### Batch Arguments for NP from Standard Bilinear Group Assumptions

Brent Waters and David Wu

### **Batch Arguments for NP**

#### Boolean circuit satisfiability $\mathcal{L}_C = \{x \in \{0,1\}^n : C(x,w) = 1 \text{ for some } w\}$



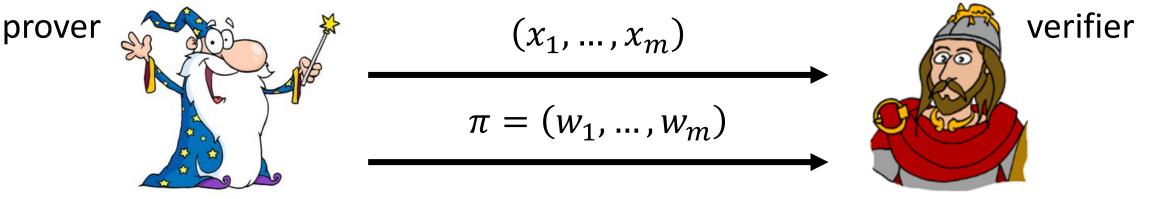
$$(x_1, ..., x_m)$$

prover has m statements and wants to convince verifier that  $x_i \in \mathcal{L}_C$  for all  $i \in [m]$ 



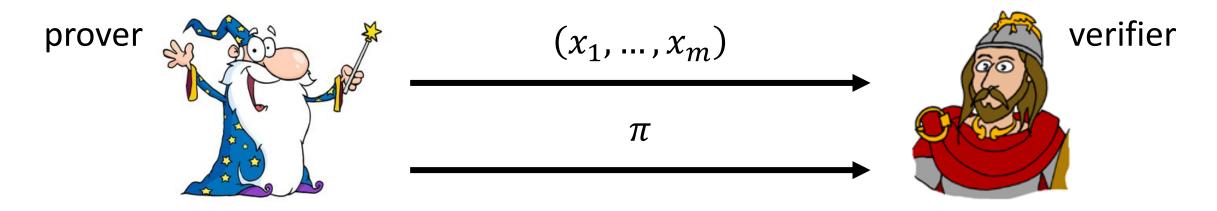
#### **Batch Arguments for NP**

#### Boolean circuit satisfiability $\mathcal{L}_C = \{x \in \{0,1\}^n : C(x,w) = 1 \text{ for some } w\}$



Can the proof size be sublinear in the number of instances *m*? **Naïve solution:** send witnesses  $w_1, \dots, w_m$  and verifier checks  $C(x_i, w_i) = 1$  for all  $i \in [m]$ 

#### Boolean circuit satisfiability $\mathcal{L}_{C} = \{x \in \{0,1\}^{n} : C(x,w) = 1 \text{ for some } w\}$



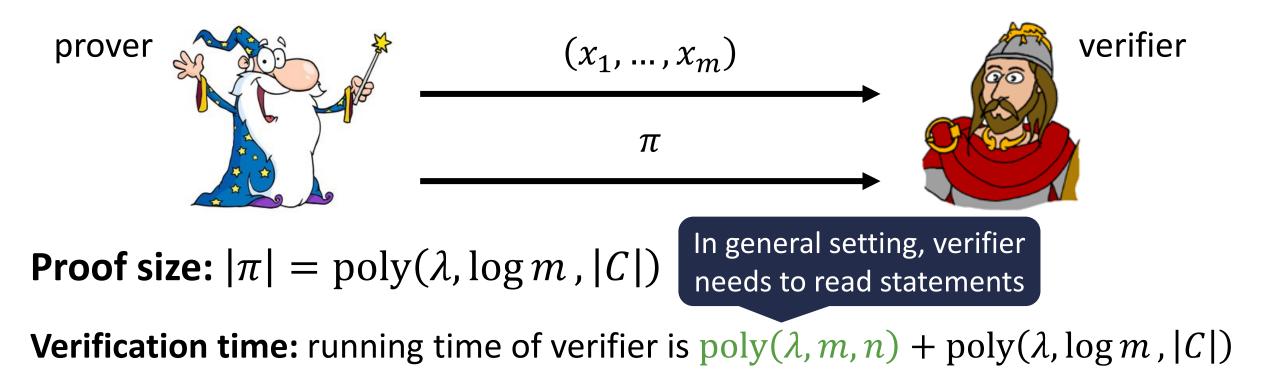
**Proof size:**  $|\pi| = \text{poly}(\lambda, \log m, |C|)$ 

 $\lambda$  : security

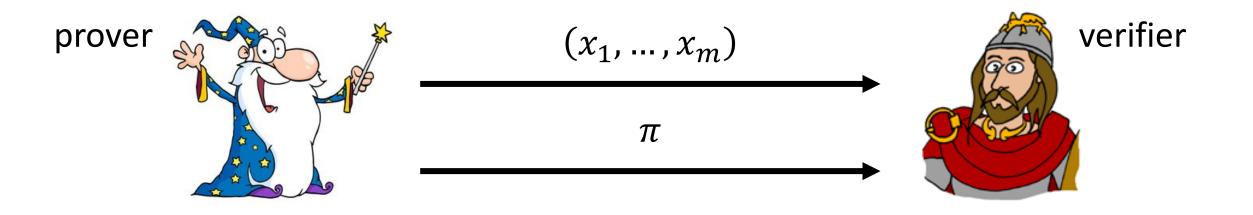
parameter

Proof size can scale with circuit size (**not** a SNARG for NP)

#### Boolean circuit satisfiability $\mathcal{L}_C = \{x \in \{0,1\}^n : C(x,w) = 1 \text{ for some } w\}$



#### Boolean circuit satisfiability $\mathcal{L}_{C} = \{x \in \{0,1\}^{n} : C(x,w) = 1 \text{ for some } w\}$



**Computational soundness:** polynomial-time prover cannot convince verifier of  $(x_1, ..., x_m)$  if there is any  $i \in [m]$  where  $x_i \notin \mathcal{L}_C$ 

#### Boolean circuit satisfiability

 $\mathcal{L}_C = \{x \in \{0,1\}^n : C(x,w) = 1 \text{ for some } w\}$ 

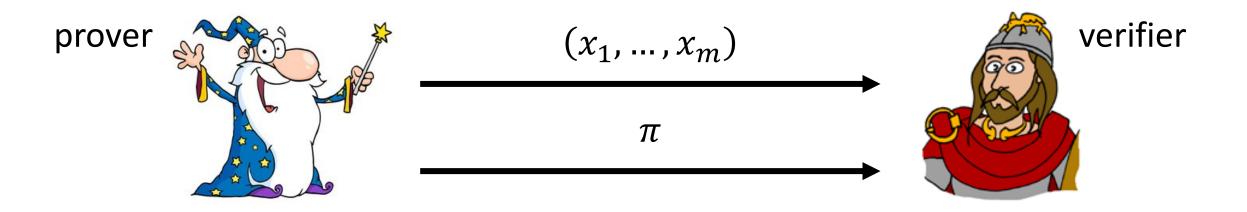
For (statistically-sound) proofs:

- With inefficient provers, IP = PSPACE [LFKN92, Sha92] theorem gives interactive proof for batch NP with communication poly(log m, |C|)
- With efficient provers, we have interactive proofs for batch UP with communication poly(log m, |C|) [RRR16, RRR18, RR20]



