Batch Arguments for NP
 from Standard Bilinear Group Assumptions

Brent Waters and David Wu

Batch Arguments for NP

Boolean circuit satisfiability

$$
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
$$

$$
\left(x_{1}, \ldots, x_{m}\right)
$$

prover has m statements and wants to convince verifier that

$$
x_{i} \in \mathcal{L}_{C} \text { for all } i \in[\mathrm{~m}]
$$

Batch Arguments for NP

Boolean circuit satisfiability

$$
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
$$

prover

Can the proof size be sublinear in the number of instances m ?

Naïve solution: send witnesses
w_{1}, \ldots, w_{m} and verifier checks $C\left(x_{i}, w_{i}\right)=1$ for all $i \in[m]$

Goal: Amortize the Cost of NP Verification

$$
\begin{gathered}
\text { Boolean circuit satisfiability } \\
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
\end{gathered}
$$

Proof size: $|\pi|=\operatorname{poly}(\lambda, \log m,|C|)$

λ : security parameter

Proof size can scale with circuit size (not a SNARG for NP)

Goal: Amortize the Cost of NP Verification

$$
\begin{gathered}
\text { Boolean circuit satisfiability } \\
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
\end{gathered}
$$

Verification time: running time of verifier is poly $(\lambda, m, n)+\operatorname{poly}(\lambda, \log m,|C|)$

Goal: Amortize the Cost of NP Verification

$$
\begin{gathered}
\text { Boolean circuit satisfiability } \\
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
\end{gathered}
$$

Computational soundness: polynomial-time prover cannot convince verifier of $\left(x_{1}, \ldots, x_{m}\right)$ if there is any $i \in[m]$ where $x_{i} \notin \mathcal{L}_{C}$

Goal: Amortize the Cost of NP Verification

$$
\begin{gathered}
\text { Boolean circuit satisfiability } \\
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
\end{gathered}
$$

For (statistically-sound) proofs:

- With inefficient provers, IP = PSPACE [LFKN92, Sha92] theorem gives interactive proof for batch NP with communication poly $(\log m,|C|)$
- With efficient provers, we have interactive proofs for batch UP with communication poly $(\log m,|C|)$ [RRR16, RRR18, RR20]

Computational soundness: polynomial-time prover cannot convince verifier of $\left(x_{1}, \ldots, x_{m}\right)$ if there is any $i \in[m]$ where $x_{i} \notin \mathcal{L}_{C}$

Goal: Amortize the Cost of NP Verification

$$
\begin{gathered}
\text { Boolean circuit satisfiability } \\
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
\end{gathered}
$$

Focus: Non-interactive setting (proof is a single message)

Goal: Amortize the Cost of NP Verification

common reference string

110010000111111000001101111101111111011111010010010

Focus: Non-interactive setting (proof is a single message)
Prover and verifier have access to a common reference string (CRS)

An Application: Succinct Argument for \mathbf{P}

Turing machine M, input x, time bound T
Show: $M(x)=1$ in at most T steps

Proof size: $|\pi|=\operatorname{poly}(\lambda, \log T)$
Verification time: running time of verifier is poly $(\lambda,|x|)+\operatorname{poly}(\lambda, \log T)$

An Application: Succinct Argument for \mathbf{P}

(Very) high-level idea:

Prover commits to the vector of computation states $\left(\mathrm{st}_{0}, \ldots, \mathrm{st}_{T}\right)$
Checking each transition can be implemented by a circuit of size poly (λ)
Each step only changes a constant number of positions in the computation state Prover constructs a batch argument that all T transitions are valid Statements are indices $1, \ldots, T$ and the NP relation is checking validity of step i

Batch Arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGs)
Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation
Batch arguments from correlation intractable hash functions
Sub-exponential DDH (in pairing-free groups) + QR (with \sqrt{m} size proofs) [CJJ21a]
Learning with errors (LWE) [CJJ21b]
Batch arguments from pairing-based assumptions
Non-standard, but falsifiable q-type assumption on bilinear groups

This Work

New constructions of non-interactive batch arguments for NP
Batch arguments for NP from standard assumptions over bilinear maps
k-Linear assumption (for any $k \geq 1$) in prime-order bilinear groups
Subgroup decision assumption in composite-order bilinear groups
Key feature: Construction is "low-tech"
No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs Direct "commit-and-prove" approach à la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS from standard bilinear map assumptions
Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]
Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions
Previous bilinear map constructions: random oracle based [BGLS03]

