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Batch Arguments for NP

prover verifier

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

prover has 𝑚 statements and 
wants to convince verifier that 

𝑥𝑖 ∈ ℒ𝐶 for all 𝑖 ∈ 𝑚



Batch Arguments for NP

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋 = 𝑤1, … , 𝑤𝑚

Naïve solution: send witnesses 
𝑤1, … , 𝑤𝑚 and verifier checks 
𝐶 𝑥𝑖 , 𝑤𝑖 = 1 for all 𝑖 ∈ [𝑚]

Can the proof size be 
sublinear in the number 

of instances 𝑚?

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤



Goal: Amortize the Cost of NP Verification

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋

Proof size: 𝜋 = poly 𝜆, log𝑚 , 𝐶

𝜆 : security 
parameter

Proof size can scale with circuit size
(not a SNARG for NP)

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤



Goal: Amortize the Cost of NP Verification

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋

Proof size: 𝜋 = poly 𝜆, log𝑚 , 𝐶

Verification time: running time of verifier is poly 𝜆,𝑚, 𝑛 + poly 𝜆, log𝑚 , 𝐶

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

In general setting, verifier 
needs to read statements



Goal: Amortize the Cost of NP Verification

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Computational soundness: polynomial-time prover cannot convince 
verifier of 𝑥1, … , 𝑥𝑚 if there is any 𝑖 ∈ [𝑚] where 𝑥𝑖 ∉ ℒ𝐶



Goal: Amortize the Cost of NP Verification

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Computational soundness: polynomial-time prover cannot convince 
verifier of 𝑥1, … , 𝑥𝑚 if there is any 𝑖 ∈ [𝑚] where 𝑥𝑖 ∉ ℒ𝐶

For (statistically-sound) proofs:
• With inefficient provers, IP = PSPACE [LFKN92, Sha92] theorem 

gives interactive proof for batch NP with communication 
poly log𝑚 , 𝐶

• With efficient provers, we have interactive proofs for batch 
UP with communication poly log𝑚 , 𝐶 [RRR16, RRR18, RR20]



Goal: Amortize the Cost of NP Verification

prover verifier𝑥1, … , 𝑥𝑚

𝜋

Focus: Non-interactive setting (proof is a single message)

Boolean circuit satisfiability

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤



Goal: Amortize the Cost of NP Verification

prover verifier𝑥1, … , 𝑥𝑚

𝜋

Focus: Non-interactive setting (proof is a single message)

Prover and verifier have access to a common reference string (CRS)

110010000111111000001101111101111111011111010010010

common reference string



An Application: Succinct Argument for P

Turing machine 𝑀, input 𝑥, time bound 𝑇

Show: 𝑀 𝑥 = 1 in at most 𝑇 steps

𝑥, 𝑇

𝜋

Proof size: 𝜋 = poly 𝜆, log 𝑇

Verification time: running time of verifier is poly 𝜆, 𝑥 + poly 𝜆, log 𝑇

[KPY19, CJJ21]

prover verifier



An Application: Succinct Argument for P
[KPY19, CJJ21]

(Very) high-level idea:

st0 st1 st𝑇st2

initial state final state

⋯

Prover commits to the vector of computation states st0, … , st𝑇

Checking each transition can be implemented by a circuit of size poly 𝜆

Prover constructs a batch argument that all 𝑇 transitions are valid

Each step only changes a constant number of positions in the computation state

Statements are indices 1,… , 𝑇 and the NP relation is checking validity of step 𝑖



Batch Arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGs)
Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation

Batch arguments from pairing-based assumptions
Non-standard, but falsifiable 𝑞-type assumption on bilinear groups [KPY19]

Batch arguments from correlation intractable hash functions
Sub-exponential DDH (in pairing-free groups) + QR (with 𝑚 size proofs)

Learning with errors (LWE) [CJJ21b]

[CJJ21a]



This Work

New constructions of non-interactive batch arguments for NP

Batch arguments for NP from standard assumptions over bilinear maps
𝑘-Linear assumption (for any 𝑘 ≥ 1) in prime-order bilinear groups

Subgroup decision assumption in composite-order bilinear groups

Key feature: Construction is “low-tech”
No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs

Direct “commit-and-prove” approach à la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS from standard bilinear map assumptions

Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]

Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions

Previous bilinear map constructions: random oracle based [BGLS03]



A Commit-and-Prove Strategy for Batch Arguments
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Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖
across the 𝑚 instances