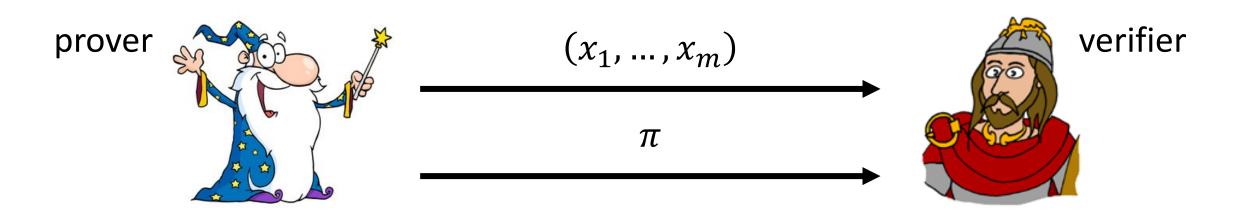
**Computational soundness:** polynomial-time prover cannot convince verifier of  $(x_1, ..., x_m)$  if there is any  $i \in [m]$  where  $x_i \notin \mathcal{L}_C$ 

#### Boolean circuit satisfiability $\mathcal{L}_{C} = \{x \in \{0,1\}^{n} : C(x,w) = 1 \text{ for some } w\}$



Focus: Non-interactive setting (proof is a single message)

common reference string



**Focus:** Non-interactive setting (proof is a single message)

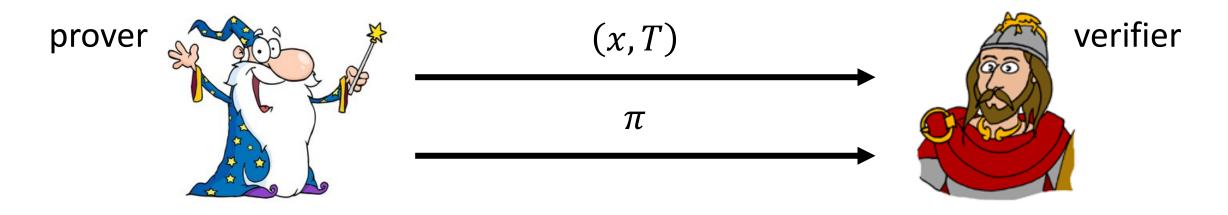
Prover and verifier have access to a common reference string (CRS)

# An Application: Succinct Argument for P

#### [KPY19, CJJ21]

#### Turing machine M, input x, time bound T

**Show:** M(x) = 1 in at most T steps

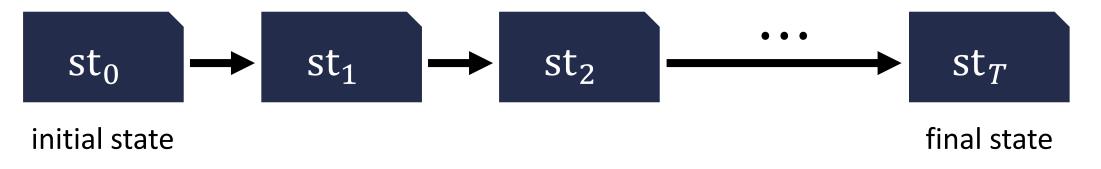


**Proof size:**  $|\pi| = \text{poly}(\lambda, \log T)$ 

**Verification time:** running time of verifier is  $poly(\lambda, |x|) + poly(\lambda, \log T)$ 

# An Application: Succinct Argument for P

#### (Very) high-level idea:



- Prover commits to the vector of computation states  $(st_0, ..., st_T)$
- Checking each transition can be implemented by a circuit of size  $poly(\lambda)$ Each step only changes a constant number of positions in the computation state

Prover constructs a batch argument that all *T* transitions are valid Statements are indices 1, ..., *T* and the NP relation is checking validity of step i

## **Batch Arguments for NP**

#### Special case of succinct non-interactive arguments for NP (SNARGs)

Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation

#### Batch arguments from correlation intractable hash functions

Sub-exponential DDH (in pairing-free groups) + QR (with  $\sqrt{m}$  size proofs)[CJJ21a]Learning with errors (LWE)[CJJ21b]

#### Batch arguments from pairing-based assumptions

Non-standard, but falsifiable q-type assumption on bilinear groups [KPY19]

## This Work

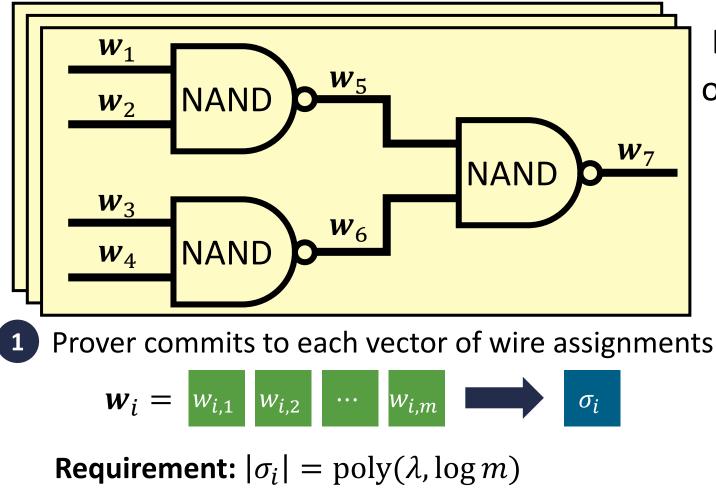
New constructions of non-interactive batch arguments for NP

Batch arguments for NP from standard assumptions over bilinear maps k-Linear assumption (for any  $k \ge 1$ ) in prime-order bilinear groups Subgroup decision assumption in composite-order bilinear groups

#### Key feature: Construction is "low-tech"

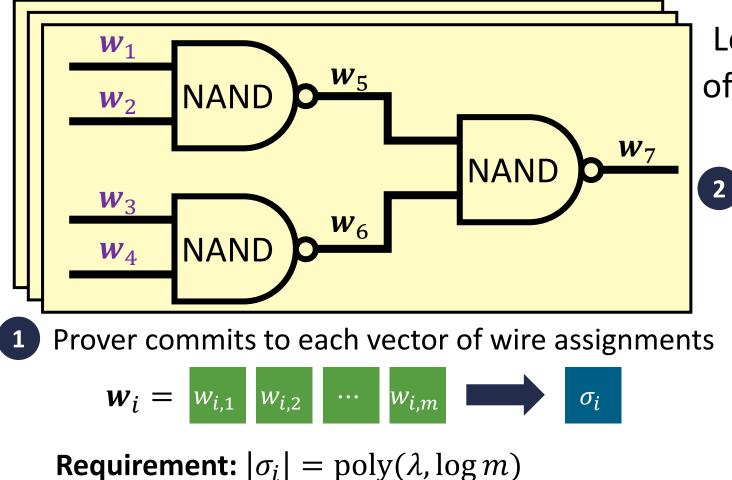
No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs Direct "commit-and-prove" approach à la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS from standard bilinear map assumptions
 Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]
 Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions
 Previous bilinear map constructions: random oracle based [BGLS03]



Let  $w_i = (w_{i,1}, ..., w_{i,m})$  be vector of wire labels associated with wire iacross the m instances

Requirement:  $|\sigma_i| = \text{poly}(\lambda, \log m)$ Our construction:  $|\sigma_i| = \text{poly}(\lambda)$ 



Let  $w_i = (w_{i,1}, ..., w_{i,m})$  be vector of wire labels associated with wire iacross the m instances

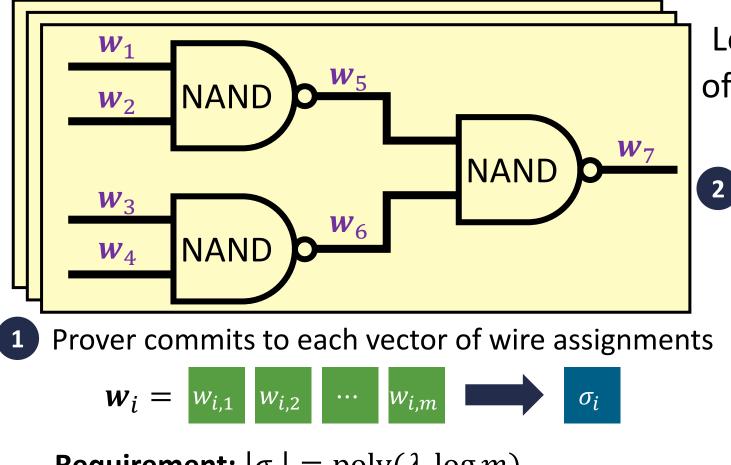
Prover constructs the following proofs:

#### Input validity

Commitments to the statement wires are correctly computed

Commitments in our scheme are *deterministic,* so verifier can directly check

**Our construction:**  $|\sigma_i| = \text{poly}(\lambda, \log m)$ 

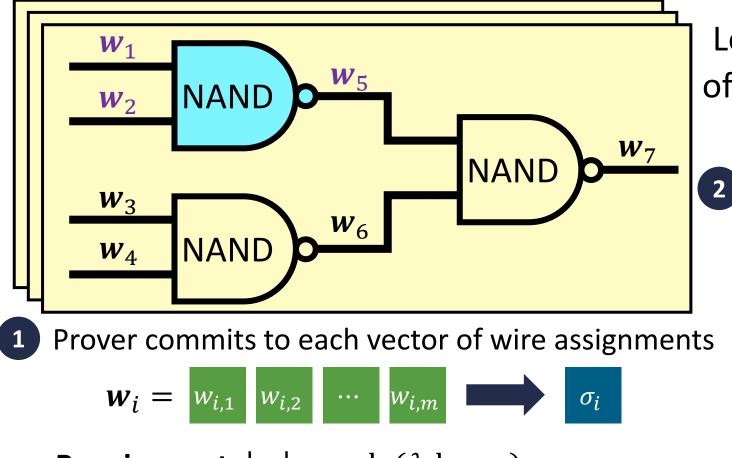


**Requirement:**  $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:**  $|\sigma_i| = \text{poly}(\lambda)$  Let  $w_i = (w_{i,1}, \dots, w_{i,m})$  be vector of wire labels associated with wire iacross the m instances

Prover constructs the following proofs: Input validity

#### Wire validity

Commitment for each wire is a commitment to a 0/1 vector



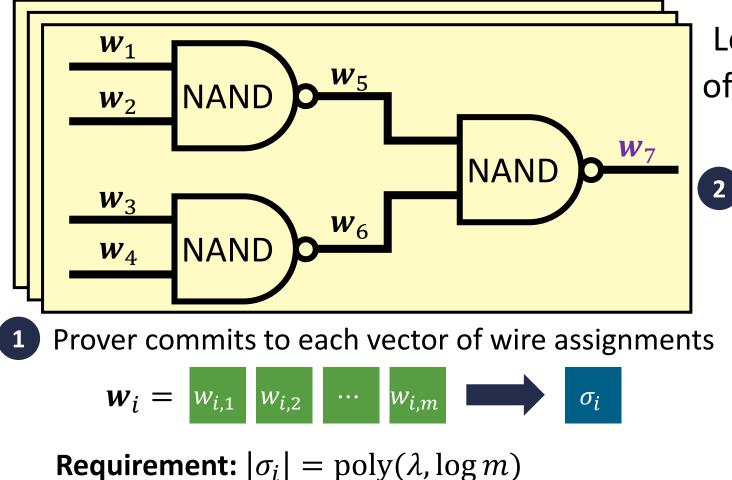
Let  $w_i = (w_{i,1}, ..., w_{i,m})$  be vector of wire labels associated with wire iacross the m instances

Prover constructs the following proofs: Input validity Wire validity

#### **Gate validity**

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

**Requirement:**  $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:**  $|\sigma_i| = \text{poly}(\lambda)$ 



Let  $\boldsymbol{w}_i = (w_{i,1}, \dots, w_{i,m})$  be vector of wire labels associated with wire iacross the m instances

Prover constructs the following proofs:

Input validity

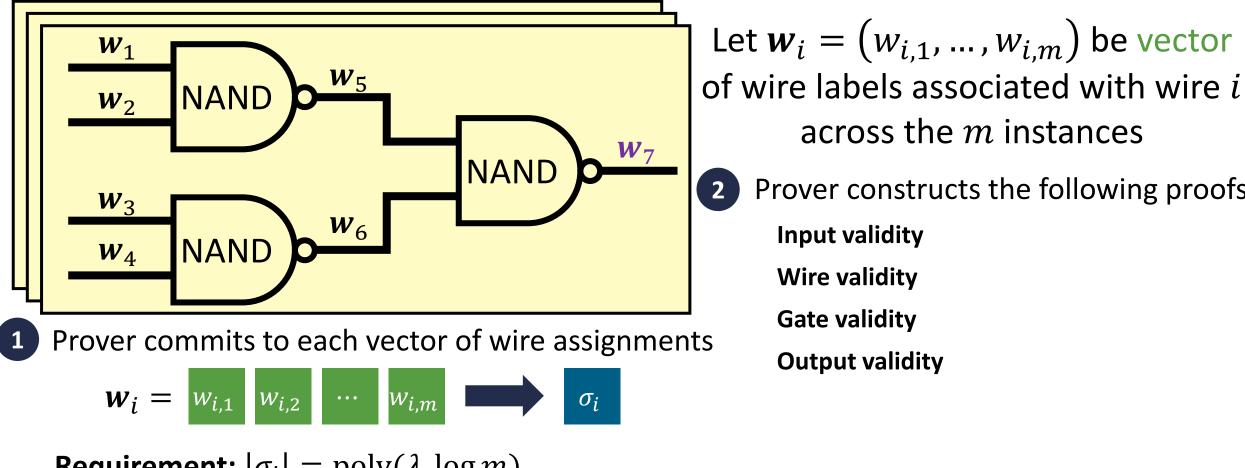
Wire validity

**Gate validity** 

#### **Output validity**

Commitment to output wire is a commitment to the all-ones vector

**Our construction:**  $|\sigma_i| = \text{poly}(\lambda, \log m)$ 



Input validity Wire validity **Gate validity Output validity** 

> Key idea: Validity checks are quadratic and can be checked in the exponent

across the *m* instances

Prover constructs the following proofs:

**Requirement:**  $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:**  $|\sigma_i| = \text{poly}(\lambda)$ 

## **Construction from Composite-Order Groups**

Pedersen multi-commitments: (*without* randomness)

Let  $\mathbb{G}$  be a group of order N = pq (composite order) Let  $\mathbb{G}_p \subset \mathbb{G}$  be the subgroup of order p and let  $g_p$  be a generator of  $\mathbb{G}_p$ 

crs: sample 
$$\alpha_1, ..., \alpha_m \leftarrow \mathbb{Z}_N$$
  
output  $A_1 \leftarrow g_p^{\alpha_1}, ..., A_m \leftarrow g_p^{\alpha_m}$ 

denotes encodings in 
$$\mathbb{G}_p$$
  
[ $\alpha_1$ ] [ $\alpha_2$ ] [...] [ $\alpha_m$ ]

commitment to  $x = (x_1, ..., x_m) \in \{0, 1\}^m$ :

 $\sigma_{\boldsymbol{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$  $[\sigma_{\boldsymbol{x}}] = [\Sigma_{i \in [m]} \alpha_i x_i]$ 

 $\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m} \quad \text{(subset product of the } A_i\text{'s)}$ 

#### **Common reference string:**

| [ <i>α</i> <sub>1</sub> ] | $A_1 = g_p^{\alpha_1}$ |
|---------------------------|------------------------|
| [:]                       |                        |
| $[\alpha_m]$              | $A_m = g_p^{\alpha_m}$ |