A Commit-and-Prove Strategy for Batch Arguments

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire i across the m instances
(1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longleftrightarrow \sigma_{i}
$$

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

A Commit-and-Prove Strategy for Batch Arguments

(1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longmapsto \quad \sigma_{i}
$$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire i across the m instances
2) Prover constructs the following proofs: Input validity

Commitments to the statement wires are correctly computed

Commitments in our scheme are deterministic, so verifier can directly check

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

A Commit-and-Prove Strategy for Batch Arguments

1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longmapsto \quad \sigma_{i}
$$

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire i across the m instances

2 Prover constructs the following proofs: Input validity
Wire validity
Commitment for each wire is a commitment to a 0/1 vector

A Commit-and-Prove Strategy for Batch Arguments

1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longmapsto \quad \sigma_{i}
$$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire i across the m instances

2 Prover constructs the following proofs: Input validity
Wire validity

Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

A Commit-and-Prove Strategy for Batch Arguments

1 Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longmapsto \quad \sigma_{i}
$$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire i across the m instances

2 Prover constructs the following proofs: Input validity
Wire validity
Gate validity
Output validity
Commitment to output wire is a commitment to the all-ones vector

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

A Commit-and-Prove Strategy for Batch Arguments

1 Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longmapsto \quad \sigma_{i}
$$

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire i across the m instances
2) Prover constructs the following proofs: Input validity
Wire validity
Gate validity
Output validity

Key idea: Validity checks are quadratic and can be checked in the exponent

Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)
Let \mathbb{G} be a group of order $N=p q$ (composite order)
Let $\mathbb{G}_{p} \subset \mathbb{G}$ be the subgroup of order p and let g_{p} be a generator of \mathbb{G}_{p}
crs: sample $\alpha_{1}, \ldots, \alpha_{m} \leftarrow \mathbb{Z}_{N}$

$$
\text { output } A_{1} \leftarrow g_{p}^{\alpha_{1}}, \ldots, A_{m} \leftarrow g_{p}^{\alpha_{m}}
$$

denotes encodings in \mathbb{G}_{p}
$\left[\alpha_{1}\right]\left[\alpha_{2}\right][\cdots]\left[\alpha_{m}\right]$
commitment to $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \in\{0,1\}^{m}$:

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \quad \text { (subset product of the } A_{i}{ }^{\prime} \mathrm{s} \text {) } \\
{\left[\sigma_{x}\right] } & =\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right]
\end{aligned}
$$

Proving Relations on Committed Values

Common reference string:

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
{\left[\alpha_{1}\right]} & A_{1}=g_{p}^{\alpha_{1}} \\
{[\vdots]} & \\
{\left[\alpha_{m}\right]} & A_{m}=g_{p}^{\alpha_{m}}
\end{array}\right.}
\end{array}
$$

Commitment to $\left(x_{1}, \ldots, x_{m}\right)$:

$$
\begin{aligned}
& \sum_{i} \in[m] a_{i} x_{i} \\
& \sigma_{x}=A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
&=g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

Wire validity

Commitment for each wire is a commitment to a $0 / 1$ vector

$$
x \in\{0,1\} \text { if and only if } x^{2}=x
$$

Key idea: Use pairing to check quadratic relation in the exponent
Recall: pairing is an efficiently-computable bilinear map on \mathbb{G} :

$$
e\left(g^{x}, g^{y}\right)=e(g, g)^{x y}
$$

Multiplies exponents in the target group

Proving Relations on Committed Values

Common reference string:

$$
\begin{array}{ll}
{\left[\alpha_{1}\right]} & A_{1}=g_{p}^{\alpha_{1}} \\
{\left[\begin{array}{c}
\vdots
\end{array}\right]} \\
{\left[\alpha_{m}\right] \quad} & A_{m}=g_{p}^{\alpha_{m}}
\end{array}
$$

Commitment to $\left(x_{1}, \ldots, x_{m}\right)$:

$$
\begin{aligned}
& {\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right]} \\
& \begin{array}{l}
\sigma_{x}=A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
\\
\quad=g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{array}
\end{aligned}
$$