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

Our construction: 𝜎𝑖 = poly(𝜆)
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Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Input validity

Commitments to the statement wires are 
correctly computed

Commitments in our scheme are 
deterministic, so verifier can directly check

Our construction: 𝜎𝑖 = poly(𝜆)
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Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

For each gate, commitment to output wires is 
consistent with gate operation and 
commitment to input wires

Input validity
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Our construction: 𝜎𝑖 = poly(𝜆)
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Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)
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Input validity
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Output validity
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to the all-ones vector

Our construction: 𝜎𝑖 = poly(𝜆)
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Key idea: Validity checks are quadratic 
and can be checked in the exponent



Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)

crs: sample 𝛼1, … , 𝛼𝑚 ← ℤ𝑁
output 𝐴1 ← 𝑔𝑝

𝛼1 , … , 𝐴𝑚 ← 𝑔𝑝
𝛼𝑚

Let 𝔾 be a group of order 𝑁 = 𝑝𝑞 (composite order)

commitment to 𝒙 = 𝑥1, … , 𝑥𝑚 ∈ 0,1 𝑚:

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴𝑚
𝑥𝑚

Let 𝔾𝑝 ⊂ 𝔾 be the subgroup of order 𝑝 and let 𝑔𝑝 be a generator of 𝔾𝑝

(subset product of the 𝐴𝑖’s)

𝛼1 𝛼2 ⋯ 𝛼𝑚

denotes encodings in 𝔾𝑝

𝜎𝒙 Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖=



𝑒 ,

Proving Relations on Committed Values

𝜎𝒙

𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥

Commitment for each wire is a commitment to a 0/1 vector

Wire validity

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an efficiently-computable bilinear map on 𝔾:

𝑒 𝑔𝑥, 𝑔𝑦 = 𝑒 𝑔, 𝑔 𝑥𝑦

= 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

𝛼1

⋮

𝛼𝑚

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖
𝑥 𝑦 𝑥𝑦

Multiplies exponents in the target group

Common reference string:

Commitment to (𝒙𝟏, … , 𝒙𝒎):



Proving Relations on Committed Values

𝜎𝒙

𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥

Commitment for each wire is a commitment to a 0/1 vector

Wire validity

= 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
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= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

𝛼1

⋮

𝛼𝑚

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

Approach: consider the following pairing relations:

𝑒 𝜎𝒙, 𝜎𝒙 and 𝑒 𝜎𝒙, Π𝑖∈ 𝑚 𝐴𝑖

𝐴 = Π𝑖∈ 𝑚 𝐴𝑖 = 𝑔𝑝
Σ𝑖∈ 𝑚 𝛼𝑖

(commitment to all-ones vector)

Common reference string:

Commitment to (𝒙𝟏, … , 𝒙𝒎):
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𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥
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Proving Relations on Committed Values

𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥

Commitment for each wire is a commitment to a 0/1 vector

Wire validity

Approach: consider the following pairing relations:

𝑒 𝜎𝒙, 𝜎𝒙 and 𝑒 𝜎𝒙, Π𝑖∈ 𝑚 𝐴𝑖
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When 𝑥𝑖
2 = 𝑥𝑖, difference between these terms is

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 𝛼𝑖𝛼𝑗

Give prover ability to 
eliminate cross-terms only

Augment CRS with cross-terms

If 𝑥𝑖
2 = 𝑥𝑖 for all 𝑖, then

Σ𝑖∈ 𝑚 𝛼𝑖
2𝑥𝑖

Σ𝑖∈ 𝑚 𝛼𝑖
2𝑥𝑖

2

𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗



Proving Relations on Committed Values

𝑒 ,Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖 Σ𝑖∈ 𝑚 𝛼𝑖 𝑒 ,Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖 Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

When 𝑥𝑖
2 = 𝑥𝑖, difference between these terms is

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗

Prover now computes additional group component in the base group

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗
Pair with 𝑔𝑝

𝑉 = 𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
𝑒 𝑔𝑝, 𝑉

𝛼𝑖𝛼𝑗 𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗

Give prover ability to 
eliminate cross-terms only

Augment CRS with cross-terms



Proving Relations on Committed Values

Prover now computes additional group component in the base group

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗
Pair with 𝑔𝑝

𝑉 = 𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
𝑒 𝑔𝑝, 𝑉

Overall verification relation: 𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒 𝑔𝑝, 𝑉 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖
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Prover now computes additional group component in the base group