Commitment to 
$$(x_1, \dots, x_m)$$
:

$$\begin{bmatrix} \Sigma_{i \in [m]} \alpha_i x_i \end{bmatrix}$$
  
$$\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
  
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

#### Wire validity

Commitment for each wire is a commitment to a 0/1 vector  $x \in \{0,1\}$  if and only if  $x^2 = x$ 

**Key idea:** Use <u>pairing</u> to check quadratic relation in the exponent

**Recall:** pairing is an <u>efficiently-computable</u> bilinear map on  $\mathbb{G}$ :  $e(g^x, g^y) = e(g, g)^{xy}$ 

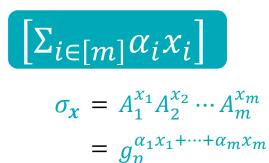
 $e([x],[y]) \longrightarrow [xy]$ 

Multiplies exponents in the *target group* 

#### **Common reference string:**

$$\begin{bmatrix} \alpha_1 \end{bmatrix} \quad A_1 = g_p^{\alpha_1}$$
$$\begin{bmatrix} \vdots \end{bmatrix}$$
$$\begin{bmatrix} \alpha_m \end{bmatrix} \quad A_m = g_p^{\alpha_m}$$

Commitment to 
$$(x_1, \dots, x_m)$$
:



#### Wire validity

Commitment for each wire is a commitment to a 0/1 vector  $x \in \{0,1\}$  if and only if  $x^2 = x$ 

**Approach:** consider the following pairing relations:

 $e(\sigma_x, \sigma_x)$  and  $e(\sigma_x, \prod_{i \in [m]} A_i)$ 

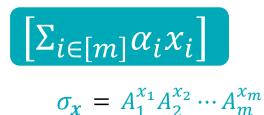
$$A = \prod_{i \in [m]} A_i = g_p^{\sum_{i \in [m]} \alpha_i}$$

(commitment to all-ones vector)

#### **Common reference string:**

$$\begin{bmatrix} \alpha_1 \end{bmatrix} \quad A_1 = g_p^{\alpha_1}$$
$$\begin{bmatrix} \vdots \end{bmatrix}$$
$$\begin{bmatrix} \alpha_m \end{bmatrix} \quad A_m = g_p^{\alpha_m}$$

Commitment to 
$$(x_1, \dots, x_m)$$
:



 $= g_n^{\alpha_1 x_1 + \dots + \alpha_m x_m}$ 

#### Wire validity

Commitment for each wire is a commitment to a 0/1 vector  $x \in \{0,1\}$  if and only if  $x^2 = x$ 

**Approach:** consider the following pairing relations:

 $e(\sigma_x, \sigma_x)$  and  $e(\sigma_x, \prod_{i \in [m]} A_i)$ 

$$e\left(\left[\Sigma_{i\in[m]}\alpha_{i}x_{i}\right],\left[\Sigma_{i\in[m]}\alpha_{i}x_{i}\right]\right)$$





non-cross terms

cross terms

#### **Common reference string:**

 $\alpha_1$ 

[:]

 $\alpha_m$ 

 $A_1 = g_p^{\alpha_1}$ 

 $A_m = g_n^{\alpha_m}$ 

non-cross terms

#### Wire validity

Commitment for each wire is a commitment to a 0/1 vector  $x \in \{0,1\}$  if and only if  $x^2 = x$ 

**Approach:** consider the following pairing relations:

 $e(\sigma_x, \sigma_x)$  and  $e(\sigma_x, \Pi_{i \in [m]}A_i)$ 

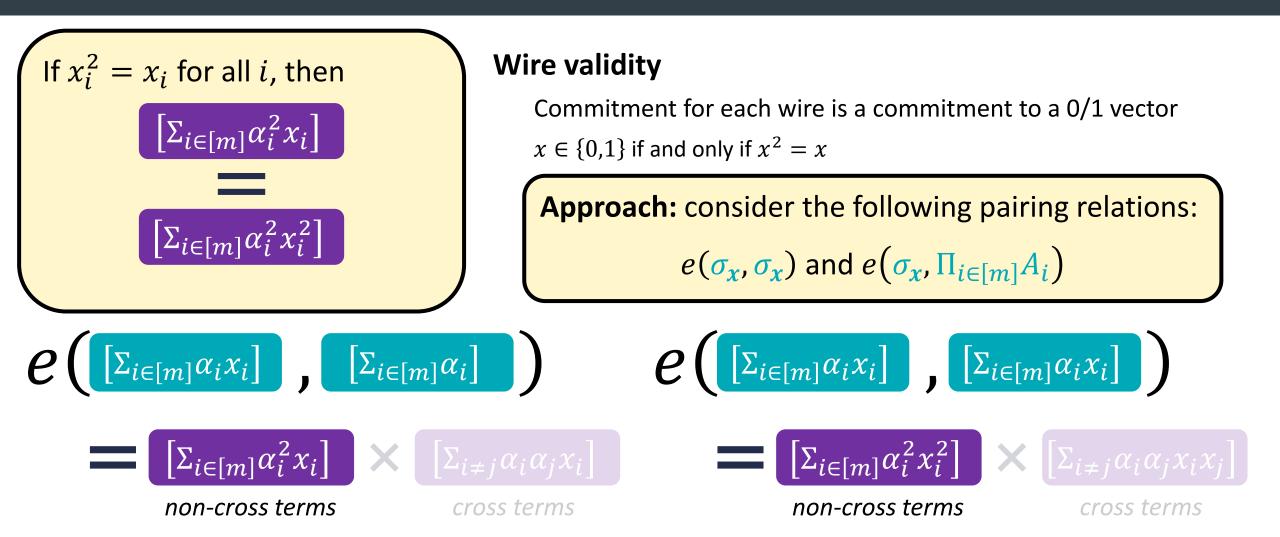
 $e\left[\Sigma_{i\in[m]}\alpha_{i}x_{i}\right],\left[\Sigma_{i\in[m]}\alpha_{i}x_{i}\right]$  $\begin{bmatrix} \Sigma_{i \in [m]} \alpha_i x_i \end{bmatrix} \qquad \begin{bmatrix} \Sigma_{i \in [m]} \alpha_i \end{bmatrix}$  $\left[\Sigma_{i\in[m]}\alpha_i^2 x_i\right]$  X  $\sum_{i \neq j} \alpha_i \alpha_j x_i$ 

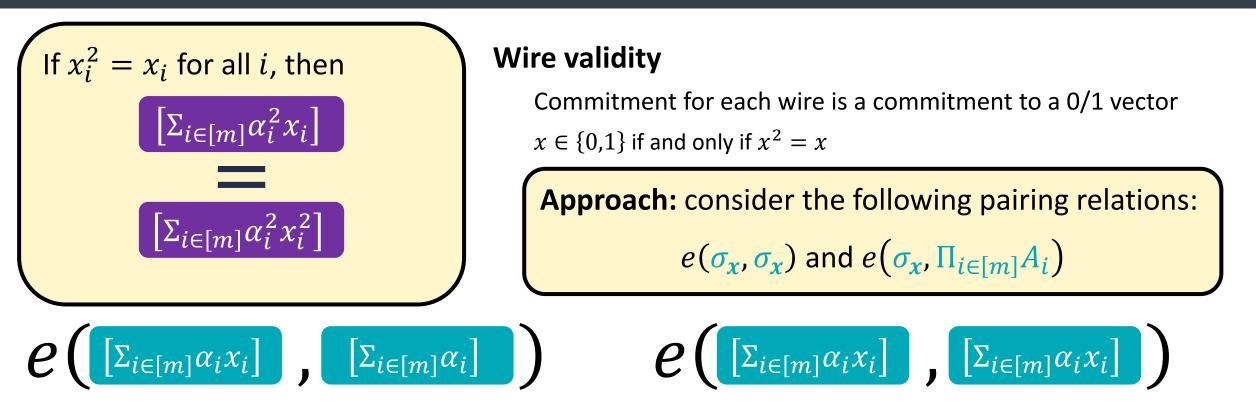
cross terms

 $= \left[ \sum_{i \in [m]} \alpha_i^2 x_i^2 \right] \times \left[ \sum_{i \neq j} \alpha_i \alpha_j x_i x_j \right]$ 

non-cross terms

cross terms

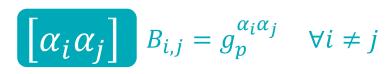




When  $x_i^2 = x_i$ , difference between these terms is

 $\left[\Sigma_{i\neq j}\alpha_i\alpha_j(x_i-x_ix_j)\right]$ 

Give prover ability to <u>eliminate</u> cross-terms *only*  Augment CRS with cross-terms



