# Batch Arguments for NP <br> from Standard Bilinear Group Assumptions 

Brent Waters and David Wu

## Batch Arguments for NP

Boolean circuit satisfiability

$$
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
$$



$$
\left(x_{1}, \ldots, x_{m}\right)
$$

prover has $m$ statements and wants to convince verifier that


$$
x_{i} \in \mathcal{L}_{C} \text { for all } i \in[\mathrm{~m}]
$$

## Batch Arguments for NP

Boolean circuit satisfiability

$$
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
$$

prover

$\left(x_{1}, \ldots, x_{m}\right)$

$$
\pi=\left(w_{1}, \ldots, w_{m}\right)
$$

Naïve solution: send witnesses
Can the proof size be sublinear in the number of instances $m$ ?
$w_{1}, \ldots, w_{m}$ and verifier checks $C\left(x_{i}, w_{i}\right)=1$ for all $i \in[m]$

## Goal: Amortize the Cost of NP Verification

$$
\begin{gathered}
\text { Boolean circuit satisfiability } \\
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
\end{gathered}
$$



Proof size: $|\pi|=\operatorname{poly}(\lambda, \log m,|C|)$


Proof size can scale with circuit size (not a SNARG for NP)

## Goal: Amortize the Cost of NP Verification

$$
\begin{gathered}
\text { Boolean circuit satisfiability } \\
\mathcal{L}_{C}=\left\{x \in\{0,1\}^{n}: C(x, w)=1 \text { for some } w\right\}
\end{gathered}
$$



Verification time: running time of verifier is poly $(\lambda, m, n)+\operatorname{poly}(\lambda, \log m,|C|)$

## Batch Arguments for NP (BARGs)

This work: New constructions of non-interactive batch arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGs)
Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation
BARGs from correlation intractable hash functions
Sub-exponential DDH (in pairing-free groups) + QR (with $\sqrt{m}$ size proofs) [CJJ21a]
Learning with errors (LWE)
[CJJ21b]
BARGs from pairing-based assumptions
Non-standard, but falsifiable $q$-type assumption on bilinear groups

## This Work

New constructions of non-interactive batch arguments for NP
BARGs for NP from standard assumptions over bilinear maps
$k$-Linear assumption (for any $k \geq 1$ ) in prime-order bilinear groups
Subgroup decision assumption in composite-order bilinear groups
Key feature: Construction is "low-tech"
No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs Direct construction à la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS from standard bilinear map assumptions
Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]
Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions
Previous bilinear map constructions: random oracle based [BGLS03]

## A Commit-and-Prove Strategy for BARGs



Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire $i$
(1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=\begin{array}{ll|ll}
w_{i, 1} & w_{i, 2} & \cdots & w_{i, m} \\
\hline
\end{array}
$$

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

## A Commit-and-Prove Strategy for BARGs



Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire $i$
(2) Prover constructs the following proofs: Input validity

Commitments to the statement wires are correctly computed

Commitments in our scheme are deterministic, so verifier can directly check

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

## A Commit-and-Prove Strategy for BARGs



Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire $i$
2) Prover constructs the following proofs: Input validity
Wire validity
Commitment for each wire is a commitment to a $0 / 1$ vector
(1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \square \sigma_{i}
$$

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

## A Commit-and-Prove Strategy for BARGs


(1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longleftrightarrow \sigma_{i}
$$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire $i$
2) Prover constructs the following proofs: Input validity
Wire validity
Gate validity
For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

## A Commit-and-Prove Strategy for BARGs


(1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2}
$$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire $i$
2) Prover constructs the following proofs: Input validity
Wire validity
Gate validity
Output validity
Commitment to output wire is a commitment to the all-ones vector
Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$

## Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)
Let $\mathbb{G}$ be a group of order $N=p q$ (composite order)
Let $\mathbb{G}_{p} \subset \mathbb{G}$ be the subgroup of order $p$ and let $g_{p}$ be a generator of $\mathbb{G}_{p}$
crs: sample $\alpha_{1}, \ldots, \alpha_{m} \leftarrow \mathbb{Z}_{N}$

$$
\text { output } A_{1} \leftarrow g_{p}^{\alpha_{1}}, \ldots, A_{m} \leftarrow g_{p}^{\alpha_{m}}
$$

commitment to $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \in\{0,1\}^{m}$ :

$$
\sigma_{x}=A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}}
$$

## Proving Relations on Committed Values

common reference string

$$
\begin{gathered}
A_{1}=g_{p}^{\alpha_{1}} \\
A_{2}=g_{p}^{\alpha_{2}} \\
\quad \vdots \\
A_{m}=g_{p}^{\alpha_{m}}
\end{gathered}
$$

commitment to $\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

## Wire validity

Commitment for each wire is a commitment to a $0 / 1$ vector

$$
x \in\{0,1\} \text { if and only if } x^{2}=x
$$

Key idea: Use pairing to check quadratic relation in the exponent
Recall: pairing is an efficiently-computable bilinear map on $\mathbb{G}$ :

$$
e\left(g^{x}, g^{y}\right)=e(g, g)^{x y}
$$

$$
\begin{aligned}
e\left(\sigma_{x}, \sigma_{x}\right) & =e\left(g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}, g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}\right) \\
& =e\left(g_{p}, g_{p}\right)^{\left(\alpha_{1} x_{1}+\cdots \alpha_{m} x_{m}\right)^{2}}
\end{aligned}
$$

Consider the exponent:

$$
\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)^{2}=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}
$$

## Proving Relations on Committed Values

common reference string

$$
\begin{gathered}
A_{1}=g_{p}^{\alpha_{1}} \\
A_{2}=g_{p}^{\alpha_{2}} \\
\quad \vdots \\
A_{m}=g_{p}^{\alpha_{m}}
\end{gathered}
$$

commitment to $\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

## Wire validity

Commitment for each wire is a commitment to a $0 / 1$ vector

$$
x \in\{0,1\} \text { if and only if } x^{2}=x
$$

Key idea: Use pairing to check quadratic relation in the exponent
Recall: pairing is an efficiently-computable bilinear map on $\mathbb{G}$ :

$$
e\left(g^{x}, g^{y}\right)=e(g, g)^{x y}
$$

$$
\begin{aligned}
e\left(\sigma_{x}, \sigma_{x}\right) & =e\left(g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}, g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}\right) \\
& =e\left(g_{p}, g_{p}\right)^{\left(\alpha_{1} x_{1}+\cdots \alpha_{m} x_{m}\right)^{2}}
\end{aligned}
$$

Consider the exponent:

$$
\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)^{2}=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j} \text { cross-terms }
$$

## Proving Relations on Committed Values

common reference string

$$
\begin{gathered}
A_{1}=g_{p}^{\alpha_{1}} \\
A_{2}=g_{p}^{\alpha_{2}} \\
\quad \vdots \\
A_{m}=g_{p}^{\alpha_{m}}
\end{gathered}
$$

commitment to $\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

If $x_{i}^{2}=x_{i}$ for all $i$, then these expressions are equal up to cross-terms

If $x_{1}, \ldots, x_{m} \in\{0,1\}$, then $x_{i}^{2}=x_{i}$ and

$$
\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}
$$

Let $A=A_{1} A_{2} \cdots A_{m}=g_{p}^{\sum_{i \in[m]} \alpha_{i}}$

Next:

$$
\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)\left(\alpha_{1}+\cdots+\alpha_{m}\right)=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i}
$$

Consider the exponent:

$$
\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)^{2}=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}
$$

## Proving Relations on Committed Values

common reference string

$$
\begin{array}{cc}
A_{1}=g_{p}^{\alpha_{1}} & \forall i \neq j: B_{i j}=g_{p}^{\alpha_{i} \alpha_{j}} \\
A_{2}=g_{p}^{\alpha_{2}} & \\
\vdots & \text { Approach: augment } \\
A_{m}=g_{p}^{\alpha_{m}} & \text { CRS with cross-terms } \\
A=g_{p}^{\alpha_{1}+\cdots+\alpha_{m}} &
\end{array}
$$

$$
\text { commitment to }\left(x_{1}, \ldots, x_{m}\right)
$$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

If $x_{i}^{2}=x_{i}$ for all $i$, then these expressions are equal up to cross-terms