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗
Pair with 𝑔𝑝

𝑉 = 𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
𝑒 𝑔𝑝, 𝑉

Overall verification relation: 𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒 𝑔𝑝, 𝑉 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖

Non-cross terms ensure that 𝑥𝑖
2 = 𝑥𝑖



Proving Relations on Committed Values

Prover now computes additional group component in the base group

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗
Pair with 𝑔𝑝

𝑉 = 𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
𝑒 𝑔𝑝, 𝑉

Overall verification relation: 𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒 𝑔𝑝, 𝑉 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖

Non-cross terms ensure that 𝑥𝑖
2 = 𝑥𝑖

Correction factor to correct for cross terms



Proving Relations on Committed Values

For each gate, commitment to output wires is consistent 
with gate operation and commitment to input wires

Gate validity

for all 𝑖 ∈ [𝑚]: 𝑤3,𝑖 = 1 − 𝑤1,𝑖𝑤2,𝑖

NAND
𝒘3

𝒘2

𝒘1

Can leverage same approach as before:

𝑒 𝜎𝒘3
, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝

σ𝑖∈ 𝑚 𝛼𝑖
2𝑤3,𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑤3,𝑖

𝑒 𝐴, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

2+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗

𝑒 𝜎𝒘1
, 𝜎𝒘2 = 𝑒 𝑔𝑝, 𝑔𝑝

σ𝑖∈ 𝑚 𝛼𝑖
2𝑤1,𝑖𝑤2,𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑤1,𝑖𝑤2,𝑗

Common reference string:

𝛼1 ⋯ 𝛼𝑚
𝐴1 = 𝑔𝑝

𝛼1 𝐴𝑚 = 𝑔𝑝
𝛼𝑚

𝛼1 +⋯𝛼𝑚 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖

𝛼𝑖𝛼𝑗 𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

Commitment to (𝒙𝟏, … , 𝒙𝒎):



Proving Relations on Committed Values

For each gate, commitment to output wires is consistent 
with gate operation and commitment to input wires

Gate validity

for all 𝑖 ∈ [𝑚]: 𝑤3,𝑖 = 1 − 𝑤1,𝑖𝑤2,𝑖

NAND
𝒘3

𝒘2

𝒘1

Can leverage same approach as before:

𝑒 𝜎𝒘3
, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝

σ𝑖∈ 𝑚 𝛼𝑖
2𝑤3,𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑤3,𝑖

𝑒 𝐴, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

2+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗

𝑒 𝜎𝒘1
, 𝜎𝒘2 = 𝑒 𝑔𝑝, 𝑔𝑝

σ𝑖∈ 𝑚 𝛼𝑖
2𝑤1,𝑖𝑤2,𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑤1,𝑖𝑤2,𝑗

Common reference string:

𝛼1 ⋯ 𝛼𝑚
𝐴1 = 𝑔𝑝

𝛼1 𝐴𝑚 = 𝑔𝑝
𝛼𝑚

𝛼1 +⋯𝛼𝑚 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖

𝛼𝑖𝛼𝑗 𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

Commitment to (𝒙𝟏, … , 𝒙𝒎):If 𝑤3,𝑖 + 𝑤1,𝑖𝑤2,𝑖 = 1 for all 𝑖, then

𝑒 𝜎𝑤3
, 𝐴 𝑒 𝜎𝑤1

, 𝜎𝑤2

𝑒 𝐴, 𝐴

only consists of cross terms!



Proof Size

Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Commitment size: 𝜎𝑖 = poly(𝜆)
Single group element

One group element

One group element

Overall proof size (𝒕 wires, 𝒔 gates):
2𝑡 + 𝑠 ⋅ poly 𝜆 = 𝐶 ⋅ poly 𝜆

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7



Is This Sound?