Wire validity

Commitment for each wire is a commitment to a $0 / 1$ vector $x \in\{0,1\}$ if and only if $x^{2}=x$

Approach: consider the following pairing relations:

$$
e\left(\sigma_{x}, \sigma_{x}\right) \text { and } e\left(\sigma_{x}, \Pi_{i \in[m]} A_{i}\right)
$$

$$
A=\Pi_{i \in[m]} A_{i}=g_{p}^{\Sigma_{i \in[m]} \alpha_{i}}
$$

(commitment to all-ones vector)

Proving Relations on Committed Values

Common reference string:

$$
\begin{aligned}
& {\left[\alpha_{1}\right]} \\
& {\left[\begin{array}{l}
a_{1}=g_{p}^{\alpha_{1}} \\
{\left[a_{m}\right]}
\end{array} A_{m}=g_{p}^{\alpha_{m}}\right.}
\end{aligned}
$$

Commitment to $\left(x_{1}, \ldots, x_{m}\right)$:

$$
\begin{array}{r}
\left.\sum_{i \in[m]} \alpha_{i} x_{i}\right] \\
\sigma_{x}=A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
=g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{array}
$$

Wire validity

Commitment for each wire is a commitment to a $0 / 1$ vector $x \in\{0,1\}$ if and only if $x^{2}=x$

Approach: consider the following pairing relations:

$$
e\left(\sigma_{x}, \sigma_{x}\right) \text { and } e\left(\sigma_{x}, \Pi_{i \in[m]} A_{i}\right)
$$

Proving Relations on Committed Values

Common reference string:

$$
\left[\alpha_{1}\right] \quad A_{1}=g_{p}^{\alpha_{1}}
$$

$\boldsymbol{e}\left(\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right],\left[\Sigma_{i \in[m]} \alpha_{i}\right]\right)$
$\left[\Sigma_{i \in[m]} \alpha_{i}^{2} x_{i}\right] \times\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j} x_{i}\right]$ non-cross terms

Wire validity

[:]

$$
\left[\alpha_{m}\right] A_{m}=g_{p}^{\alpha_{m}}
$$

Commitment for each wire is a commitment to a $0 / 1$ vector $x \in\{0,1\}$ if and only if $x^{2}=x$

Approach: consider the following pairing relations:

$$
e\left(\sigma_{x}, \sigma_{x}\right) \text { and } e\left(\sigma_{x}, \Pi_{i \in[m]} A_{i}\right)
$$

$$
\boldsymbol{e}\left(\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right],\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right]\right)
$$

$$
=\left[\Sigma_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}\right] \times\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}\right]
$$

non-cross terms

Proving Relations on Committed Values

If $x_{i}^{2}=x_{i}$ for all i, then

$\left[\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}\right]$

Wire validity

Commitment for each wire is a commitment to a $0 / 1$ vector $x \in\{0,1\}$ if and only if $x^{2}=x$

Approach: consider the following pairing relations:

$$
e\left(\sigma_{x}, \sigma_{x}\right) \text { and } e\left(\sigma_{x}, \Pi_{i \in[m]} A_{i}\right)
$$

$\boldsymbol{e}\left(\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right],\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right]\right)$
$=\left[\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}\right]$
non-cross terms

cross terms

Proving Relations on Committed Values

If $x_{i}^{2}=x_{i}$ for all i, then

\square
$\left[\Sigma_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}\right]$

Wire validity

Commitment for each wire is a commitment to a $0 / 1$ vector $x \in\{0,1\}$ if and only if $x^{2}=x$

Approach: consider the following pairing relations:

$$
e\left(\sigma_{x}, \sigma_{x}\right) \text { and } e\left(\sigma_{x}, \Pi_{i \in[m]} A_{i}\right)
$$

$\boldsymbol{e}\left(\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right],\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right]\right)$

When $x_{i}^{2}=x_{i}$, difference between these terms is

$$
\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j}\left(x_{i}-x_{i} x_{j}\right)\right]
$$

Give prover ability to eliminate cross-terms only

Augment CRS with cross-terms

$$
\left[\alpha_{i} \alpha_{j}\right] B_{i, j}=g_{p}^{\alpha_{i} \alpha_{j}} \quad \forall i \neq j
$$