If $x_{1}, \ldots, x_{m} \in\{0,1\}$, then $x_{i}^{2}=x_{i}$ and

$$
\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}
$$

Let $A=A_{1} A_{2} \cdots A_{m}=g_{p}^{\sum_{i \in[m]} \alpha_{i}}$

Next:

$$
\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)\left(\alpha_{1}+\cdots+\alpha_{m}\right)=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i}
$$

Same expressions modulo
Consider the exponent: cross terms!

$$
\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)^{2}=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}
$$

 ross-terms

## Proving Relations on Committed Values

common reference string

$$
\begin{array}{cc}
A_{1}=g_{p}^{\alpha_{1}} & \forall i \neq j: B_{i j}=g_{p}^{\alpha_{i} \alpha_{j}} \\
A_{2}=g_{p}^{\alpha_{2}} & \text { Approach: augment } \\
\vdots & \text { CRS with cross-terms } \\
A_{m}=g_{p}^{\alpha_{m}} & \\
A=g_{p}^{\alpha_{1}+\cdots+\alpha_{m}} &
\end{array}
$$

commitment to $\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

If $x_{i}^{2}=x_{i}$ for all $i$, then these expressions are equal up to cross-terms

Prover now computes cross terms

$$
V=\prod_{i \neq j} B_{i, j}^{x_{i}-x_{i} x_{j}}=g_{p}^{\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}-\alpha_{i} \alpha_{j} x_{i}}
$$

Verifier now checks:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Next:

$$
\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)\left(\alpha_{1}+\cdots+\alpha_{m}\right)=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i}
$$

Same expressions modulo
Consider the exponent: cross terms!

$$
\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)^{2}=\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}
$$

## Proving Relations on Committed Values

common reference string

$$
\begin{array}{cc}
A_{1}=g_{p}^{\alpha_{1}} & \forall i \neq j: B_{i j}=g_{p}^{\alpha_{i} \alpha_{j}} \\
A_{2}=g_{p}^{\alpha_{2}} & \\
\vdots & \text { Approach: augment } \\
A_{m}=g_{p}^{\alpha_{m}} & \text { CRS with cross-terms } \\
A=g_{p}^{\alpha_{1}+\cdots+\alpha_{m}} &
\end{array}
$$

commitment to $\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

If $x_{i}^{2}=x_{i}$ for all $i$, then
these expressions are equal

Prover now computes cross terms

$$
V=\prod_{i \neq j} B_{i, j}^{x_{i}-x_{i} x_{j}}=g_{p}^{\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}-\alpha_{i} \alpha_{j} x_{i}}
$$

Verifier now checks:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

$$
\begin{aligned}
e\left(\sigma_{x}, \sigma_{x}\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}} \sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j} \\
e\left(\sigma_{x}, A\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} x_{i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i}} \\
e\left(g_{p}, V\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}-\alpha_{i} \alpha_{j} x_{i}}
\end{aligned}
$$

## Proving Relations on Committed Values

common reference string

$$
\begin{array}{cc}
A_{1}=g_{p}^{\alpha_{1}} & \forall i \neq j: B_{i j}=g_{p}^{\alpha_{i} \alpha_{j}} \\
A_{2}=g_{p}^{\alpha_{2}} & \text { Approach: augment } \\
\vdots & \text { CRS with cross-terms } \\
A_{m}=g_{p}^{\alpha_{m}} & \\
A=g_{p}^{\alpha_{1}+\cdots+\alpha_{m}} &
\end{array}
$$

commitment to $\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

If $x_{i}^{2}=x_{i}$ for all $i$, then
these expressions are equal

Prover now computes cross terms

$$
V=\prod_{i \neq j} B_{i, j}^{x_{i}-x_{i} x_{j}}=g_{p}^{\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}-\alpha_{i} \alpha_{j} x_{i}}
$$

Verifier now checks:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

$$
\begin{aligned}
e\left(\sigma_{x}, \sigma_{x}\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} x_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}} \\
e\left(\sigma_{x}, A\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} x_{i}+\cdots-\cdots} \sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} \\
e\left(g_{p}, V\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}-\alpha_{i} \alpha_{j} x_{i}}
\end{aligned}
$$

## Proving Relations on Committed Values

common reference string

$$
\begin{aligned}
& A_{1}=g_{p}^{\alpha_{1}} \quad \forall i \neq j: B_{i j}=g_{p}^{\alpha_{i} \alpha_{j}} \\
& A_{2}=g_{p}^{\alpha_{2}} \\
& \quad \vdots \\
& A_{m}=g_{p}^{\alpha_{m}} \\
& A=g_{p}^{\alpha_{1}+\cdots+\alpha_{m}}
\end{aligned}
$$

$$
\text { If } w_{3, i}+w_{1, i} w_{2, i}=1 \text { for all } i \text {, then }
$$

$$
\frac{e\left(\sigma_{w_{3}}, A\right) e\left(\sigma_{w_{1}}, \sigma_{w_{2}}\right)}{e(A, A)}
$$

only consists of cross terms!

## Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires


Can leverage same approach as before:

$$
\begin{aligned}
e\left(\sigma_{w_{3}}, A\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} w_{3, i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} w_{3, i}} \\
e(A, A) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j}}
\end{aligned}
$$

$$
e\left(\sigma_{\boldsymbol{w}_{1}}, \sigma_{\boldsymbol{w}_{2}}\right)=e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} w_{1, i} w_{2, i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} w_{1, i} w_{2, j}}
$$

## Proving Relations on Committed Values

common reference string

$$
\begin{aligned}
& A_{1}=g_{p}^{\alpha_{1}} \quad \forall i \neq j: B_{i j}=g_{p}^{\alpha_{i} \alpha_{j}} \\
& A_{2}=g_{p}^{\alpha_{2}} \\
& \quad \vdots \\
& A_{m}=g_{p}^{\alpha_{m}} \\
& A=g_{p}^{\alpha_{1}+\cdots+\alpha_{m}}
\end{aligned}
$$

## Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires


Can leverage same approach as before:

$$
\begin{aligned}
e\left(\sigma_{\boldsymbol{w}_{3}}, A\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} w_{3, i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} w_{3, i}} \\
e(A, A) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2}+\sum_{i \neq j} \alpha_{i} \alpha_{j}} \\
e\left(\sigma_{\boldsymbol{w}_{1}}, \sigma_{\boldsymbol{w}_{2}}\right) & =e\left(g_{p}, g_{p}\right)^{\sum_{i \in[m]} \alpha_{i}^{2} w_{1, i} w_{2, i}+\sum_{i \neq j} \alpha_{i} \alpha_{j} w_{1, i} w_{2, j}}
\end{aligned}
$$

## Is This Sound?

common reference string

$$
\begin{aligned}
& A_{1}=g_{p}^{\alpha_{1}} \quad \forall i \neq j: B_{i j}=g_{p}^{\alpha_{i} \alpha_{j}} \\
& A_{2}=g_{p}^{\alpha_{2}} \\
& \quad \vdots \\
& A_{m}=g_{p}^{\alpha_{m}} \\
& A=g_{p}^{\alpha_{1}+\cdots+\alpha_{m}}
\end{aligned}
$$

commitment to $\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{aligned}
\sigma_{x} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}}
\end{aligned}
$$

Soundness requires some care:
Groth-Ostrovsky-Sahai NIZK based on similar commit-and-prove strategy

Soundness in GOS is possible by extracting a witness from the commitment

For a false statement, no witness exists

Our setting: commitments are succinct - cannot extract a full witness

Solution: "local extractability" [KPY19] or "somewhere extractability" [CJJ21]

Approach: Program the CRS to extract a witness for instance $i$ Implies non-adaptive (and semi-adaptive) soundness

## Somewhere Soundness

CRS will have two modes:
Normal mode: used in the real scheme

If proof $\pi$ verifies, then we can extract a witness $w_{i}$ such that $C\left(x_{i}, w_{i}\right)=1$

Extracting on index $\boldsymbol{i}$ : supports witness extraction for instance $i$ (given a trapdoor)
CRS in the two modes are computationally indistinguishable
Similar to "dual-mode" proof systems and somewhere statistically binding hash functions

## Implies non-adaptive soundness

Fix any tuple ( $x_{1}, \ldots, x_{m}$ ) where $x_{i} \notin \mathcal{L}_{C}$ for some $i$
Suppose prover constructs accepting proof $\pi$ of $\left(x_{1}, \ldots, x_{m}\right)$
Switch CRS to be extracting on $i$