Soundness requires some care:

Groth-Ostrovsky-Sahai NIZK based on similar 
commit-and-prove strategy

Soundness in GOS is possible by extracting a witness 
from the commitment

For a false statement, no witness exists

Our setting: commitments are succinct – cannot extract a 
full witness

Solution: “local extractability” [KPY19] or “somewhere 
extractability” [CJJ21]

𝛼1 ⋯ 𝛼𝑚
𝐴1 = 𝑔𝑝

𝛼1 𝐴𝑚 = 𝑔𝑝
𝛼𝑚

𝛼1 +⋯𝛼𝑚 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖

𝛼𝑖𝛼𝑗 𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

Common reference string:

Commitment to (𝒙𝟏, … , 𝒙𝒎):



Somewhere Soundness

CRS will have two modes:
Normal mode: used in the real scheme

Extracting on index 𝒊: supports witness extraction for instance 𝑖 (given a trapdoor)

CRS in the two modes are computationally indistinguishable

Similar to “dual-mode” proof systems and somewhere statistically binding hash functions

If proof 𝜋 verifies, then we can extract 
a witness 𝑤𝑖 such that 𝐶 𝑥𝑖 , 𝑤𝑖 = 1

Implies non-adaptive soundness



Local Extraction

Normal mode: 𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗ 𝑔𝑝

𝛼𝑖∗+1 ⋯ 𝑔𝑝
𝛼𝑚

Extracting mode: 𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗𝑔𝑞

𝑟 𝑔𝑝
𝛼𝑖∗+1 ⋯ 𝑔𝑝

𝛼𝑚

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚

Move slot 𝑖∗ to full group

Subgroup decision assumption [BGN05]:

(extract on 𝑖∗)

Random element in subgroup (𝔾𝑝)

Random element in full group (𝔾)
≈

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚



Local Extraction

CRS in extraction mode (for index 𝑖∗):

𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗𝑔𝑞

𝑟 𝑔𝑝
𝛼𝑖∗+1 ⋯ 𝑔𝑝

𝛼𝑚

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚

Can extract by projecting into 𝔾𝑞

Trapdoor: 𝑔𝑞 (generator of 𝔾𝑞)

Extracted bit for a commitment 𝝈 is 1 if 𝝈 has a (non-zero) component in 𝔾𝑞



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉

Generator 𝑔𝑝 and aggregated component 𝐴 part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-𝑝 subgroup and the order-𝑞 subgroup of 𝔾𝑇

Write 𝜎𝒙 = 𝑔𝑝
𝑠𝑔𝑞

𝑡

Key property: 𝑒 𝑔𝑝, 𝑉 is always in the order-𝑝 subgroup; adversary cannot influence the 

verification relation in the order-𝑞 subgroup

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡2 = 𝑡𝑟 mod 𝑞



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉

Generator 𝑔𝑝 and aggregated component 𝐴 part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-𝑝 subgroup and the order-𝑞 subgroup of 𝔾𝑇

Write 𝜎𝒙 = 𝑔𝑝
𝑠𝑔𝑞

𝑡

Key property: 𝑒 𝑔𝑝, 𝑉 is always in the order-𝑝 subgroup; adversary cannot influence the 

verification relation in the order-𝑞 subgroup

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡2 = 𝑡𝑟 mod 𝑞

If wire validity checks pass, then 𝑡 = 𝑏𝑖𝑟 where 𝑏𝑖 ∈ 0,1

Observe: 𝑏𝑖 ∈ 0,1 is also the extracted bit



Correctness of Extraction

Consider gate validity check:

𝑒 𝜎𝒘3
, 𝐴 𝑒 𝜎𝒘1

, 𝜎𝒘2
= 𝑒 𝐴, 𝐴 𝑒(𝑔𝑝,𝑊)



Correctness of Extraction

Consider gate validity check:

𝑒 𝜎𝒘3
, 𝐴 𝑒 𝜎𝒘1

, 𝜎𝒘2
= 𝑒 𝐴, 𝐴 𝑒(𝑔𝑝,𝑊)

Adversary chooses commitment 𝜎𝒘1
, 𝜎𝒘2

, 𝜎𝒘3
and proof 𝑊

Generator 𝑔𝑝 and aggregated key 𝐴 part of the CRS (honestly-generated)

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡3𝑟 + 𝑡1𝑡2 = 𝑟2 mod 𝑞

Write

𝜎𝒘1
= 𝑔𝑝

𝑠1𝑔𝑞
𝑡1

𝜎𝒘2
= 𝑔𝑝

𝑠2𝑔𝑞
𝑡2

𝜎𝒘3
= 𝑔𝑝

𝑠3𝑔𝑞
𝑡3

By wire validity checks: 𝑡𝑖 = 𝑏𝑖𝑟 where 𝑏𝑖 ∈ 0,1

𝑏3𝑟
2 + 𝑏1𝑏2𝑟

2 = 𝑟2 mod 𝑞

𝑏3 = 1 − 𝑏1𝑏2 = NAND(𝑏1, 𝑏2)



