
Constrained Keys for
Invertible Pseudorandom Functions

Dan Boneh, Sam Kim, and David J. Wu

Stanford University



Pseudorandom Functions (PRFs) [GGM84]

𝐹: 𝒦 ×𝒳 → 𝒴

≈𝑐

𝑥 ∈𝒳

𝐹 𝑘, 𝑥

𝑘՚
R
𝒦

Pseudorandom

𝑏

𝑥 ∈𝒳

𝑓(𝑥)

𝑓՚
R
Funs[𝒳,𝒴]

Random

𝑏



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrained PRF: PRF with additional “constrain” functionality

Constrain𝐶

PRF key Constrained key

Can be used to evaluate at all 
points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1𝐹: 𝒦 ×𝒳 → 𝒴



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Correctness: constrained evaluation at 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1
yields PRF value at 𝑥

Security: PRF value at points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 0 are 
indistinguishable from random given the constrained key



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Many applications:
• Punctured programming paradigm [SW14]

• Identity-based key exchange, broadcast encryption [BW13]



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Known constructions:
• Puncturable PRFs from one-way functions [BW13, BGI13, KPTZ13]

Punctured key can be 
used to evaluate the PRF 

at all but one point



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Known constructions:
• Puncturable PRFs from one-way functions [BW13, BGI13, KPTZ13]

• (Single-key) circuit-constrained PRFs from LWE [BV15]



Can we constrain other cryptographic primitives, 
such as pseudorandom permutations (PRPs)?



Our Results

• Constrained PRPs for many natural classes of 
constraints do not exist

• However, the relaxed notion of a constrained 
invertible pseudorandom function (IPF) do exist



Pseudorandom Permutations (PRPs)

𝐹: 𝒦 ×𝒳 → 𝒳
𝐹(𝑘,⋅) implements a 
permutation over 𝒳



Constrained PRPs

𝐹: 𝒦 ×𝒳 → 𝒳

Constrained key 
enables forward and 
backward evaluation

Set where 
𝐶 𝑥 = 1

Image of points 
where 𝐶 𝑥 = 1



Constrained PRPs

Correctness:
• Forward evaluation when 𝐶 𝑥 = 1
• Backward evaluation on points 𝑦 if 𝑦 = 𝐹(𝑘, 𝑥) and 𝐶 𝑥 = 1

Set where 
𝐶 𝑥 = 1

Image of points 
where 𝐶 𝑥 = 1



Constrained PRP Security
Constrain 
queries

𝑘՚
R
𝒦

𝑓՚
R
Perm[𝒳]

𝐹: 𝒦 ×𝒳 → 𝒳

Challenger

Evaluation 
queries

Inversion 
queries

Challenge 
queries

𝐶

𝑘𝐶 = Constrain𝐶(𝑘)

𝑥

𝐹(𝑘, 𝑥)

𝑥

𝐹−1(𝑘, 𝑥)

𝑥∗

𝑦∗

Adversary

Random: 𝑦∗ = 𝑓(𝑥∗)
Pseudorandom: 𝑦∗ = 𝐹 𝑘, 𝑥∗

???



Admissibility conditions:
• 𝐶 𝑥∗ = 0
• No evaluation queries on 𝑥∗

• No inversion queries on 𝑦∗

Constrained PRP Security

𝐶

𝑘𝐶 = Constrain𝐶(𝑘)

𝑥

𝐹(𝑘, 𝑥)

𝑥

𝐹−1(𝑘, 𝑥)

𝑥∗

𝑦∗

Adversary

Random: 𝑦∗ = 𝑓(𝑥∗)
Pseudorandom: 𝑦∗ = 𝐹 𝑘, 𝑥∗

???



Constrained PRP Lower Bound

Warm-up: constrained PRPs on polynomial-size domains cannot satisfy 
constrained security

Concretely: evaluate PRP at 𝑥 and issue challenge query for 𝑥∗ ≠ 𝑥
• Pseudorandom case: 𝐹 𝑘, 𝑥∗ ≠ 𝐹(𝑘, 𝑥)
• Random case: 𝑓 𝑥∗ = 𝐹(𝑘, 𝑥) with probability 1/ 𝒳



Constrained PRP Lower Bound

Set of points 𝑆
where 𝐶 𝑥 = 1

Image of 𝑆
under 𝐹(𝑘,⋅)

Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.