Proving Relations on Committed Values

Prover now computes additional group component in the base group

$$
\left[\sum_{i \neq j} \alpha_{i} \alpha_{j}\left(x_{i}-x_{i} x_{j}\right)\right] \stackrel{\text { Pair with } g_{p}}{V=B_{i, j}^{x_{i}-x_{i} x_{j}}} \stackrel{\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j}\left(x_{i}-x_{i} x_{j}\right)\right]}{e\left(g_{p}, V\right)}
$$

$$
\boldsymbol{e}\left(\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right],\left[\Sigma_{i \in[m]} \alpha_{i}\right]\right) \boldsymbol{e}\left(\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right],\left[\Sigma_{i \in[m]} \alpha_{i} x_{i}\right]\right)
$$

When $x_{i}^{2}=x_{i}$, difference between these terms is

$$
\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j}\left(x_{i}-x_{i} x_{j}\right)\right]
$$

Give prover ability to eliminate cross-terms only

Augment CRS with cross-terms

$$
\left[\alpha_{i} \alpha_{j}\right] B_{i, j}=g_{p}^{\alpha_{i} \alpha_{j}} \quad \forall i \neq j
$$

Proving Relations on Committed Values

Prover now computes additional group component in the base group

$$
\begin{gathered}
{\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j}\left(x_{i}-x_{i} x_{j}\right)\right]} \\
V=B_{i, j}^{x_{i}-x_{i} x_{j}} \\
e\left(g_{p}, V\right)
\end{gathered}
$$

Overall verification relation: $e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right) \quad A=\Pi_{i \in[m]} A_{i}$

Proving Relations on Committed Values

Prover now computes additional group component in the base group

$$
\begin{gathered}
{\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j}\left(x_{i}-x_{i} x_{j}\right)\right]} \\
V=B_{i, j}^{x_{i}-x_{i} x_{j}}
\end{gathered} \stackrel{\text { Pair with } g_{p}}{e\left(g_{p}, V\right)}
$$

Overall verification relation: $e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right) \quad A=\Pi_{i \in[m]} A_{i}$ Non-cross terms ensure that $x_{i}^{2}=x_{i}$

Proving Relations on Committed Values

Prover now computes additional group component in the base group

$$
\begin{gathered}
{\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j}\left(x_{i}-x_{i} x_{j}\right)\right]} \\
V=B_{i, j}^{x_{i}-x_{i} x_{j}}
\end{gathered} \stackrel{\text { Pair with } g_{p}}{\left[\Sigma_{i \neq j} \alpha_{i} \alpha_{j}\left(x_{i}-x_{i} x_{j}\right)\right]} \begin{gathered}
e\left(g_{p}, V\right)
\end{gathered}
$$

Overall verification relation: $e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right) \quad A=\Pi_{i \in[m]} A_{i}$
Non-cross terms ensure that $x_{i}^{2}=x_{i}$
Correction factor to correct for cross terms

Proving Relations on Committed Values

Common reference string:

$$
\begin{aligned}
& {\left.\underset{A}{A_{1}}\right]_{g_{p}^{\alpha_{1}}}[\cdots] A_{A_{m}=g_{p}^{\alpha_{m}}}^{\left[\alpha_{m}\right]}}_{\left[\alpha_{1}+\cdots \alpha_{m}\right] \quad A=\Pi_{i \in[m]} A_{i}} \\
& {\left[\alpha_{i} \alpha_{j}\right] \quad B_{i, j}=g_{p}^{q_{p}, i_{j}} \forall i \neq j}
\end{aligned}
$$

Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

Can leverage same approach as before:

$$
e\left(\sigma_{\boldsymbol{w}_{3}}, A\right)=e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} w_{3, i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} w_{3, i}}
$$

$$
e(A, A)=e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j}}
$$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

$$
e\left(\sigma_{\boldsymbol{w}_{1}}, \sigma_{\boldsymbol{w}_{2}}\right)=e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} w_{1, i} w_{2, i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} w_{1, i} w_{2, j}}
$$

Proving Relations on Committed Values

Common reference string:

If $w_{3, i}+w_{1, i} w_{2, i}=1$ for all i, then

$$
\frac{e\left(\sigma_{w_{3}}, A\right) e\left(\sigma_{w_{1}}, \sigma_{w_{2}}\right)}{e(A, A)}
$$

only consists of cross terms!

Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

Can leverage same approach as before:
$e\left(\sigma_{\boldsymbol{w}_{3}}, A\right)=e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} w_{3, i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} w_{3, i}}$

$$
e(A, A)=e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j}}
$$

$$
e\left(\sigma_{\boldsymbol{w}_{1}}, \sigma_{\boldsymbol{w}_{2}}\right)=e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} w_{1, i} w_{2, i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} w_{1, i} w_{2, j}}
$$

$$
\begin{aligned}
& \underset{A_{1}=g_{p}^{\alpha_{1}}}{\left[\alpha_{1}\right]} \underset{A_{m}=g_{p}^{\alpha_{m}}}{[\cdots]}\left[\alpha_{m}\right] \\
& {\left[\alpha_{1}+\cdots \alpha_{m}\right] \quad A=\Pi_{i \in[m]} A_{i}} \\
& {\left[\alpha_{i} \alpha_{j}\right] \quad{ }_{B_{i j}}=g_{p}^{\alpha_{p}(\alpha)} \forall i \neq j}
\end{aligned}
$$

Proof Size

(1) Prover commits to each vector of wire assignments

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire i
2) Prover constructs the following proofs: Input validity
Wire validity One group element
Gate validity One group element

$$
\boldsymbol{w}_{i}=\begin{array}{ll|ll}
w_{i, 1} & w_{i, 2} & \cdots & w_{i, m}
\end{array} \quad \longrightarrow \sigma_{i}
$$

Commitment size: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$
Single group element
Overall proof size (\boldsymbol{t} wires, \boldsymbol{s} gates):

$$
(2 t+s) \cdot \operatorname{poly}(\lambda)=|C| \cdot \operatorname{poly}(\lambda)
$$

Is This Sound?

Common reference string:

$$
\begin{aligned}
& {\left[\alpha_{1}\right][\cdots] \quad\left[\alpha_{m}\right]} \\
& A_{1}=g_{p}^{\alpha_{1}} \\
& A_{m}=g_{p}^{\alpha_{m}} \\
& {\left[\alpha_{1}+\cdots \alpha_{m}\right] \quad A=\Pi_{i \in[m]} A_{i}} \\
& {\left[\alpha_{i} \alpha_{j}\right] \quad B_{i, j}=g_{p}^{\alpha_{i} \alpha_{j}} \forall i \neq j}
\end{aligned}
$$

Commitment to $\left(x_{1}, \ldots, x_{m}\right)$:

$$
\begin{aligned}
& \sum_{i \in[m]} a_{i} x_{i} \\
& \sigma_{x}
\end{aligned}=A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} .
$$

Soundness requires some care:
Groth-Ostrovsky-Sahai NIZK based on similar commit-and-prove strategy

Soundness in GOS is possible by extracting a witness from the commitment

For a false statement, no witness exists

Our setting: commitments are succinct - cannot extract a full witness

Solution: "local extractability" [KPY19] or "somewhere extractability" [CJJ21]

Somewhere Soundness

CRS will have two modes:
Normal mode: used in the real scheme

If proof π verifies, then we can extract a witness w_{i} such that $C\left(x_{i}, w_{i}\right)=1$

Extracting on index \boldsymbol{i} : supports witness extraction for instance i (given a trapdoor)
CRS in the two modes are computationally indistinguishable
Similar to "dual-mode" proof systems and somewhere statistically binding hash functions
Implies non-adaptive soundness

Local Extraction

Subgroup decision assumption [BGNO5]:

Local Extraction

CRS in extraction mode (for index i^{*}):

Trapdoor: g_{q} (generator of \mathbb{G}_{q})
Can extract by projecting into \mathbb{G}_{q}
Extracted bit for a commitment $\boldsymbol{\sigma}$ is 1 if $\boldsymbol{\sigma}$ has a (non-zero) component in \mathbb{G}_{q}

Correctness of Extraction

Consider wire validity check:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Correctness of Extraction

Consider wire validity check:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Adversary chooses commitment σ_{x} and proof V