Correctness of Extraction

Consider gate validity check:

𝑒 𝜎𝒘3
, 𝐴 𝑒 𝜎𝒘1

, 𝜎𝒘2
= 𝑒 𝐴, 𝐴 𝑒(𝑔𝑝,𝑊)

Adversary chooses commitment 𝜎𝒘1
, 𝜎𝒘2

, 𝜎𝒘3
and proof 𝑊

Generator 𝑔𝑝 and aggregated key 𝐴 part of the CRS (honestly-generated)

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡3𝑟 + 𝑡1𝑡2 = 𝑟2 mod 𝑞

Write

𝜎𝑤1
= 𝑔𝑝

𝑠1𝑔𝑞
𝑡1

𝜎𝑤2
= 𝑔𝑝

𝑠2𝑔𝑞
𝑡2

𝜎𝑤3
= 𝑔𝑝

𝑠3𝑔𝑞
𝑡3

By wire validity checks: 𝑡𝑖 = 𝑏𝑖𝑟 where 𝑏𝑖 ∈ 0,1

𝑏3𝑟
2 + 𝑏1𝑏2𝑟

2 = 𝑟2 mod 𝑞

𝑏3 = 1 − 𝑏1𝑏2 = NAND(𝑏1, 𝑏2)

Conclusion: extracted bits are consistent with gate operation



A Commit-and-Prove Strategy for Batch Arguments

Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖
across the 𝑚 instances

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7

Key idea: Validity checks are quadratic 
and can be checked in the exponent



From Composite-Order to Prime-Order

Batch arguments for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

𝔾 ≅ 𝔾𝑝 × 𝔾𝑞 composite-order group𝔾 ≅ 𝔾𝑝 × 𝔾𝑞

Simulate subgroups
with subspaces

𝑘-Linear assumption (for any 𝑘 ≥ 1) in prime-order asymmetric bilinear groups

Yields a batch argument from



Reducing CRS Size

𝐴1 𝐴2 ⋯ 𝐴𝑚

Common reference string:

𝐵1,2 𝐵1,𝑚⋯

𝐵2,𝑚⋯

⋮

Size of CRS is 𝑚2 ⋅ poly(𝜆)

Can rely on recursive composition to reduce CRS size:
𝑚2 ⋅ poly 𝜆 → 𝑚𝜀 ⋅ poly 𝜆

for any constant 𝜀 > 0

Similar approach as [KPY19]

𝐵1,3

𝐵2,3

⋱

𝐵𝑚−1,𝑚



The Base Case

𝑥1 𝑥2 ⋯ 𝑥ℓ

𝑥ℓ+1 𝑥ℓ+2 ⋯ 𝑥2ℓ

⋮ ⋮ ⋱ ⋮

𝑥ℓ2−ℓ+1 𝑥ℓ2−ℓ+2 ⋯ 𝑥ℓ2

ℓ = 𝑚

𝜋1

𝜋2

⋮

𝜋ℓ

Use batch argument 
on ℓ = 𝑚 instances 
to prove each batch

𝜋

Prove knowledge of a proof 𝜋𝑖
for each batch of statements

Both batch arguments are on 
ℓ = 𝑚 statements

Verification algorithm for a batch needs to 
read the statements (of length ℓ), so 

Verify ≥ 𝑚 ⋅ poly 𝜆



Batch Arguments with Split Verification

Verify crs, 𝐶, 𝒙1, … , 𝒙𝑚 , 𝜋

GenVK crs, 𝒙1, … , 𝒙𝑚 → vk

OnlineVerify vk, 𝐶, 𝜋

Runs in time poly 𝜆,𝑚, 𝑛

vk = poly(𝜆, log𝑚 , 𝑛)

Preprocesses statements into a 
short verification key

Runs in time poly 𝜆, log𝑚 , 𝐶
Fast online verification

(Similar property from [CJJ21])