CRS indistinguishability implies that proof still verifies

In extracting mode, we can recover $w_{i}$ such that $C\left(x_{i}, w_{i}\right)=1$ so $x_{i} \in \mathcal{L}_{C}$

## Local Extraction



Subgroup decision assumption [BGNO5]:
Random element in subgroup ( $\mathbb{G}_{p}$ )
$\approx$
Random element in full group $(\mathbb{G})$

## Local Extraction

CRS in extraction mode (for index $i^{*}$ ):


Trapdoor: $g_{q}$ (generator of $\mathbb{G}_{q}$ )
Consider a commitment $\sigma_{x}$ :

$$
\begin{aligned}
\sigma_{\boldsymbol{x}} & =A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{i^{*}-1}^{x_{i *}-1} A_{i^{*}}^{x_{i^{*}}} A_{i^{*}+1}^{x_{x^{*}+1}} \cdots A_{m}^{x_{m}} \\
& =g_{p}^{\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}} g_{q}^{r x_{i^{*}}}
\end{aligned}
$$

$$
\text { if } z=1 \text {, output } x_{i^{*}}=0
$$

$$
\text { if } z \neq 1 \text {, output } x_{i^{*}}=1
$$

## Correctness of Extraction

Consider wire validity check:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

## Correctness of Extraction

Consider wire validity check:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Adversary chooses commitment $\sigma_{x}$ and proof $V$

## Correctness of Extraction

Consider wire validity check:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Adversary chooses commitment $\sigma_{x}$ and proof $V$
Generator $g_{p}$ and aggregated key $A$ part of the CRS (honestly-generated)
If this relation holds, it must hold in both the order- $p$ subgroup and the order- $q$ subgroup of $\mathbb{G}_{T}$

Key property: $e\left(g_{p}, V\right)$ is always in the order- $p$ subgroup; adversary cannot influence the verification relation in the order- $q$ subgroup

Write $\sigma_{x}=g_{p}^{s} g_{q}^{t}$
Write $A=g_{p}^{\sum_{i \in[m]} \alpha_{i}} g_{q}^{r}$
In the order- $q$ subgroup, exponents must satisfy:

$$
t^{2}=t r \bmod q
$$

## Correctness of Extraction

Consider wire validity check:

$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Adversary chooses commitment $\sigma_{x}$ and proof $V$
Generator $g_{p}$ and aggregated key $A$ part of the CRS (honestly-generated)
If this relation holds, it must hold in both
the order-p cubaroun and tho ordora_cubaroun of $\mathbb{C}$
If wire validity checks pass, then $t=b_{i} r$ where $b_{i} \in\{0,1\}$
Key property: $e\left(g_{p}, V\right)$ is alw verification relation in the ord Observe: $b_{i} \in\{0,1\}$ is also the extracted bit
Write $\sigma_{x}=g_{p}^{s} g_{q}^{t}$
Write $A=g_{p}^{\sum_{i \in[m]} \alpha_{i}} g_{q}^{r}$
In the order- $q$ subgroup, exponents must satisfy:

$$
t^{2}=t r \bmod q
$$

## Correctness of Extraction

Consider gate validity check:

$$
e\left(\sigma_{w_{3}}, A\right) e\left(\sigma_{w_{1}}, \sigma_{w_{2}}\right)=e(A, A) e\left(g_{p}, W\right)
$$

## Correctness of Extraction

Consider gate validity check:

$$
e\left(\sigma_{w_{3}}, A\right) e\left(\sigma_{w_{1}}, \sigma_{w_{2}}\right)=e(A, A) e\left(g_{p}, W\right)
$$

Adversary chooses commitment $\sigma_{w_{1}}, \sigma_{w_{2}}, \sigma_{w_{3}}$ and proof $W$

## Generator $g_{p}$ and aggregated key $A$ part of the CRS (honestly-generated)

Write

$$
\begin{aligned}
\sigma_{w_{1}} & =g_{p}^{s_{1}} g_{q}^{t_{1}} \\
\sigma_{w_{2}} & =g_{p}^{s_{2}} g_{q}^{t_{2}} \\
\sigma_{w_{3}} & =g_{p}^{s_{3}} g_{q}^{t_{3}}
\end{aligned}
$$