Prover now computes additional group component in the base group

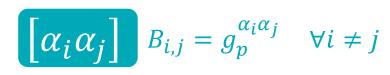
$$\begin{bmatrix} \sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix} \quad \text{Pair with } g_p \qquad \begin{bmatrix} \sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix}$$
$$V = B_{i,j}^{x_i - x_i x_j} \qquad e(g_p, V)$$



When  $x_i^2 = x_i$ , difference between these terms is

 $\left[\Sigma_{i\neq j}\alpha_i\alpha_j(x_i-x_ix_j)\right]$ 

Give prover ability to <u>eliminate</u> cross-terms *only*  Augment CRS with cross-terms



Prover now computes additional group component in the base group

$$\begin{bmatrix} \sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix} \quad \text{Pair with } g_p \qquad \begin{bmatrix} \sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix}$$
$$V = B_{i,j}^{x_i - x_i x_j} \qquad e(g_p, V)$$

**Overall verification relation:**  $e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$   $A = \prod_{i \in [m]} A_i$ 

Prover now computes additional group component in the base group

$$\begin{bmatrix} \sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix} \xrightarrow{\text{Pair with } g_p} \begin{bmatrix} \sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix}$$
$$V = B_{i,j}^{x_i - x_i x_j} e(g_p, V)$$

**Overall verification relation:**  $e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$   $A = \prod_{i \in [m]} A_i$ 

Non-cross terms ensure that  $x_i^2 = x_i$ 

Prover now computes additional group component in the base group

$$\begin{bmatrix} \sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix} \xrightarrow{\text{Pair with } g_p} \begin{bmatrix} \sum_{i \neq j} \alpha_i \alpha_j (x_i - x_i x_j) \end{bmatrix}$$
$$V = B_{i,j}^{x_i - x_i x_j} e(g_p, V)$$

**Overall verification relation:**  $e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$   $A = \prod_{i \in [m]} A_i$ 

Non-cross terms ensure that  $x_i^2 = x_i$ Correction factor to correct for cross terms

#### **Common reference string:**

$$\begin{bmatrix} \alpha_{1} \\ A_{1} = g_{p}^{\alpha_{1}} \end{bmatrix} \begin{bmatrix} \cdots \\ A_{m} \end{bmatrix} \begin{bmatrix} \alpha_{m} \\ A_{m} = g_{p}^{\alpha_{m}} \end{bmatrix}$$
$$\begin{bmatrix} \alpha_{1} + \cdots & \alpha_{m} \end{bmatrix} A = \prod_{i \in [m]} A_{i}$$
$$\begin{bmatrix} \alpha_{i} \alpha_{j} \\ B_{i,j} = g_{p}^{\alpha_{i} \alpha_{j}} \forall i \neq j$$

Commitment to  $(x_1, ..., x_m)$ :  $\begin{bmatrix} \sum_{i \in [m]} \alpha_i x_i \end{bmatrix}$   $\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$   $= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$ 

#### Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

$$w_1$$
  
 $w_2$  NAND  $w_3$   
for all  $i \in [m]: w_{3,i} = 1 - w_{1,i}w_{2,i}$ 

Can leverage same approach as before:

$$e(\sigma_{w_{3}}, A) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} w_{3,i} + \sum_{i \neq j} \alpha_{i} \alpha_{j} w_{3,i}}$$
$$e(A, A) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} + \sum_{i \neq j} \alpha_{i} \alpha_{j}}$$
$$e(\sigma_{w_{1}}, \sigma_{w_{2}}) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} w_{1,i} w_{2,i} + \sum_{i \neq j} \alpha_{i} \alpha_{j} w_{1,i} w_{2,j}}$$

#### **Common reference string:**

$$\begin{bmatrix} \alpha_{1} \\ A_{1} = g_{p}^{\alpha_{1}} \end{bmatrix} \begin{bmatrix} \cdots \\ A_{m} \end{bmatrix} \begin{bmatrix} \alpha_{m} \\ A_{m} = g_{p}^{\alpha_{m}} \end{bmatrix}$$
$$\begin{bmatrix} \alpha_{1} + \cdots & \alpha_{m} \end{bmatrix} A = \prod_{i \in [m]} A_{i}$$
$$\begin{bmatrix} \alpha_{i} \alpha_{j} \\ B_{i,j} = g_{p}^{\alpha_{i} \alpha_{j}} \forall i \neq j$$

#### Gate validity

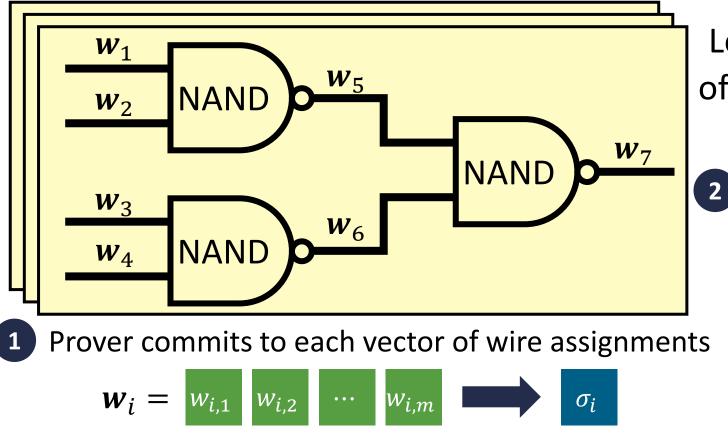
For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

$$w_1$$
  
 $w_2$  NAND  $w_3$   
for all  $i \in [m]: w_{3,i} = 1 - w_{1,i}w_{2,i}$ 

Can leverage same approach as before:

If  $w_{3,i} + w_{1,i}w_{2,i} = 1$  for all i, then  $\frac{e(\sigma_{w_3}, A)e(\sigma_{w_1}, \sigma_{w_2})}{e(A, A)}$ only consists of cross terms!  $e(\sigma_{w_{3}}, A) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} w_{3,i} + \sum_{i \neq j} \alpha_{i} \alpha_{j} w_{3,i}}$  $e(A, A) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} + \sum_{i \neq j} \alpha_{i} \alpha_{j}}$  $e(\sigma_{w_{1}}, \sigma_{w_{2}}) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} w_{1,i} w_{2,i} + \sum_{i \neq j} \alpha_{i} \alpha_{j} w_{1,i} w_{2,j}}$ 

## **Proof Size**



Let  $w_i = (w_{i,1}, ..., w_{i,m})$  be vector of wire labels associated with wire *i* 

Prover constructs the following proofs:Input validityWire validityOne group elementGate validityOne group elementOutput validity

**Commitment size:**  $|\sigma_i| = \text{poly}(\lambda)$ Single group element **Overall proof size (***t* wires, *s* gates):  $(2t + s) \cdot poly(\lambda) = |C| \cdot poly(\lambda)$ 

