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Batch Arguments for NP

prover verifier

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

prover has 𝑚 statements and 
wants to convince verifier that 

𝑥𝑖 ∈ ℒ𝐶 for all 𝑖 ∈ 𝑚



Batch Arguments for NP

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋 = 𝑤1, … , 𝑤𝑚

Naïve solution: send witnesses 
𝑤1, … , 𝑤𝑚 and verifier checks 
𝐶 𝑥𝑖 , 𝑤𝑖 = 1 for all 𝑖 ∈ [𝑚]

Can the proof size be 
sublinear in the number 

of instances 𝑚?

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤



Goal: Amortize the Cost of NP Verification

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋

Proof size: 𝜋 = poly 𝜆, log𝑚 , 𝐶

𝜆 : security 
parameter

Proof size can scale with circuit size
(not a SNARG for NP)

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤



Goal: Amortize the Cost of NP Verification

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋

Proof size: 𝜋 = poly 𝜆, log𝑚 , 𝐶

Verification time: running time of verifier is poly 𝜆,𝑚, 𝑛 + poly 𝜆, log𝑚 , 𝐶

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

In general setting, verifier 
needs to read statements



Batch Arguments for NP (BARGs)

This work: New constructions of non-interactive batch arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGs)
Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation

BARGs from pairing-based assumptions
Non-standard, but falsifiable 𝑞-type assumption on bilinear groups [KPY19]

BARGs from correlation intractable hash functions
Sub-exponential DDH (in pairing-free groups) + QR (with 𝑚 size proofs)

Learning with errors (LWE) [CJJ21b]

[CJJ21a]



This Work

New constructions of non-interactive batch arguments for NP

BARGs for NP from standard assumptions over bilinear maps
𝑘-Linear assumption (for any 𝑘 ≥ 1) in prime-order bilinear groups

Subgroup decision assumption in composite-order bilinear groups

Key feature: Construction is “low-tech”
No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs

Direct construction à la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS from standard bilinear map assumptions

Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]

Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions

Previous bilinear map constructions: random oracle based [BGLS03]



A Commit-and-Prove Strategy for BARGs
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𝒘7

Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

Our construction: 𝜎𝑖 = poly(𝜆)
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Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Input validity

Commitments to the statement wires are 
correctly computed

Commitments in our scheme are 
deterministic, so verifier can directly check

Our construction: 𝜎𝑖 = poly(𝜆)
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Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Commitment for each wire is a commitment 
to a 0/1 vector

Input validity
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of wire labels associated with wire 𝑖

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

For each gate, commitment to output wires is 
consistent with gate operation and 
commitment to input wires

Input validity

Wire validity

Gate validity

Our construction: 𝜎𝑖 = poly(𝜆)



A Commit-and-Prove Strategy for BARGs
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𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Commitment to output wire is a commitment 
to the all-ones vector

Our construction: 𝜎𝑖 = poly(𝜆)



Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)

crs: sample 𝛼1, … , 𝛼𝑚 ← ℤ𝑁
output 𝐴1 ← 𝑔𝑝

𝛼1 , … , 𝐴𝑚 ← 𝑔𝑝
𝛼𝑚

Let 𝔾 be a group of order 𝑁 = 𝑝𝑞 (composite order)

commitment to 𝒙 = 𝑥1, … , 𝑥𝑚 ∈ 0,1 𝑚:

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴𝑚
𝑥𝑚

Let 𝔾𝑝 ⊂ 𝔾 be the subgroup of order 𝑝 and let 𝑔𝑝 be a generator of 𝔾𝑝

(subset product of the 𝐴𝑖’s)



Proving Relations on Committed Values

commitment to (𝑥1, … , 𝑥𝑚)

common reference string

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

⋮

𝐴2 = 𝑔𝑝
𝛼2

𝜎𝒙

𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥

Commitment for each wire is a commitment to a 0/1 vector

Wire validity

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an efficiently-computable bilinear map on 𝔾:

𝑒 𝑔𝑥, 𝑔𝑦 = 𝑒 𝑔, 𝑔 𝑥𝑦

= 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚 , 𝑔𝑝

𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

= 𝑒 𝑔𝑝, 𝑔𝑝
𝛼1𝑥1+⋯𝛼𝑚𝑥𝑚

2

Consider the exponent:

𝛼1𝑥1 +⋯+ 𝛼𝑚𝑥𝑚
2 = 

𝑖∈ 𝑚

𝛼𝑖
2𝑥𝑖

2 +

𝑖≠𝑗

𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗
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𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝑔𝑝
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2

Consider the exponent:

𝛼1𝑥1 +⋯+ 𝛼𝑚𝑥𝑚
2 = 

𝑖∈ 𝑚

𝛼𝑖
2𝑥𝑖

2 +

𝑖≠𝑗

𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗
cross-terms
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If 𝑥1, … , 𝑥𝑚 ∈ 0,1 , then 𝑥𝑖
2 = 𝑥𝑖 and



𝑖∈ 𝑚

𝛼𝑖
2𝑥𝑖

2 = 

𝑖∈ 𝑚

𝛼𝑖
2𝑥𝑖

Let 𝐴 = 𝐴1𝐴2⋯𝐴𝑚 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

Next:

𝛼1𝑥1 +⋯+ 𝛼𝑚𝑥𝑚 𝛼1 +⋯+ 𝛼𝑚 = 

𝑖∈ 𝑚

𝛼𝑖
2𝑥𝑖 +

𝑖≠𝑗

𝛼𝑖𝛼𝑗𝑥𝑖

If 𝑥𝑖
2 = 𝑥𝑖 for all 𝑖, then 

these expressions are equal 
up to cross-terms
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If 𝑥1, … , 𝑥𝑚 ∈ 0,1 , then 𝑥𝑖
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𝑖∈ 𝑚

𝛼𝑖
2𝑥𝑖

2 = 

𝑖∈ 𝑚

𝛼𝑖
2𝑥𝑖

Let 𝐴 = 𝐴1𝐴2⋯𝐴𝑚 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

Next:

𝛼1𝑥1 +⋯+ 𝛼𝑚𝑥𝑚 𝛼1 +⋯+ 𝛼𝑚 = 

𝑖∈ 𝑚

𝛼𝑖
2𝑥𝑖 +

𝑖≠𝑗

𝛼𝑖𝛼𝑗𝑥𝑖

If 𝑥𝑖
2 = 𝑥𝑖 for all 𝑖, then 

these expressions are equal 
up to cross-terms

∀𝑖 ≠ 𝑗: 𝐵𝑖𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗

Approach: augment 
CRS with cross-terms

𝐴 = 𝑔𝑝
𝛼1+⋯+𝛼𝑚

Same expressions modulo 
cross terms!
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Approach: augment 
CRS with cross-terms

Prover now computes cross terms

𝑉 =ෑ

𝑖≠𝑗

𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
= 𝑔𝑝

σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗−𝛼𝑖𝛼𝑗𝑥𝑖

Verifier now checks:
𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

𝐴 = 𝑔𝑝
𝛼1+⋯+𝛼𝑚

Same expressions modulo 
cross terms!
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σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗−𝛼𝑖𝛼𝑗𝑥𝑖