Correctness of Extraction

Consider wire validity check:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Adversary chooses commitment σ_{x} and proof V
Generator g_{p} and aggregated component A part of the CRS (honestly-generated)
If this relation holds, it must hold in both the order- p subgroup and the order- q subgroup of \mathbb{G}_{T}

Key property: $e\left(g_{p}, V\right)$ is always in the order- p subgroup; adversary cannot influence the verification relation in the order- q subgroup

Write $\sigma_{x}=g_{p}^{S} g_{q}^{t}$
Write $A=g_{p}^{\sum_{i \in[m]} \alpha_{i}} g_{q}^{r}$
In the order- q subgroup, exponents must satisfy:

$$
t^{2}=t r \bmod q
$$

Correctness of Extraction

Consider wire validity check:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Adversary chooses commitment σ_{x} and proof V
Generator g_{p} and aggregated component A part of the CRS (honestly-generated)
If this relation holds, it must hold in both
the order-p cubaroun and tho ordora_cubaroun of \mathbb{C}
If wire validity checks pass, then $t=b_{i} r$ where $b_{i} \in\{0,1\}$
Key property: $e\left(g_{p}, V\right)$ is alw
verification relation in the ord Observe: $b_{i} \in\{0,1\}$ is also the extracted bit
Write $\sigma_{x}=g_{p}^{s} g_{q}^{t}$
Write $A=g_{p}^{\sum_{i \in[m]} \alpha_{i}} g_{q}^{r}$
In the order-q subgroup, exponents must satisfy:

$$
t^{2}=t r \bmod q
$$

Correctness of Extraction

Consider gate validity check:

$$
e\left(\sigma_{\boldsymbol{w}_{3}}, A\right) e\left(\sigma_{\boldsymbol{w}_{1}}, \sigma_{\boldsymbol{w}_{2}}\right)=e(A, A) e\left(g_{p}, W\right)
$$

Correctness of Extraction

Consider gate validity check:

$$
e\left(\sigma_{w_{3}}, A\right) e\left(\sigma_{w_{1}}, \sigma_{w_{2}}\right)=e(A, A) e\left(g_{p}, W\right)
$$

Adversary chooses commitment $\sigma_{w_{1}}, \sigma_{w_{2}}, \sigma_{w_{3}}$ and proof W

Generator g_{p} and aggregated key A part of the CRS (honestly-generated)

Write

$$
\begin{aligned}
& \sigma_{\boldsymbol{w}_{1}}=g_{p}^{s_{1}} g_{q}^{t_{1}} \\
& \sigma_{\boldsymbol{w}_{2}}=g_{p}^{s_{2}} g_{q}^{t_{2}} \\
& \sigma_{\boldsymbol{w}_{3}}=g_{p}^{s_{3}} g_{q}^{t_{3}}
\end{aligned}
$$

Write $A=g_{p}^{\sum_{i \in[m]} \alpha_{i}} g_{q}^{r}$

In the order- q subgroup, exponents must satisfy:

$$
t_{3} r+t_{1} t_{2}=r^{2} \bmod q
$$

By wire validity checks: $t_{i}=b_{i} r$ where $b_{i} \in\{0,1\}$

$$
\begin{gathered}
b_{3} r^{2}+b_{1} b_{2} r^{2}=r^{2} \bmod q \\
b_{3}=1-b_{1} b_{2}=\operatorname{NAND}\left(b_{1}, b_{2}\right)
\end{gathered}
$$

Correctness of Extraction

Consider gate validity check:

$$
e\left(\sigma_{w_{3}}, A\right) e\left(\sigma_{w_{1}}, \sigma_{w_{2}}\right)=e(A, A) e\left(g_{p}, W\right)
$$

Adversary chooses commitment $\sigma_{w_{1}}, \sigma_{w_{2}}, \sigma_{w_{3}}$ and proof W
Generator g_{p} and aggregated key A part of the CRS (honestly-generated)

Write

$$
\begin{aligned}
\sigma_{w_{1}} & =g_{p}^{s_{1}} g_{q}^{t_{1}} \\
\sigma_{w_{2}} & =g_{p}^{s_{2}} g_{q}^{t_{2}} \\
\sigma_{w_{3}} & =g_{p}^{s_{3}} g_{q}^{t_{3}}
\end{aligned}
$$