# Is This Sound?

#### **Common reference string:**

$$\begin{bmatrix} \alpha_1 \\ A_1 = g_p^{\alpha_1} \end{bmatrix} \begin{bmatrix} \cdots \\ A_m \end{bmatrix} \begin{bmatrix} \alpha_m \\ A_m = g_p^{\alpha_m} \end{bmatrix}$$
$$\begin{bmatrix} \alpha_1 + \cdots & \alpha_m \end{bmatrix} A = \prod_{i \in [m]} A_i$$
$$\begin{bmatrix} \alpha_i & \alpha_j \\ B_{i,j} = g_p^{\alpha_i & \alpha_j} & \forall i \neq j \end{bmatrix}$$

Commitment to  $(x_1, ..., x_m)$ :  $\begin{bmatrix} \sum_{i \in [m]} \alpha_i x_i \end{bmatrix}$   $\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$   $= g_n^{\alpha_1 x_1 + \dots + \alpha_m x_m}$ 

#### Soundness requires some care:

Groth-Ostrovsky-Sahai NIZK based on similar commit-and-prove strategy

Soundness in GOS is possible by *extracting* a witness from the commitment

For a false statement, no witness exists

**Our setting:** commitments are *succinct* – <u>cannot</u> extract a full witness

**Solution:** "local extractability" [KPY19] or "somewhere extractability" [CJJ21]

### Somewhere Soundness

CRS will have two modes:

Normal mode: used in the real scheme

If proof  $\pi$  verifies, then we can extract a witness  $w_i$  such that  $C(x_i, w_i) = 1$ 

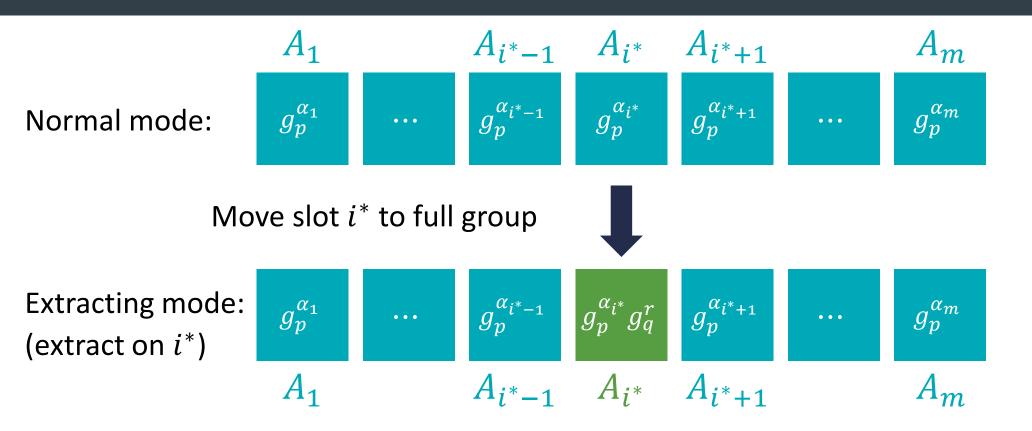
**Extracting on index** *i*: supports witness extraction for instance *i* (given a trapdoor)

CRS in the two modes are computationally indistinguishable

Similar to "dual-mode" proof systems and somewhere statistically binding hash functions

Implies non-adaptive soundness

### **Local Extraction**



Subgroup decision assumption [BGN05]:

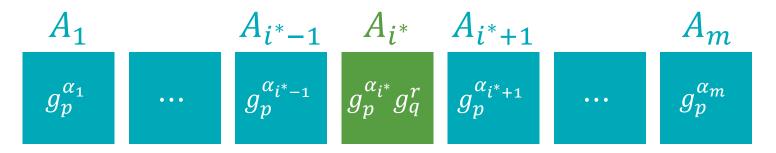
Random element in subgroup ( $\mathbb{G}_p$ )

 $\approx$ 

Random element in full group (G)

## **Local Extraction**

CRS in extraction mode (for index  $i^*$ ):



**Trapdoor:**  $g_q$  (generator of  $\mathbb{G}_q$ )

Can extract by projecting into  $\mathbb{G}_q$ 

Extracted bit for a commitment  $\sigma$  is 1 if  $\sigma$  has a (non-zero) component in  $\mathbb{G}_q$ 

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_p, V)$$

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_p, V)$$

Adversary chooses commitment  $\sigma_x$  and proof *V* 

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_p, V)$$

Adversary chooses commitment  $\sigma_x$  and proof V

Generator  $g_p$  and aggregated component A part of the CRS (honestly-generated)

If this relation holds, it must hold in **both** the order-p subgroup **and** the order-q subgroup of  $\mathbb{G}_T$ 

**Key property:**  $e(g_p, V)$  is **always** in the order-p subgroup; adversary **cannot** influence the verification relation in the order-q subgroup

Write  $\sigma_x = g_p^s g_q^t$ In the order-q subgroup, exponents must satisfy:Write  $A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$ In the order-q subgroup, exponents must satisfy:

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_p, V)$$

Adversary chooses commitment  $\sigma_x$  and proof V

Generator  $g_p$  and aggregated component A part of the CRS (honestly-generated)

If this relation holds, it must hold in **both** the order-*p* subgroup and the order-*a* subgroup of  $\mathbb{C}$ . If wire validity checks pass, then  $t = b_i r$  where  $b_i \in \{0,1\}$ Verification relation in the ord Write  $\sigma_x = g_p^s g_q^t$ Write  $A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$ In the <u>order-*q*</u> subgroup, exponents must satisfy:  $t^2 = tr \mod q$ 

Consider gate validity check:

$$e(\sigma_{\mathbf{w}_3}, A)e(\sigma_{\mathbf{w}_1}, \sigma_{\mathbf{w}_2}) = e(A, A)e(g_p, W)$$

Consider gate validity check:

$$e(\sigma_{\mathbf{W}_3}, A)e(\sigma_{\mathbf{W}_1}, \sigma_{\mathbf{W}_2}) = e(A, A)e(g_p, W)$$

Adversary chooses commitment  $\sigma_{w_1}, \sigma_{w_2}, \sigma_{w_3}$  and proof W

Generator  $g_p$  and aggregated key A part of the CRS (<u>honestly-generated</u>)

Write

$$\sigma_{w_{1}} = g_{p}^{s_{1}} g_{q}^{t_{1}}$$
  

$$\sigma_{w_{2}} = g_{p}^{s_{2}} g_{q}^{t_{2}}$$
  

$$\sigma_{w_{3}} = g_{p}^{s_{3}} g_{q}^{t_{3}}$$

Write  $A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$ 

In the order-q subgroup, exponents must satisfy:  $t_3r + t_1t_2 = r^2 \mod q$ 

By wire validity checks:  $t_i = b_i r$  where  $b_i \in \{0,1\}$ 

$$b_3 r^2 + b_1 b_2 r^2 = r^2 \mod q$$
  
 $b_3 = 1 - b_1 b_2 = \operatorname{NAND}(b_1, b_2)$ 

Consider gate validity check:

$$e(\sigma_{W_3}, A)e(\sigma_{W_1}, \sigma_{W_2}) = e(A, A)e(g_p, W)$$

Adversary chooses commitment  $\sigma_{w_1}, \sigma_{w_2}, \sigma_{w_3}$  and proof W

Generator  $g_p$  and aggregated key A part of the CRS (<u>honestly-generated</u>)

