Constrained Keys for Invertible Pseudorandom Functions

Dan Boneh, Sam Kim, and <u>David J. Wu</u> Stanford University

Pseudorandom Functions (PRFs) [GGM84]

$$F\colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$$

Constrained PRF: PRF with additional "constrain" functionality

PRF key

Constrained key

Can be used to evaluate at all points $x \in \mathcal{X}$ where C(x) = 1

 $F\colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$

<u>**Correctness</u>**: constrained evaluation at $x \in \mathcal{X}$ where C(x) = 1 yields PRF value at x</u>

Security: PRF value at points $x \in \mathcal{X}$ where C(x) = 0 are indistinguishable from random *given* the constrained key

Many applications:

- Punctured programming paradigm [SW14]
- Identity-based key exchange, broadcast encryption [BW13]

Known constructions:

• Puncturable PRFs from one-way functions [BW13, BGI13, KPTZ13]

Punctured key can be used to evaluate the PRF at all but one point

Known constructions:

- Puncturable PRFs from one-way functions [BW13, BGI13, KPTZ13]
- (Single-key) circuit-constrained PRFs from LWE [BV15]

Can we constrain other cryptographic primitives, such as pseudorandom permutations (PRPs)?

Our Results

Constrained PRPs for many natural classes of constraints *do not exist*

• However, the relaxed notion of a constrained *invertible pseudorandom function* (IPF) do exist

Pseudorandom Permutations (PRPs)

Correctness:

- Forward evaluation when C(x) = 1
- Backward evaluation on points y if y = F(k, x) and C(x) = 1

Constrained PRP Security Constrain $k \stackrel{\mathsf{R}}{\leftarrow} \mathcal{K}$ queries ??? $k_c = \text{Constrain}_c(k)$ $f \stackrel{\mathsf{R}}{\leftarrow} \operatorname{Perm}[\mathcal{X}]$ Evaluation $\boldsymbol{\chi}$ queries F(k, x)Inversion X queries $F^{-1}(k,x)$ **Adversary** Challenger Challenge χ^* queries γ^* Random: $y^* = f(x^*)$ $F\colon \mathcal{K} \times \mathcal{X} \to \mathcal{X}$ Pseudorandom: $y^* = F(k, x^*)$

Constrained PRP Security

Admissibility conditions:

- $C(x^*) = 0$
- No evaluation queries on x^*
- No inversion queries on y^*

Warm-up: constrained PRPs on polynomial-size domains cannot satisfy constrained security

Concretely: evaluate PRP at x and issue challenge query for $x^* \neq x$

- Pseudorandom case: $F(k, x^*) \neq F(k, x)$
- Random case: $f(x^*) = F(k, x)$ with probability $1/|\mathcal{X}|$

Theorem (Informal). Any constrained PRP that allows issuing a constrained key that can evaluate on a non-negligible fraction of the domain is insecure.

Consider what happens when constrained key is used to invert

If y is the image of an allowed point, then $F(k_C, F^{-1}(k_C, y)) = y$

Consider what happens when constrained key is used to invert

Consider what happens when constrained key is used to invert

Consider what happens when constrained key is used to invert

If y is not the image of an allowed point, then either

 $C(F^{-1}(k_C, y)) = 0 \text{ or } F(k_C, F^{-1}(k_C, y)) \neq y$

Case 2: preimage is inside allowable set

Theorem (Informal). Any constrained PRP that allows issuing a constrained key that can evaluate on a non-negligible fraction of the domain is insecure.

Relaxing the Notion

Puncturable PRPs

do not exist.

Theorem (Informal). Any constrained PRP that allows issuing a constrained key that can evaluate on a <u>non-negligible fraction</u> of the domain is insecure.

Open Question: Do prefix-constrained PRPs (where prefix is $\omega(\log \lambda)$ bits) exist?

Relaxing the Notion

Theorem (Informal). Any constrained PRP that allows issuing a constrained key that can evaluate on a <u>non-negligible fraction</u> of the domain is insecure.

Relaxation: Allow range to be *much larger* than the domain

An IPF $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ satisfies the following properties:

- $F(k,\cdot)$ is injective for all $k \in \mathcal{K}$
- There exists an efficiently computable inverse $F^{-1}: \mathcal{K} \times \mathcal{Y} \to \mathcal{X} \cup \{\bot\}$
- $F^{-1}(k, F(k, x)) = x$ for all $x \in \mathcal{X}$
- $F^{-1}(k, y) = \bot$ for all y not in the range of $F(k, \cdot)$

Invertible Pseudorandom Functions (IPFs)

IPFs are closely related to the notion of <u>deterministic</u> authenticated encryption (DAE) [RSO6]. IPFs can be used to build DAE, so our constrained IPF constructions imply constrained DAE.