Recursive Bootstrapping

𝑥1 𝑥2 ⋯ 𝑥ℓ

𝑥ℓ+1 𝑥ℓ+2 ⋯ 𝑥2ℓ

⋮ ⋮ ⋱ ⋮

𝑥ℓ2−ℓ+1 𝑥ℓ2−ℓ+2 ⋯ 𝑥ℓ2

ℓ = 𝑚

𝜋1

𝜋2

⋮

𝜋ℓ

Use batch argument 
on ℓ = 𝑚 instances 
to prove each batch

𝜋

Prove knowledge of a proof 𝜋𝑖 for 
each batch of statements

Both batch arguments are 
on ℓ = 𝑚 statements

Batch argument used to check the relation

ℛ 𝐶, vk1, … , vkℓ , 𝜋1, … , 𝜋ℓ = 1

if OnlineVerify vk𝑖 , 𝐶, 𝜋𝑖 = 1

OnlineVerify = poly 𝜆, log𝑚 , 𝐶

Overall proof size:
poly(𝜆, log𝑚 , 𝐶 )

CRS size: 𝑚 ⋅ poly 𝜆

After 𝑘 ≈ log 1/𝜀 steps ⇒𝑚𝜀 ⋅ poly(𝜆) size CRS



Batch Arguments with Split Verification

Verifier checks the following

Input validity

Wire validity

Gate validity

Output validity

𝐶 ⋅ poly(𝜆)
constant number of group 
operations per wire/gate

𝑛𝑚 ⋅ poly(𝜆) Given 𝒙1, … , 𝒙𝑚 ∈ 0,1 𝑛 𝑚, verifier computes 
commitments to bits of the statement

∀𝑗 ∈ 𝑛 ∶ 𝜎𝑗 ← ෑ

𝑖∈ 𝑚

𝐴
𝑖

𝑥𝑖,𝑗

Only depends on the statement!

GenVK crs, 𝒙1, … , 𝒙𝑚 → 𝜎1, … , 𝜎𝑛

In online phase, verifier uses 
commitments 𝜎1, … , 𝜎𝑛 for the bits of 

input wires

(no more input validity checks)

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7



Batch Arguments with Short CRS

Corollary: Batch arguments for NP from standard assumptions over bilinear maps
𝑘-Linear assumption (for any 𝑘 ≥ 1) in prime-order bilinear groups

Subgroup decision assumption in composite-order bilinear groups

For a proof on 𝑚 instances of length 𝑛:
• CRS size: crs = 𝑚𝜀 ⋅ poly 𝜆 for any constant 𝜀 > 0
• Proof size: 𝜋 = poly 𝜆, 𝐶
• Verification time: Verify = poly 𝜆, 𝑛,𝑚 + poly 𝜆, 𝐶



Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:
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Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:

Batch argument 
with split 

verification

Somewhere 
extractable 

commitment

Delegation 
scheme for RAM 

programs

This work + [OPWW15]
(from SXDH)

This work
(from 𝑘-Lin)

Corollary. RAM delegation from SXDH on prime-order pairing groups
To verify a time-𝑇 RAM computation:

• CRS size: crs = 𝑇𝜀 ⋅ poly 𝜆 for any constant 𝜀 > 0
• Proof size: 𝜋 = poly 𝜆, log 𝑇
• Verification time: Verify = poly 𝜆, log 𝑇

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]



Application to Aggregate Signatures

Folklore construction from succinct arguments for NP (SNARKs for NP):

prove knowledge of 𝜎1, … , 𝜎𝑘 such that Verify vk,𝑚𝑖 , 𝜎𝑖 = 1

𝑚1

𝜎1

𝑚2

𝜎2

⋯

⋯

𝑚𝑘

𝜎𝑘

Given 𝑘 message-signature pairs 𝑚𝑖 , 𝜎𝑖

𝑚1, … ,𝑚𝑘
𝜎∗

Short signature 𝜎∗ on 𝑚1, … ,𝑚𝑘 :
𝜎∗ = poly(𝜆, log 𝑘)
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Application to Aggregate Signatures

Can replace SNARKs for NP with a batch argument for NP:

prove knowledge of 𝜎1, … , 𝜎𝑘 such that Verify vk,𝑚𝑖 , 𝜎𝑖 = 1

This work: Batch argument for bounded number of instances

Corollary. Aggregate signature supporting bounded aggregation from bilinear maps

First aggregate signature with bounded aggregation from standard pairing-
based assumptions (i.e., 𝑘-Lin) in the plain model 

Previous pairing constructions: unbounded aggregation from standard pairing-
based assumptions in the random oracle model [BGLS03]



Summary

Batch arguments for NP from standard assumptions over bilinear maps

Key feature: Construction is “low-tech”

Direct “commit-and-prove” approach like classic pairing-based proof systems

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS

Corollary: Aggregate signature with bounded aggregation

Thank you!

https://eprint.iacr.org/2022/336