Constrained PRP Lower Bound

𝑥

𝑦Behavior of 
constrained key

Consider what happens when constrained key is used to invert

If 𝑦 is the image of an allowed point, then 𝐹 𝑘𝐶 , 𝐹
−1 𝑘𝐶 , 𝑦 = 𝑦

Mapping ensured 
by correctness



Constrained PRP Lower Bound
Consider what happens when constrained key is used to invert

𝑥

𝑦



Constrained PRP Lower Bound
Consider what happens when constrained key is used to invert

𝑦

𝑥Case 1: preimage is 
outside allowable set 𝐶 𝐹−1 𝑘𝐶 , 𝑦 = 0

𝑥′



Constrained PRP Lower Bound
Consider what happens when constrained key is used to invert

𝑦

If 𝑦 is not the image of an allowed point, then either

𝐶 𝐹−1 𝑘𝐶 , 𝑦 = 0 or 𝐹 𝑘𝐶 , 𝐹
−1 𝑘𝐶 , 𝑦 ≠ 𝑦

By definition,
𝑦′ ≠ 𝑦

𝑦′

Case 2: preimage is 
inside allowable set 𝐹 𝑘𝐶 , 𝐹

−1 𝑘𝐶 , 𝑦 ≠ 𝑦

𝑥′



Constrained PRP Lower Bound
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Pseudorandom case

𝑥∗

𝑦∗

A

B

B

Random case
(with noticeable probability)

𝑥∗
𝑦∗

C

C



Relaxing the Notion
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Puncturable PRPs 
do not exist.

Open Question: Do prefix-constrained PRPs (where prefix is 𝜔(log 𝜆)
bits) exist?



Relaxing the Notion
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Relaxation: Allow range to be much larger than the domain

Domain 𝒳 Range 𝒴



Invertible Pseudorandom Functions (IPFs)

Domain 𝒳 Range 𝒴

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦
• There exists an efficiently computable inverse 𝐹−1:𝒦 × 𝒴 → 𝒳 ∪ ⊥

• 𝐹−1 𝑘, 𝐹 𝑘, 𝑥 = 𝑥 for all 𝑥 ∈ 𝒳

• 𝐹−1 𝑘, 𝑦 = ⊥ for all 𝑦 not in the range of 𝐹(𝑘,⋅)



Invertible Pseudorandom Functions (IPFs)

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦
• There exists an efficiently computable inverse 𝐹−1:𝒦 × 𝒴 → 𝒳 ∪ ⊥

• 𝐹−1 𝑘, 𝐹 𝑘, 𝑥 = 𝑥 for all 𝑥 ∈ 𝒳

• 𝐹−1 𝑘, 𝑦 = ⊥ for all 𝑦 not in the range of 𝐹(𝑘,⋅)

IPFs are closely related to the notion of 
deterministic authenticated encryption (DAE) [RS06]. 
IPFs can be used to build DAE, so our constrained 

IPF constructions imply constrained DAE.



Invertible Pseudorandom Functions (IPFs)

≈𝑐

𝑥 ∈ 𝒳

𝐹 𝑘, 𝑥𝑘՚
R
𝒦

Pseudorandom

𝑏

𝑦 ∈ 𝒴

𝐹−1 𝑘, 𝑦

𝑓՚
R
InjFuns[𝒳,𝒴]

Random

𝑏
𝑥 ∈ 𝒳

𝑓(𝑥)

𝑦 ∈ 𝒴

𝑓−1(𝑦)

Set of 
injective functions

𝐹: 𝒦 ×𝒳 → 𝒴
Outputs ⊥ if 𝑦 has 
no inverse under 𝑓



Invertible Pseudorandom Functions (IPFs)

≈𝑐

𝑥 ∈ 𝒳

𝐹 𝑘, 𝑥𝑘՚
R
𝒦

Pseudorandom

𝑏

𝑦 ∈ 𝒴

𝐹−1 𝑘, 𝑦

𝑓՚
R
InjFuns[𝒳,𝒴]