Verifier now checks:
𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

𝐴 = 𝑔𝑝
𝛼1+⋯+𝛼𝑚

𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

2𝑥𝑖
2+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗

𝑒 𝜎𝒙, 𝜎𝑥 =

𝑒 𝜎𝒙, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

2𝑥𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖

𝑒 𝑔𝑝, 𝑉 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗−𝛼𝑖𝛼𝑗𝑥𝑖If 𝑥𝑖

2 = 𝑥𝑖 for all 𝑖, then 
these expressions are equal 

up to cross-terms

if 𝑥𝑖 = 𝑥𝑖
2



Proving Relations on Committed Values

commitment to (𝑥1, … , 𝑥𝑚)

common reference string

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

⋮

𝐴2 = 𝑔𝑝
𝛼2

𝜎𝒙

𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥

Commitment for each wire is a commitment to a 0/1 vector

Wire validity

Key idea: Use pairing to check quadratic relation in the exponent

= 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

∀𝑖 ≠ 𝑗: 𝐵𝑖𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗

Approach: augment 
CRS with cross-terms

Prover now computes cross terms

𝑉 =ෑ

𝑖≠𝑗

𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
= 𝑔𝑝

σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗−𝛼𝑖𝛼𝑗𝑥𝑖

Verifier now checks:
𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

𝐴 = 𝑔𝑝
𝛼1+⋯+𝛼𝑚

𝑒 𝜎𝒙, 𝜎𝑥 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

2𝑥𝑖
2+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗

𝑒 𝜎𝒙, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

2𝑥𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖

𝑒 𝑔𝑝, 𝑉 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗−𝛼𝑖𝛼𝑗𝑥𝑖If 𝑥𝑖

2 = 𝑥𝑖 for all 𝑖, then 
these expressions are equal 

up to cross-terms



Proving Relations on Committed Values

commitment to (𝑥1, … , 𝑥𝑚)

common reference string

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

⋮

𝐴2 = 𝑔𝑝
𝛼2

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

∀𝑖 ≠ 𝑗: 𝐵𝑖𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗

𝐴 = 𝑔𝑝
𝛼1+⋯+𝛼𝑚

For each gate, commitment to output wires is consistent 
with gate operation and commitment to input wires

Gate validity

for all 𝑖 ∈ [𝑚]: 𝑤3,𝑖 = 1 − 𝑤1,𝑖𝑤2,𝑖

NAND
𝒘3

𝒘2

𝒘1

Can leverage same approach as before:

𝑒 𝜎𝒘3
, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝

σ𝑖∈ 𝑚 𝛼𝑖
2𝑤3,𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑤3,𝑖

𝑒 𝐴, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

2+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗

𝑒 𝜎𝒘1
, 𝜎𝒘2 = 𝑒 𝑔𝑝, 𝑔𝑝

σ𝑖∈ 𝑚 𝛼𝑖
2𝑤1,𝑖𝑤2,𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑤1,𝑖𝑤2,𝑗

If 𝑤3,𝑖 +𝑤1,𝑖𝑤2,𝑖 = 1 for all 𝑖, then

𝑒 𝜎𝑤3
, 𝐴 𝑒 𝜎𝑤1

, 𝜎𝑤2

𝑒 𝐴, 𝐴

only consists of cross terms!



Proving Relations on Committed Values

commitment to (𝑥1, … , 𝑥𝑚)

common reference string

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

⋮

𝐴2 = 𝑔𝑝
𝛼2

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

∀𝑖 ≠ 𝑗: 𝐵𝑖𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗

𝐴 = 𝑔𝑝
𝛼1+⋯+𝛼𝑚

For each gate, commitment to output wires is consistent 
with gate operation and commitment to input wires

Gate validity

for all 𝑖 ∈ [𝑚]: 𝑤3,𝑖 = 1 − 𝑤1,𝑖𝑤2,𝑖

NAND
𝒘3

𝒘2

𝒘1

Can leverage same approach as before:

𝑒 𝜎𝒘3
, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝

σ𝑖∈ 𝑚 𝛼𝑖
2𝑤3,𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑤3,𝑖

𝑒 𝐴, 𝐴 = 𝑒 𝑔𝑝, 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

2+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗

𝑒 𝜎𝒘1
, 𝜎𝒘2 = 𝑒 𝑔𝑝, 𝑔𝑝

σ𝑖∈ 𝑚 𝛼𝑖
2𝑤1,𝑖𝑤2,𝑖+σ𝑖≠𝑗 𝛼𝑖𝛼𝑗𝑤1,𝑖𝑤2,𝑗

If 𝑤3,𝑖 +𝑤1,𝑖𝑤2,𝑖 = 1 for all 𝑖, then

𝑒 𝜎𝑤3
, 𝐴 𝑒 𝜎𝑤1

, 𝜎𝑤2

𝑒 𝐴, 𝐴

only consists of cross terms!