Write $A=g_{p}^{\sum_{i \in[m]} \alpha_{i}} g_{q}^{r}$

In the order- $q$ subgroup, exponents must satisfy:

$$
t_{3} r+t_{1} t_{2}=r^{2} \bmod q
$$

By wire validity checks: $t_{i}=b_{i} r$ where $b_{i} \in\{0,1\}$

$$
\begin{gathered}
b_{3} r^{2}+b_{1} b_{2} r^{2}=r^{2} \bmod q \\
b_{3}=1-b_{1} b_{2}=\operatorname{NAND}\left(b_{1}, b_{2}\right)
\end{gathered}
$$

## Correctness of Extraction

Consider gate validity check:

$$
e\left(\sigma_{w_{3}}, A\right) e\left(\sigma_{w_{1}}, \sigma_{w_{2}}\right)=e(A, A) e\left(g_{p}, W\right)
$$

Adversary chooses commitment $\sigma_{w_{1}}, \sigma_{w_{2}}, \sigma_{w_{3}}$ and proof $W$
Generator $g_{p}$ and aggregated key $A$ part of the CRS (honestly-generated)

Write

$$
\begin{aligned}
\sigma_{w_{1}} & =g_{p}^{s_{1}} g_{q}^{t_{1}} \\
\sigma_{w_{2}} & =g_{p}^{s_{2}} g_{q}^{t_{2}} \\
\sigma_{w_{3}} & =g_{p}^{s_{3}} g_{q}^{t_{3}}
\end{aligned}
$$

In the order- $q$ subgroup, exponents must satisfy:

$$
t_{3} r+t_{1} t_{2}=r^{2} \bmod q
$$

Conclusion: extracted bits are consistent with gate operation
Write $A=g_{p}^{\sum_{i \in[m]} \alpha_{i}} g_{q}^{r}$

$$
b_{3}=1-b_{1} b_{2}=\operatorname{NAND}\left(b_{1}, b_{2}\right)
$$

## A Commit-and-Prove Strategy for BARGs


(1) Prover commits to each vector of wire assignments

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire $i$
(2) Prover constructs the following proofs: Input validity
Wire validity
Gate validity
Output validity

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longleftrightarrow \sigma_{i}
$$

Requirement: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda, \log m)$
Our construction: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$
Remaining checks ensure that statement correctly encoded and output is 1

Implication: Successful extraction of valid witness for instance $i^{*}$

## Proof Size


(1) Prover commits to each vector of wire assignments Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire $i$
(2) Prover constructs the following proofs: Input validity
Wire validity One group element
Gate validity One group element

$$
\boldsymbol{w}_{i}=w_{i, 1} \quad w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longleftrightarrow \quad \sigma_{i}
$$

Output validity

Commitment size: $\left|\sigma_{i}\right|=\operatorname{poly}(\lambda)$
Single group element

Overall proof size ( $t$ wires, $s$ gates):

$$
(2 t+s) \cdot \operatorname{poly}(\lambda)=|C| \cdot \operatorname{poly}(\lambda)
$$

## Verification Time


(1) Prover commits to each vector of wire assignments

$$
\boldsymbol{w}_{i}=w_{i, 1} w_{i, 2} \quad \cdots \quad w_{i, m} \quad \longleftrightarrow \sigma_{i}
$$

Let $\boldsymbol{w}_{i}=\left(w_{i, 1}, \ldots, w_{i, m}\right)$ be vector of wire labels associated with wire $i$
2) Prover constructs the following proofs: Input validity $\quad O(m n)$ group operations Wire validity $\quad O(1)$ group operations Gate validity $\quad O(1)$ group operations Output validity Equality check

## Overall verification time:

$$
n m \cdot \operatorname{poly}(\lambda)+|C| \cdot \operatorname{poly}(\lambda)
$$

## From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps
Subgroup decision assumption in composite-order bilinear groups

full space $\left(\mathbb{Z}_{p}^{2}\right)$
subspaces of $\mathbb{Z}_{p}^{2}$
composite-order group
Simulate subgroups with subspaces
prime-order group
$\boldsymbol{u}, \boldsymbol{v} \in \mathbb{Z}_{p}^{2}$ (linearly independent)