In the order- q subgroup, exponents must satisfy:

$$
t_{3} r+t_{1} t_{2}=r^{2} \bmod q
$$

Conclusion: extracted bits are consistent with gate operation
Write $A=g_{p}^{\sum_{i \in[m]} \alpha_{i}} g_{q}^{r}$

$$
b_{3}=1-b_{1} b_{2}=\operatorname{NAND}\left(b_{1}, b_{2}\right)
$$

A Commit-and-Prove Strategy for Batch Arguments

1 Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} \quad w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longmapsto \quad \sigma_{i}
$$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire i across the m instances

2 Prover constructs the following proofs: Input validity
Wire validity
Gate validity
Output validity

Key idea: Validity checks are quadratic and can be checked in the exponent

From Composite-Order to Prime-Order

Batch arguments for NP from standard assumptions over bilinear maps
Subgroup decision assumption in composite-order bilinear groups

$$
\mathbb{G} \cong \mathbb{G}_{p} \times \mathbb{G}_{q}
$$

composite-order group

Simulate subgroups with subspaces

Yields a batch argument from

k-Linear assumption (for any $k \geq 1$) in prime-order asymmetric bilinear groups

Reducing CRS Size

Common reference string:

Size of CRS is $m^{2} \cdot \operatorname{poly}(\lambda)$

Can rely on recursive composition to reduce CRS size:

$$
m^{2} \cdot \operatorname{poly}(\lambda) \rightarrow m^{\varepsilon} \cdot \operatorname{poly}(\lambda)
$$

for any constant $\varepsilon>0$
Similar approach as [KPY19]

The Base Case

> Prove knowledge of a proof π_{i} for each batch of statements

Verification algorithm for a batch needs to read the statements (of length ℓ), so \mid Verify $\mid \geq \sqrt{m} \cdot \operatorname{poly}(\lambda)$
$\ell=\sqrt{m} \quad$ Use batch argument on $\ell=\sqrt{m}$ instances to prove each batch

Both batch arguments are on $\ell=\sqrt{m}$ statements

Batch Arguments with Split Verification

$\operatorname{Verify}\left(\operatorname{crs}, C,\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right), \pi\right)$

$\operatorname{GenVK}\left(\operatorname{crs},\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)\right) \rightarrow \mathrm{vk}$

$$
\begin{aligned}
& \text { Runs in time poly }(\lambda, m, n) \\
& |\mathrm{vk}|=\operatorname{poly}(\lambda, \log m, n)
\end{aligned}
$$

Preprocesses statements into a short verification key

OnlineVerify (vk, C, π)
Runs in time $\operatorname{poly}(\lambda, \log m,|C|)$

Fast online verification
(Similar property from [CJJ21])

Recursive Bootstrapping

$\ell=\sqrt{m}$

Use batch argument on $\ell=\sqrt{m}$ instances to prove each batch

After $k \approx \log 1 / \varepsilon$ steps $\Rightarrow m^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ size CRS
Prove knowledge of a proof π_{i} for each batch of statements

Overall proof size: $\operatorname{poly}(\lambda, \log m,|C|)$
CRS size: $m \cdot \operatorname{poly}(\lambda)$
Batch argument used to check the relation $\mathcal{R}\left(\left(C, \mathrm{vk}_{1}, \ldots, \mathrm{vk}_{\ell}\right),\left(\pi_{1}, \ldots, \pi_{\ell}\right)\right)=1$ if OnlineVerify $\left(\mathrm{vk}_{i}, C, \pi_{i}\right)=1$
\mid OnlineVerify $\mid=\operatorname{poly}(\lambda, \log m,|C|)$
Both batch arguments are on $\ell=\sqrt{m}$ statements

Batch Arguments with Split Verification

In online phase, verifier uses commitments ($\sigma_{1}, \ldots, \sigma_{n}$) for the bits of input wires
(no more input validity checks)

Only depends on the statement!
Verifier checks the following
\(\left.\begin{array}{l}Input validity

Wire validity

Gate validity

Output validity\end{array}\right\}\)| $n m \cdot \operatorname{poly}(\lambda)$ |
| :---: |
| $\|C\| \cdot \operatorname{poly}(\lambda)$ |
| constant number of group |
| operations per wire/gate |