Random

𝑏
𝑥 ∈ 𝒳

𝑓(𝑥)

𝑦 ∈ 𝒴

𝑓−1(𝑦)

When 𝒳 = 𝒴, security definition is equivalent to that for a strong PRP



Constrained IPFs

Direct generalization of constrained PRFs

Constrain𝐶

IPF key Constrained key

Can be used to evaluate at all points 𝑥 ∈ 𝒳 where 
𝐶 𝑥 = 1 and invert at all points 𝑦 whenever
𝑦 = 𝐹(𝑘, 𝑥) for some 𝑥 where 𝐶 𝑥 = 1𝐹: 𝒦 ×𝒳 → 𝒴



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2
𝑦2 = 𝑥 ⊕ PRF2(𝑘2, 𝑦1)𝑦1 = PRF1 𝑘1, 𝑥

Starting point: DAE construction 
called synthetic IV (SIV) [RS06]

Can also be viewed as an 
unbalanced Feistel network 
(with one block set to all 0s)



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

𝑥

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Verify 𝑦1 = PRF(𝑘1, 𝑥) and 
output ⊥ if 𝑦1 ≠ PRF(𝑘1, 𝑥)

𝑦2 = 𝑥 ⊕ PRF2(𝑘2, 𝑦1)𝑦1 = PRF1 𝑘1, 𝑥



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?

First attempt: only puncture 𝑘1 at 𝑥∗

Given challenge 𝑦1
∗, 𝑦2

∗ , 
can test whether

𝑦2
∗ ⊕PRF2 𝑘2, 𝑦1

∗ = 𝑥∗



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?

First attempt: only puncture 𝑘1 at 𝑥∗

Given challenge 𝑦1
∗, 𝑦2

∗ , 
can test whether

𝑦2
∗ ⊕PRF2 𝑘2, 𝑦1

∗ = 𝑥∗

Second attempt: also puncture 𝑘2 at 
𝑦1
∗ = PRF1 𝑘1, 𝑥

∗
Punctured key 

reveals punctured 
point!



Private Constrained PRFs [BLW17, BKM17, CC17, BTVW17]

𝐶

Constrain𝐶(𝑘)
𝑘՚

R
𝒦

???

𝐶 | 𝐶

𝑘𝐶

𝑥

𝐹(𝑘, 𝑥)

𝑥 | 𝑥, 𝐶 𝑥

𝑦

What the 
simulator sees

Real distribution Ideal distribution

(Selective) single-key privacy, simulation-based security [BKM17, CC17]



Private Constrained PRFs [BLW17, BKM17, CC17, BTVW17]

𝐶

Constrain𝐶(𝑘)
𝑘՚

R
𝒦

???

𝐶 | 𝐶

𝑘𝐶

𝑥

𝐹(𝑘, 𝑥)

𝑥 | 𝑥, 𝐶 𝑥

𝑦

Real distribution Ideal distribution

(Selective) single-key privacy, simulation-based security [BKM17, CC17]

Constrained key 
hides the constraint



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)

𝑦1
∗ = PRF1 𝑘1, 𝑥

∗

𝑦2
∗ = 𝑥∗ ⊕PRF2(𝑘2, 𝑦1

∗)



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)

𝑦1
∗ = PRF1 𝑘1, 𝑥

∗

𝑦2
∗ = 𝑥∗ ⊕PRF2(𝑘2, 𝑦1

∗)

Indistinguishable from uniform by 
constrained security of PRF2

Hides 𝑦1
∗

Indistinguishable from 
uniform by constrained 

security of PRF1



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)

Can be instantiated from standard 
lattice assumptions [BKM17, CC17, BTVW17]



Circuit-Constrained IPFs

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗

• Puncture 𝑘2 at PRF1(𝑘1, 𝑥
∗)

To constrain to circuit 𝐶:
• Constrain 𝑘1 to 𝐶
• Difficulty: Need to constrain 𝑘2

on a pseudorandom set (the 
image of PRF1(𝑘1,⋅) on the 
points allowed by 𝐶)