## From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps
Subgroup decision assumption in composite-order bilinear groups

composite-order group

## Simulate subgroups

 with subspacesprime-order group

Normal mode: $g_{p}^{\alpha_{i}} \rightarrow g^{\alpha_{i} u}$
Extracting scheme: $g_{p}^{\alpha_{i}} g_{q}^{r} \rightarrow g^{\alpha_{i} u+r v}$ under DDH

## From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps
Subgroup decision assumption in composite-order bilinear groups

composite-order group

## Simulate subgroups

 with subspacesprime-order group

Technically: move to asymmetric pairing-groups first (otherwise DDH does not hold)

Indistinguishable under DDH

## From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps
Subgroup decision assumption in composite-order bilinear groups

composite-order group

## Simulate subgroups

 with subspacesprime-order group

Pairing is an outer product:

$$
e\left(g^{u}, g^{v}\right)=e(g, g)^{u \otimes v}=e(g, g)^{u v^{T}}
$$

## From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps
Subgroup decision assumption in composite-order bilinear groups


$$
e\left(\sigma_{x}, \sigma_{x}\right)=e\left(\sigma_{x}, A\right) e\left(g_{p}, V\right)
$$

Composite-order setting: $e\left(g_{p}, V\right)$ cannot contain a $\mathbb{G}_{q}$ component $\Rightarrow$ isolate instance $i^{*}$ in $\mathbb{G}_{q}$ subgroup

Prime-order setting: $e\left(g^{u}, V\right)$ cannot contain a $v v^{\mathrm{T}}$ component $\Rightarrow$ isolate instance $i^{*}$ in $v v^{\mathrm{T}}$ subspace

## Generalizes to yield a BARG from

$k$-Linear assumption (for any $k \geq 1$ ) in prime-order asymmetric bilinear groups

## Reducing CRS Size

Common reference string:

## Size of CRS is $m^{2} \cdot \operatorname{poly}(\lambda)$



Can rely on recursive composition to reduce CRS size:

$$
m^{2} \cdot \operatorname{poly}(\lambda) \rightarrow m^{\varepsilon} \cdot \operatorname{poly}(\lambda)
$$

for any constant $\varepsilon>0$
Similar approach as [KPY19]

## The Base Case



Prove knowledge of BARG proofs $\pi_{i}$ for each batch of statements

## $\pi$

Verification algorithm for a batch needs to read the statements (of length $\ell$ ), so $\mid$ Verify $\mid \geq \sqrt{m} \cdot \operatorname{poly}(\lambda)$

$$
\ell=\sqrt{m}
$$

Use BARG on $\ell=\sqrt{m}$ instances to prove each batch

Soundness necessitates somewhere extractability of base BARG

## Both BARGs are on

 $\ell=\sqrt{m}$ statements
## BARGs with Split Verification

## $\operatorname{Verify}\left(\operatorname{crs}, C,\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right), \pi\right)$

$\operatorname{GenVK}\left(\operatorname{crs},\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)\right) \rightarrow \mathrm{vk}$

$$
\begin{aligned}
& \text { Runs in time poly }(\lambda, m, n) \\
& |\mathrm{vk}|=\operatorname{poly}(\lambda, \log m, n)
\end{aligned}
$$

Preprocesses statements into a short verification key

OnlineVerify (vk, $C, \pi$ )
Runs in time poly $(\lambda, \log m,|C|)$

Fast online verification
(Similar property from [CJJ21])

## Recursive Bootstrapping



After $k \approx \log 1 / \varepsilon$ steps $\Rightarrow m^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ size CRS

## BARG with Split Verification



> In online phase, verifier uses commitments $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ for the bits of input wires
(no more input validity checks)

Only depends on the statement!


Given $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right) \in\left(\{0,1\}^{n}\right)^{m}$, verifier computes commitments to bits of the statement

$$
\forall j \in[n]: \sigma_{j} \leftarrow \prod_{i \in[m]} A_{i}^{x_{i, j}}
$$

$\operatorname{GenVK}\left(\operatorname{crs},\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)\right) \rightarrow\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

## BARGs with Short CRS

Corollary: BARGs for NP from standard assumptions over bilinear maps $k$-Linear assumption (for any $k \geq 1$ ) in prime-order bilinear groups Subgroup decision assumption in composite-order bilinear groups

For a proof on $m$ instances of length $n$ :