Write

$$\sigma_{w_{1}} = g_{p}^{s_{1}} g_{q}^{t_{1}}$$
  

$$\sigma_{w_{2}} = g_{p}^{s_{2}} g_{q}^{t_{2}}$$
  

$$\sigma_{w_{3}} = g_{p}^{s_{3}} g_{q}^{t_{3}}$$

Write 
$$A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$$

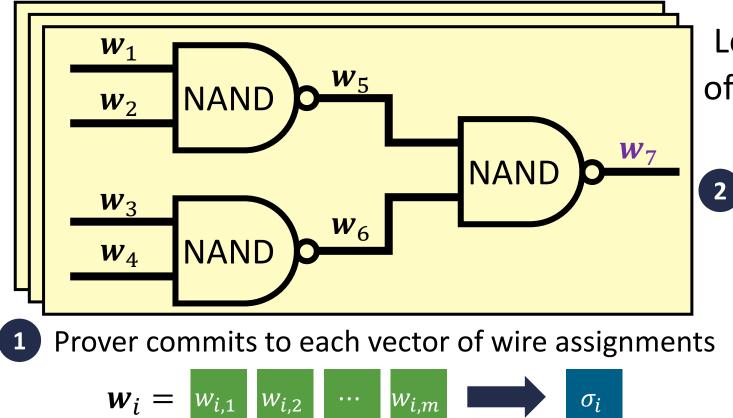
In the order-q subgroup, exponents must satisfy:  

$$t_3r + t_1t_2 = r^2 \mod q$$

**Conclusion:** extracted bits are consistent with gate operation

$$b_3 = 1 - b_1 b_2 = \text{NAND}(b_1, b_2)$$

## A Commit-and-Prove Strategy for Batch Arguments



Let  $w_i = (w_{i,1}, ..., w_{i,m})$  be vector of wire labels associated with wire iacross the m instances

Prover constructs the following proofs: Input validity Wire validity Gate validity Output validity

**Key idea:** Validity checks are quadratic and can be checked in the exponent

## From Composite-Order to Prime-Order

Batch arguments for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

composite-order group

Simulate subgroups with subspaces

#### Yields a batch argument from

 $\mathbb{G} \cong \mathbb{G}_p \times \mathbb{G}_q$ 

k-Linear assumption (for any  $k \ge 1$ ) in prime-order asymmetric bilinear groups

# **Reducing CRS Size**

Common reference string:

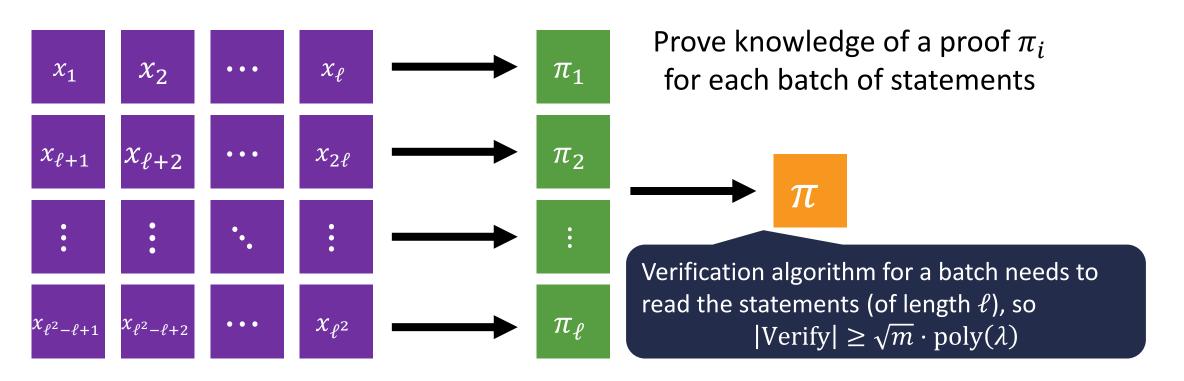
Am  $A_1$  $A_2$ • • •  $B_{1,m}$ B<sub>1,3</sub> *B*<sub>1,2</sub> • • • B<sub>2,3</sub>  $B_{2,m}$ • • • •  $B_{m-1,m}$ 

Size of CRS is 
$$m^2 \cdot \operatorname{poly}(\lambda)$$

Can rely on recursive composition to reduce CRS size:  $m^2 \cdot \text{poly}(\lambda) \rightarrow m^{\varepsilon} \cdot \text{poly}(\lambda)$ for any constant  $\varepsilon > 0$ 

Similar approach as [KPY19]

## The Base Case



 $\ell = \sqrt{m}$ 

Use batch argument on  $\ell = \sqrt{m}$  instances to prove each batch

Both batch arguments are on  $\ell = \sqrt{m}$  statements

## **Batch Arguments with Split Verification**

Verify(crs, 
$$C$$
,  $(x_1, ..., x_m)$ ,  $\pi$ )

$$GenVK(crs, (x_1, ..., x_m)) \to vk$$

Runs in time  $poly(\lambda, m, n)$  $|vk| = poly(\lambda, \log m, n)$ 

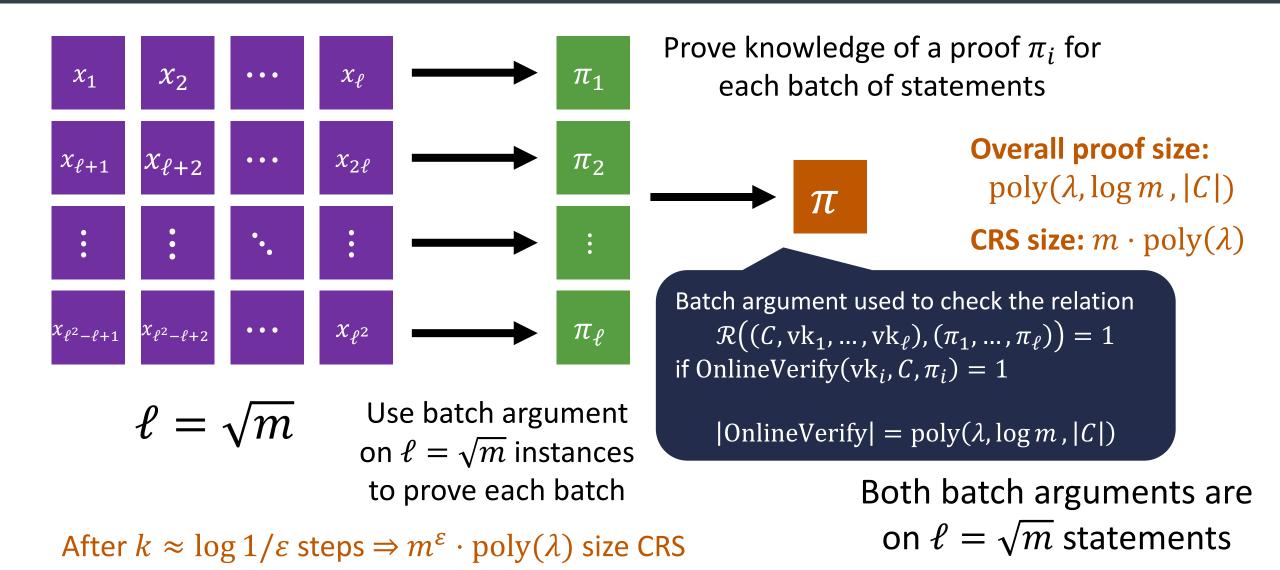
## OnlineVerify(vk, $C, \pi$ ) Runs in time poly( $\lambda$ , log m, |C|)

Preprocesses statements into a <u>short</u> verification key

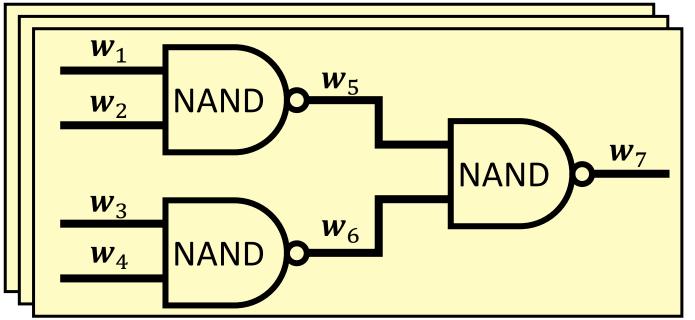
### Fast online verification

(Similar property from [CJJ21])