An IPF $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ satisfies the following properties:

- $F(k,\cdot)$ is injective for all $k \in \mathcal{K}$
- There exists an efficiently computable inverse $F^{-1}: \mathcal{K} \times \mathcal{Y} \to \mathcal{X} \cup \{\bot\}$
- $F^{-1}(k, F(k, x)) = x$ for all $x \in \mathcal{X}$
- $F^{-1}(k, y) = \bot$ for all y not in the range of $F(k, \cdot)$

Invertible Pseudorandom Functions (IPFs)

Invertible Pseudorandom Functions (IPFs)

When $\mathcal{X} = \mathcal{Y}$, security definition is equivalent to that for a strong PRP

Constrained IPFs

Direct generalization of constrained PRFs

IPF key

Constrained key

Can be used to evaluate at all points $x \in \mathcal{X}$ where C(x) = 1 and invert at all points y whenever y = F(k, x) for some x where C(x) = 1

 $F\colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$

Starting point: DAE construction called synthetic IV (SIV) [RS06]

Can also be viewed as an unbalanced Feistel network (with one block set to all 0s)

Verify $y_1 = PRF(k_1, x)$ and output \perp if $y_1 \neq PRF(k_1, x)$

How to puncture this construction?

How to puncture this construction?

First attempt: only puncture k_1 at x^*

Given challenge
$$(y_1^*, y_2^*)$$
,
can test whether
 $y_2^* \bigoplus PRF_2(k_2, y_1^*) = x^*$

How to puncture this construction?

First attempt: only puncture k_1 at x^*

Given challenge (y_1^*, y_2^*) , can test whether $y_2^* \bigoplus PRF_2(k_2, y_1^*) = x^*$

Second attempt: also puncture k_2 at $y_1^* = PRF_1(k_1, x^*)$ Punctured key reveals punctured

point!

Private Constrained PRFs [BLW17, BKM17, CC17, BTVW17]

(Selective) single-key privacy, simulation-based security [BKM17, CC17]

Private Constrained PRFs [BLW17, BKM17, CC17, BTVW17]

(Selective) single-key privacy, simulation-based security [BKM17, CC17]

Master key: $k = (k_1, k_2)$

Punctured key (punctured at x^*):

- k_1 punctured at x^*
- k₂ privately punctured at PRF₁(k₁, x^{*})

$$y_1^* = \operatorname{PRF}_1(k_1, x^*)$$
$$y_2^* = x^* \bigoplus \operatorname{PRF}_2(k_2, y_1^*)$$

Master key: $k = (k_1, k_2)$

Punctured key (punctured at x^*):

- k_1 punctured at x^*
- k_2 privately punctured at PRF₁(k_1, x^*)

Can be instantiated from standard lattice assumptions [ВКМ17, СС17, ВТVW17]

Master key: $k = (k_1, k_2)$

For puncturing at x^* :

- Puncture k_1 at x^*
- Puncture k_2 at $PRF_1(k_1, x^*)$

To constrain to circuit *C* :

- Constrain k_1 to C
- Difficulty: Need to constrain k₂
 on a *pseudorandom* set (the image of PRF₁(k₁,·) on the points allowed by C)

Master key: $k = (k_1, k_2)$

For puncturing at x^* :

- Puncture k_1 at x^*
- This set does not have a simple description unless PRF_1 is efficiently invertible
 - Difficulty: Need Constrain k₂
 on a *pseudorandom* set (the image of PRF₁(k₁,·) on the points allowed by C)

Decryption key can be used to recover x from y_1 and for checking constraint satisfiability

Two problems:

- IPFs are deterministic, but encryption is randomized
- Need a way to constrain the encryption scheme

Decryption key can be used to recover x from y_1 and for checking constraint satisfiability

Two problems:

- IPFs are deterministic, but encryption is randomized
- Need a way to constrain the encryption scheme

Solution: derive encryption randomness from constrained PRF

Verify $y_1 = \text{Enc}(\text{pk}, x; r)$ where $r = \text{PRF}_1(k_1, x)$ and output \perp if $y_1 \neq \text{Enc}(\text{pk}, x; r)$

Master key: $k = (pk, sk, k_1, k_2)$

Constrained key for a circuit *C*:

- public key pk
- k_1 constrained to C
- k₂ privately constrained to following circuit:

Hard-wired: sk and $\operatorname{\mathcal{C}}$

On input ct:

- Let $x \leftarrow Dec(sk, ct)$
- Output 1 if $x \neq \perp$ and C(x) = 1
- Output 0 otherwise

Master key: $k = (pk, sk, k_1, k_2)$

Privacy is essential to hide the secret key (the inversion trapdoor)

Hard-wired: sk and C

On input ct:

- Let $x \leftarrow Dec(sk, ct)$
- Output 1 if $x \neq \perp$ and C(x) = 1
- Output 0 otherwise

Construction is a (single-key) secure circuit-constrained IPF if

- PRF₁ is a circuit-constrained PRF
- PRF₂ is a private circuitconstrained PRF
- (Enc, Dec) is a CCA-secure publickey encryption scheme

All primitives can be instantiated from standard lattice assumptions

[See paper for security analysis]

Conclusions

Can we constrain other cryptographic primitives, such as pseudorandom permutations (PRPs)?

- Constrained PRPs for many natural classes of constraints do not exist
- Circuit-constrained *invertible pseudorandom functions* (IPFs) where the range is superpolynomially larger than the domain can be constructed from lattices

Open Problems

Can we construct constrained **PRPs** for sufficiently restrictive constraint classes (e.g., prefix-constrained PRPs)?

Can we construct a multi-key circuit-constrained IPF from standard assumptions?

Thank you!

https://eprint.iacr.org/2017/477