Given $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right) \in\left(\{0,1\}^{n}\right)^{m}$, verifier computes commitments to bits of the statement

$$
\forall j \in[n]: \sigma_{j} \leftarrow \prod_{i \in[m]} A_{i}^{x_{i, j}}
$$

$\operatorname{GenVK}\left(\operatorname{crs},\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)\right) \rightarrow\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

Batch Arguments with Short CRS

Corollary: Batch arguments for NP from standard assumptions over bilinear maps k-Linear assumption (for any $k \geq 1$) in prime-order bilinear groups Subgroup decision assumption in composite-order bilinear groups

For a proof on m instances of length n :

- CRS size:
$|\operatorname{crs}|=m^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ for any constant $\varepsilon>0$
- Proof size: $|\pi|=\operatorname{poly}(\lambda,|C|)$
- Verification time: \mid Verify $\mid=\operatorname{poly}(\lambda, n, m)+\operatorname{poly}(\lambda,|C|)$

Application to RAM Delegation ("SNARGs for P")

Choudhuri et al. [JJ/21] showed:

Somewhere
extractable
commitment

succinct argument for polynomial-time computations

Delegation scheme for RAM programs
succinct vector commitment that allows extracting on single index

Application to RAM Delegation ("SNARGs for P")

Choudhuri et al. [JJ/21] showed:

Somewhere
extractable
commitment
succinct argument for polynomial-time computations

This work (from k-Lin)

Delegation scheme for RAM programs
succinct vector commitment that allows extracting on single index

Application to RAM Delegation ("SNARGs for P")

Choudhuri et al. [CJJ21] showed:

Application to RAM Delegation ("SNARGs for P")

Choudhuri et al. [cJJ21] showed:

Delegation scheme for RAM programs

This work + [OPWW15]
(from SXDH)
Corollary. RAM delegation from SXDH on prime-order pairing groups To verify a time-T RAM computation:

- CRS size:
\mid crs $\mid=T^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ for any constant $\varepsilon>0$
- Proof size:
$|\pi|=\operatorname{poly}(\lambda, \log T)$
- Verification time: \mid Verify $\mid=\operatorname{poly}(\lambda, \log T)$

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]

Application to Aggregate Signatures

Given k message-signature pairs $\left(m_{i}, \sigma_{i}\right)$

Short signature σ^{*} on $\left(m_{1}, \ldots, m_{k}\right)$:

$$
\left|\sigma^{*}\right|=\operatorname{poly}(\lambda, \log k)
$$

Folklore construction from succinct arguments for NP (SNARKs for NP): prove knowledge of $\sigma_{1}, \ldots, \sigma_{k}$ such that Verify $\left(\mathrm{vk}, m_{i}, \sigma_{i}\right)=1$

Application to Aggregate Signatures

Given k message-signature pairs $\left(m_{i}, \sigma_{i}\right)$

Short signature σ^{*} on $\left(m_{1}, \ldots, m_{k}\right)$:

$$
\left|\sigma^{*}\right|=\operatorname{poly}(\lambda, \log k)
$$

Can replace SNARKs for NP with a batch argument for NP: prove knowledge of $\sigma_{1}, \ldots, \sigma_{k}$ such that Verify $\left(\mathrm{vk}, m_{i}, \sigma_{i}\right)=1$

Application to Aggregate Signatures

Can replace SNARKs for NP with a batch argument for NP: prove knowledge of $\sigma_{1}, \ldots, \sigma_{k}$ such that Verify $\left(\mathrm{vk}, m_{i}, \sigma_{i}\right)=1$

This work: Batch argument for bounded number of instances
Corollary. Aggregate signature supporting bounded aggregation from bilinear maps
First aggregate signature with bounded aggregation from standard pairingbased assumptions (i.e., k-Lin) in the plain model

Previous pairing constructions: unbounded aggregation from standard pairingbased assumptions in the random oracle model [BGLSO3]

Summary

Batch arguments for NP from standard assumptions over bilinear maps
Key feature: Construction is "low-tech"
Direct "commit-and-prove" approach like classic pairing-based proof systems
Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS
Corollary: Aggregate signature with bounded aggregation

$$
\begin{gathered}
\text { https://eprint.iacr.org/2022/336 } \\
\text { Thank you! }
\end{gathered}
$$