## **Recursive Bootstrapping**



# **Batch Arguments with Split Verification**



In online phase, verifier uses commitments  $(\sigma_1, \dots, \sigma_n)$  for the bits of input wires

(no more input validity checks)

#### Verifier checks the following

Input validity Wire validity Gate validity Output validity  $nm \cdot \text{poly}(\lambda)$ 

 $|C| \cdot \text{poly}(\lambda)$ constant number of group operations per wire/gate

#### Only depends on the statement!

Given  $(x_1, ..., x_m) \in (\{0,1\}^n)^m$ , verifier computes commitments to bits of the statement

$$\forall j \in [n]: \sigma_j \leftarrow \prod_{i \in [m]} A_i^{x_{i,j}}$$

GenVK(crs,  $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ )  $\rightarrow (\sigma_1, \dots, \sigma_n)$ 

## **Batch Arguments with Short CRS**

**Corollary:** Batch arguments for NP from standard assumptions over bilinear maps

- k-Linear assumption (for any  $k \ge 1$ ) in prime-order bilinear groups
- Subgroup decision assumption in composite-order bilinear groups

For a proof on *m* instances of length *n*:

- **CRS size:**  $|\operatorname{crs}| = m^{\varepsilon} \cdot \operatorname{poly}(\lambda)$  for any constant  $\varepsilon > 0$
- **Proof size:**  $|\pi| = \text{poly}(\lambda, |C|)$
- Verification time:  $|Verify| = poly(\lambda, n, m) + poly(\lambda, |C|)$

### Choudhuri et al. [CJJ21] showed:

Batch argument with split verification



succinct argument for polynomial-time computations

Delegation scheme for RAM programs

*succinct vector commitment that allows extracting on single index* 

### Choudhuri et al. [CJJ21] showed:

Batch argument with split verification



succinct argument for polynomial-time computations

Delegation scheme for RAM programs

This work (from k-Lin)

*succinct vector commitment that allows extracting on single index* 

### Choudhuri et al. [CJJ21] showed:



### Choudhuri et al. [CJJ21] showed:

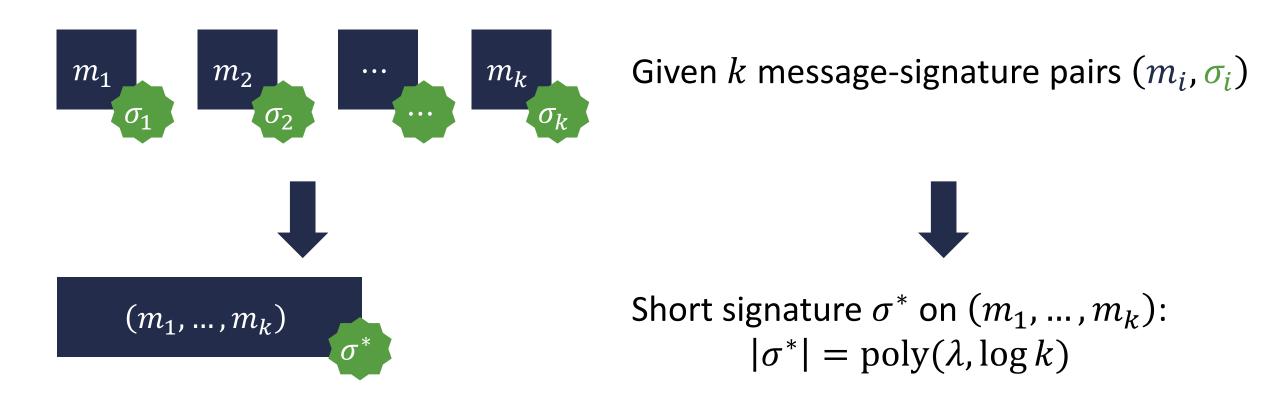


**Corollary.** RAM delegation from SXDH on prime-order pairing groups To verify a time-T RAM computation:

- **CRS size:**  $|\operatorname{crs}| = T^{\varepsilon} \cdot \operatorname{poly}(\lambda)$  for any constant  $\varepsilon > 0$
- **Proof size:**  $|\pi| = \operatorname{poly}(\lambda, \log T)$
- **Verification time:**  $|Verify| = poly(\lambda, \log T)$

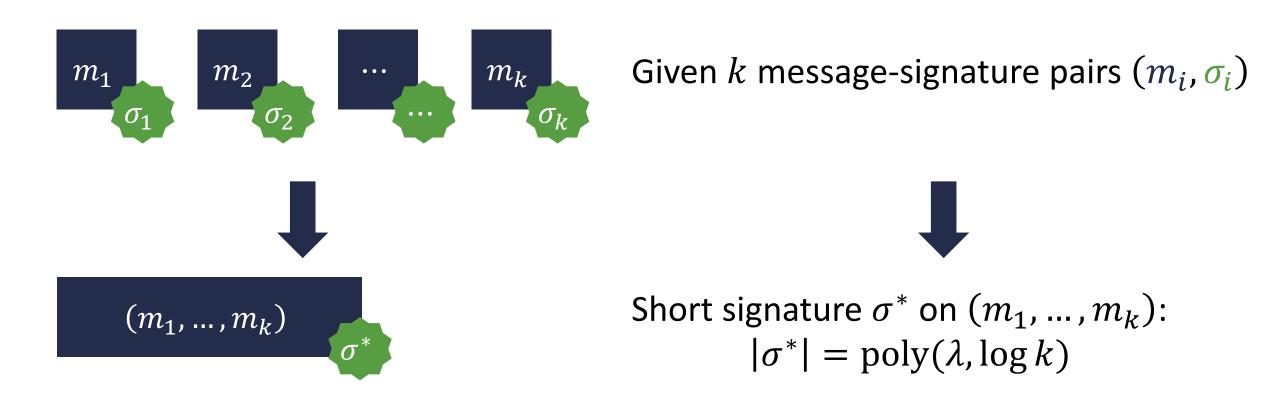
**Previous pairing constructions:** non-standard assumptions [KPY19] or quadratic CRS [GZ21]

## **Application to Aggregate Signatures**



Folklore construction from succinct arguments for NP (SNARKs for NP): prove knowledge of  $\sigma_1, ..., \sigma_k$  such that  $Verify(vk, m_i, \sigma_i) = 1$ 

## **Application to Aggregate Signatures**



**Can replace SNARKs for NP with a batch argument for NP:** prove knowledge of  $\sigma_1, ..., \sigma_k$  such that  $Verify(vk, m_i, \sigma_i) = 1$ 

## **Application to Aggregate Signatures**

### Can replace SNARKs for NP with a batch argument for NP:

prove knowledge of  $\sigma_1, \ldots, \sigma_k$  such that  $Verify(vk, m_i, \sigma_i) = 1$ 

**This work:** Batch argument for <u>bounded</u> number of instances

**Corollary.** Aggregate signature supporting <u>bounded</u> aggregation from bilinear maps

First aggregate signature with bounded aggregation from standard pairingbased assumptions (i.e., k-Lin) in the plain model

**Previous pairing constructions:** unbounded aggregation from standard pairingbased assumptions in the random oracle model [BGLS03]

## Summary

Batch arguments for NP from standard assumptions over bilinear maps

**Key feature:** Construction is "low-tech"

Direct "commit-and-prove" approach like classic pairing-based proof systems

**Corollary:** RAM delegation (i.e., "SNARG for P") with sublinear CRS

**Corollary:** Aggregate signature with bounded aggregation

## https://eprint.iacr.org/2022/336 Thank you!