Circuit-Constrained IPFs

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗

• Puncture 𝑘2 at PRF1(𝑘1, 𝑥
∗)

To constrain to circuit 𝐶:
• Constrain 𝑘1 to 𝐶
• Difficulty: Need to constrain 𝑘2

on a pseudorandom set (the 
image of PRF1(𝑘1,⋅) on the 
points allowed by 𝐶)

This set does not have a 
simple description unless 
PRF1 is efficiently invertible



Circuit-Constrained IPFs

𝑥

Enc(pk, 𝑥)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Solution: Replace 
PRF1(𝑘1, 𝑥) with a 

public-key encryption of 𝑥

Decryption key can be used to recover 
𝑥 from 𝑦1 and for checking constraint
satisfiability

Two problems:
• IPFs are deterministic, but 

encryption is randomized
• Need a way to constrain the 

encryption scheme



Circuit-Constrained IPFs

𝑥

Enc(pk, 𝑥; 𝑟)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Decryption key can be used to recover 
𝑥 from 𝑦1 and for checking constraint
satisfiability

Two problems:
• IPFs are deterministic, but 

encryption is randomized
• Need a way to constrain the 

encryption scheme

Solution: derive encryption 
randomness from constrained PRF

𝑟 = PRF1(𝑘1, 𝑥)



Circuit-Constrained IPFs

𝑥

Enc(pk, 𝑥; 𝑟)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

𝑟 = PRF1(𝑘1, 𝑥)

𝑥

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Verify 𝑦1 = Enc(pk, 𝑥; 𝑟) where 
𝑟 = PRF1 𝑘1, 𝑥 and output ⊥

if 𝑦1 ≠ Enc(pk, 𝑥; 𝑟)



Circuit-Constrained IPFs

𝑥

Enc(pk, 𝑥; 𝑟)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

𝑟 = PRF1(𝑘1, 𝑥)
Master key: 𝑘 = (pk, sk, 𝑘1, 𝑘2)

Constrained key for a circuit 𝐶:
• public key pk
• 𝑘1 constrained to 𝐶
• 𝑘2 privately constrained to 

following circuit:

Hard-wired: sk and 𝐶

On input 𝐜𝐭:
• Let 𝑥 ՚ Dec(sk, ct)
• Output 1 if 𝑥 ≠⊥ and 𝐶 𝑥 = 1
• Output 0 otherwise



Circuit-Constrained IPFs

𝑥

Enc(pk, 𝑥; 𝑟)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

𝑟 = PRF1(𝑘1, 𝑥)
Master key: 𝑘 = (pk, sk, 𝑘1, 𝑘2)

Constrained key for a circuit 𝐶:
• public key pk
• 𝑘1 constrained to 𝐶
• 𝑘2 privately constrained to 

following circuit:

Hard-wired: sk and 𝐶

On input 𝐜𝐭:
• Let 𝑥 ՚ Dec(sk, ct)
• Output 1 if 𝑥 ≠⊥ and 𝐶 𝑥 = 1
• Output 0 otherwise

Privacy is essential to hide the 
secret key (the inversion 

trapdoor)



Circuit-Constrained IPFs

𝑥

Enc(pk, 𝑥; 𝑟)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

𝑟 = PRF1(𝑘1, 𝑥)
Construction is a (single-key) secure 
circuit-constrained IPF if
• PRF1 is a circuit-constrained PRF
• PRF2 is a private circuit-

constrained PRF
• (Enc, Dec) is a CCA-secure public-

key encryption scheme

All primitives can be instantiated from 
standard lattice assumptions

[See paper for security analysis]



Conclusions

Can we constrain other cryptographic primitives, such 
as pseudorandom permutations (PRPs)?

• Constrained PRPs for many natural classes of constraints do 
not exist

• Circuit-constrained invertible pseudorandom functions (IPFs) 
where the range is superpolynomially larger than the domain 
can be constructed from lattices



Open Problems

Can we construct constrained PRPs for sufficiently restrictive constraint 
classes (e.g., prefix-constrained PRPs)?

Can we construct a multi-key circuit-constrained IPF from standard 
assumptions?

Thank you!
https://eprint.iacr.org/2017/477


