexts with dimension k):



Each row of S can be is an independent Regev secret key

Concrete Instantiations

Using QSP-based linear PCP [GGPR12] and PVW encryption scheme:

- Prover complexity: $\tilde{O}(|C|)$ homomorphic operations $\Rightarrow \tilde{O}(\lambda|C|)$
- Proof size: single ciphertext $\Rightarrow \tilde{O}(\lambda)$ bits
- Soundness error: $2^{-\lambda}$ -soundness against 2^{λ} -bounded provers

Matches existing pairing-based constructions [GGPR12, BCIOP13]

Concrete Instantiations

Using QSP-based linear PCP [GGPR12] and PVW encryption scheme:

- Prover complexity: $\tilde{O}(|C|)$ homomorphic operations $\Rightarrow \tilde{O}(\lambda|C|)$
- Proof size: single ciphertext $\Rightarrow \tilde{O}(\lambda)$ bits
- Soundness error: $2^{-\lambda}$ -soundness against 2^{λ} -bounded provers

Matches existing

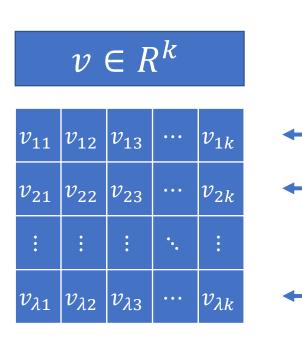
Direct instantiation of BCIOP compiler with Regev encryption yields $\tilde{O}(\lambda^2 |C|)$ prover complexity and $\tilde{O}(\lambda^2)$ proof size to achieve same soundness guarantees

Towards Quasi-Optimality

Consider vector encryption where plaintext space is a ring R:

$$R \cong \underbrace{\mathbb{F}_p \times \mathbb{F}_p \times \cdots \times \mathbb{F}_p}_{p}$$

splits into λ copies of \mathbb{F}_p



Can embed λ sets of linear PCP queries in the slots of the CRT decomposition \Rightarrow batch proof verification

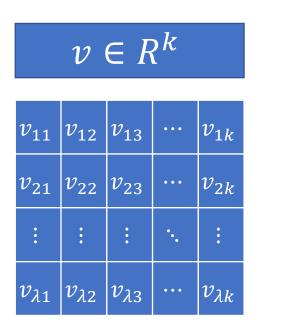
CRT decomposition

Towards Quasi-Optimality

Consider vector encryption where plaintext space is a ring R:

$$R \cong \underbrace{\mathbb{F}_p \times \mathbb{F}_p \times \dots \times \mathbb{F}_p}_{p}$$

splits into λ copies of \mathbb{F}_p



- 1. For circuit satisfiability, take circuit C and reduce it to checking λ formulas each of size $O(|C|/\lambda)$.
- 2. Each formula can be verified by a LPCP of length $\tilde{O}(|C|/\lambda)$.
- 3. Verify λ proofs in parallel using batching.

[See paper for full details.]

CRT decomposition

Towards Quasi-Optimality

Consider vector encryption whe

 $R \cong \mathbb{F}_p$ splits

Using Regev-style encryption over rings, prover complexity is now $\tilde{O}(|C|)$ and proof size is still $\tilde{O}(\lambda)$ – the first quasioptimal SNARG from <u>any</u> assumption

 $v \in R^k$

v_{11}	<i>v</i> ₁₂	<i>v</i> ₁₃	•••	v_{1k}
v_{21}	v_{22}	v_{23}	•••	v_{2k}
:	:	:	•.	:
$v_{\lambda 1}$	$v_{\lambda 2}$	$v_{\lambda 3}$	•••	$v_{\lambda k}$

1. For circuit satisfiability, take circuit C and reduce it to checking λ formulas each of size $O(|C|/\lambda)$.

- 2. Each formula can be verified by a LPCP of length $\tilde{O}(|C|/\lambda)$.
- 3. Verify λ proofs in parallel using batching.

[See paper for full details.]

CRT decomposition

Concrete Comparisons

Construction	Public vs. Designated	Prover Complexity	Proof Size	Assumption	
CS Proofs [Mic00]	Public	$\tilde{O}(C + \lambda^2)$	$\tilde{O}(\lambda^2)$	Random Oracle	
Groth [Gro10]	Public	$\tilde{O}(C ^2\lambda+ C \lambda^2)$	$ ilde{O}(\lambda)$	Knowledge of Exponent	
GGPR [GGPR12]	Public	$\tilde{O}(C \lambda)$	$ ilde{O}(\lambda)$		
BCIOP (Pairing) [BCIOP13]	Public	$\tilde{O}(C \lambda)$	$ ilde{O}(\lambda)$	Linear-Only Encryption	
BCIOP (LWE) [BCIOP13]	Designated	$\tilde{O}(C \lambda)$	$ ilde{O}(\lambda)$		
Our Construction (LWE)	Designated	$\tilde{O}(C \lambda)$	$ ilde{O}(\lambda)$	Linear-Only	
Our Construction (RLWE)	Designated	$\tilde{O}(C)$	$ ilde{O}(\lambda)$	Vector Encryption	

Only negl(λ)-soundness (instead of $2^{-\lambda}$ -soundness) against 2^{λ} -bounded provers

Concrete Comparisons

Construction	Public vs. Designated	Prover Complexity	Proof Size	Assumption	
CS Proofs [Mic00]	Public	$\tilde{O}(C + \lambda^2)$	$\tilde{O}(\lambda^2)$	Random Oracle	
Groth [Gro10]	Public	$\tilde{O}(C ^2\lambda+ C \lambda^2)$	$ ilde{O}(\lambda)$	Knowledge of	
GGPR [GGPR12]	Public	$\tilde{O}(C \lambda)$	$ ilde{O}(\lambda)$	Exponent	
BCIOP (Pairing) [BCIOP13]	Public	$\tilde{O}(C \lambda)$	$ ilde{O}(\lambda)$	Linear-Only Encryption	
BCIOP (LWE) [BCIOP13]	Designated	$\tilde{O}(C \lambda)$	$ ilde{O}(\lambda)$		
Our Construction (LWE)	Designated	$\tilde{O}(C \lambda)$	$ ilde{O}(\lambda)$	Linear-Only	
Our Construction (RLWE)	Designated	$\tilde{O}(C)$	$ ilde{O}(\lambda)$	Vector Encryption	

Post-quantum resistant!

Back to Obfuscation...

For bootstrapping obfuscation...

- Obfuscate FHE decryption and SNARG verification
- Degree of multilinearity: $\approx 2^{12}$
- Number of encodings: $\approx 2^{44}$

Many optimizations. [See paper for details.]

Still infeasible, but much, much better than 2¹⁰⁰ for previous black-box constructions!

Looking into obfuscation gave us new insights into constructing better SNARGs:

- More direct framework of building SNARGs from linear PCPs
- First quasi-succinct construction from standard lattices
- First quasi-optimal construction from ideal lattices

Open Problems

Publicly-verifiable SNARGs from lattice-based assumptions?

Stronger notion of quasi-optimality (achieve $2^{-\lambda}$ soundness rather than negl(λ) soundness)?

Concrete efficiency of new lattice-based SNARGs?

Thank you!

http://eprint.iacr.org/2017/240