- CRS size: $\quad|\mathrm{crs}|=m^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ for any constant $\varepsilon>0$
- Proof size: $\quad|\pi|=\operatorname{poly}(\lambda,|C|)$
- Verification time: $\mid$ Verify $\mid=\operatorname{poly}(\lambda, n, m)+\operatorname{poly}(\lambda,|C|)$


## Application to RAM Delegation ("SNARGs for P")

Choudhuri et al. [CJJ21] showed:
succinct argument for polynomial-time computations

BARG with split verification


Delegation scheme for RAM programs
succinct vector commitment that allows extracting on single index

## Application to RAM Delegation ("SNARGs for P")

Choudhuri et al. [CJJ21] showed:
succinct argument for polynomial-time computations

Somewhere
extractable
commitment

This work (from k-Lin)

## succinct vector commitment that

allows extracting on single index
Recall vector commitment we use for committing to wire values:

$$
A_{1}, \ldots, A_{m}, x \rightarrow A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}}
$$

Same technique (cross-term cancellation) yields a somewhere extractable commitment (in combination with somewhere statistically binding hash functions [HW15))

## Application to RAM Delegation ("SNARGs for P")

Choudhuri et al. [CJJ21] showed:


Recall vector commitment we use for committing to wire values:

$$
A_{1}, \ldots, A_{m}, x \rightarrow A_{1}^{x_{1}} A_{2}^{x_{2}} \cdots A_{m}^{x_{m}}
$$

Same technique (cross-term cancellation) yields a somewhere extractable commitment (in combination with somewhere statistically binding hash functions [HW15))

## Application to RAM Delegation ("SNARGs for P")

Choudhuri et al. [CJJ21] showed:


Corollary. RAM delegation from SXDH on prime-order pairing groups To verify a time-T RAM computation:

- CRS size:
$|\mathrm{crs}|=T^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ for any constant $\varepsilon>0$
- Proof size:
$|\pi|=\operatorname{poly}(\lambda, \log T)$
- Verification time: $\mid$ Verify $\mid=\operatorname{poly}(\lambda, \log T)$

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]

## Application to Aggregate Signatures



Given $k$ message-signature pairs $\left(m_{i}, \sigma_{i}\right)$

Short signature $\sigma^{*}$ on $\left(m_{1}, \ldots, m_{k}\right)$ :

$$
\left|\sigma^{*}\right|=\operatorname{poly}(\lambda, \log k)
$$

Folklore construction from succinct arguments for NP (SNARKs for NP): prove knowledge of $\sigma_{1}, \ldots, \sigma_{k}$ such that Verify $\left(\mathrm{vk}, m_{i}, \sigma_{i}\right)=1$

## Application to Aggregate Signatures



Given $k$ message-signature pairs $\left(m_{i}, \sigma_{i}\right)$

Short signature $\sigma^{*}$ on $\left(m_{1}, \ldots, m_{k}\right)$ :

$$
\left|\sigma^{*}\right|=\operatorname{poly}(\lambda, \log k)
$$

Can replace SNARKs for NP with a (somewhere extractable) BARG for NP: prove knowledge of $\sigma_{1}, \ldots, \sigma_{k}$ such that Verify $\left(\mathrm{vk}, m_{i}, \sigma_{i}\right)=1$

## Application to Aggregate Signatures

Can replace SNARKs for NP with a (somewhere extractable) BARG for NP: prove knowledge of $\sigma_{1}, \ldots, \sigma_{k}$ such that Verify $\left(\mathrm{vk}, m_{i}, \sigma_{i}\right)=1$

This work: BARG for bounded number of instances
Corollary. Aggregate signature supporting bounded aggregation from bilinear maps
First aggregate signature with bounded aggregation from standard pairingbased assumptions (i.e., $k$-Lin) in the plain model

Previous pairing constructions: unbounded aggregation from standard pairingbased assumptions in the random oracle model [BGLSO3]

## Summary

## BARGs for NP from standard assumptions over bilinear maps

Key feature: Construction is "low-tech"
Direct "commit-and-prove" approach like classic pairing-based proof systems
Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS
Corollary: Aggregate signature with bounded aggregation
Open Question: BARG with unbounded number of instances from bilinear maps

$$
\begin{gathered}
\text { https://eprint.iacr.org/2022/336 } \\
\text { Thank you! }
\end{gathered}
$$