Generalizes to arbitrary 
quadratic predicates



Is This Sound?

commitment to (𝑥1, … , 𝑥𝑚)

common reference string

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

⋮

𝐴2 = 𝑔𝑝
𝛼2

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

𝐴 = 𝑔𝑝
𝛼1+⋯+𝛼𝑚

Soundness requires some care:

Groth-Ostrovsky-Sahai NIZK based on similar 
commit-and-prove strategy

Soundness in GOS is possible by extracting a 
witness from the commitment

For a false statement, no witness exists

Our setting: commitments are succinct – cannot extract a 
full witness

Solution: “local extractability” [KPY19] or “somewhere 
extractability” [CJJ21]

Approach: Program the CRS to extract a witness for instance 𝑖

Implies non-adaptive (and semi-adaptive) soundness

∀𝑖 ≠ 𝑗: 𝐵𝑖𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗



Somewhere Soundness

CRS will have two modes:
Normal mode: used in the real scheme

Extracting on index 𝒊: supports witness extraction for instance 𝑖 (given a trapdoor)

CRS in the two modes are computationally indistinguishable

Similar to “dual-mode” proof systems and somewhere statistically binding hash functions

If proof 𝜋 verifies, then we can extract 
a witness 𝑤𝑖 such that 𝐶 𝑥𝑖 , 𝑤𝑖 = 1

Implies non-adaptive soundness

Fix any tuple 𝑥1, … , 𝑥𝑚 where 𝑥𝑖 ∉ ℒ𝐶 for some 𝑖

Suppose prover constructs accepting proof 𝜋 of (𝑥1, … , 𝑥𝑚)

Switch CRS to be extracting on 𝑖

CRS indistinguishability 
implies that proof still 

verifies

In extracting mode, we can recover 𝑤𝑖 such that 𝐶 𝑥𝑖 , 𝑤𝑖 = 1 so 𝑥𝑖 ∈ ℒ𝐶



Local Extraction

Normal mode: 𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗ 𝑔𝑝

𝛼𝑖∗+1 ⋯ 𝑔𝑝
𝛼𝑚

𝐴 = ෑ

𝑖∈[𝑚]

𝑔𝑝
𝛼𝑖

𝐵𝑖𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 = 𝐴

𝑖

𝛼𝑗

Extracting mode: 𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗𝑔𝑞

𝑟 𝑔𝑝
𝛼𝑖∗+1 ⋯ 𝑔𝑝

𝛼𝑚

𝐴 = 𝑔𝑞
𝑟 ෑ

𝑖∈ 𝑚

𝑔𝑝
𝛼𝑖

𝐵𝑖𝑗 = 𝐴
𝑖

𝛼𝑗

𝐵𝑖∗𝑗 = 𝐵𝑗𝑖∗ = 𝐴
𝑖∗
𝛼𝑗

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚

Move slot 𝑖∗ to full group

Subgroup decision assumption [BGN05]:

(extract on 𝑖∗)

Random element in subgroup (𝔾𝑝)

Random element in full group (𝔾)
≈

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚

∀𝑖 ≠ 𝑗

∀𝑖 ≠ 𝑗 ≠ 𝑖∗



Local Extraction

CRS in extraction mode (for index 𝑖∗):

𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗𝑔𝑞

𝑟 𝑔𝑝
𝛼𝑖∗+1 ⋯ 𝑔𝑝

𝛼𝑚

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴
𝑖∗−1

𝑥𝑖∗−1𝐴
𝑖∗
𝑥𝑖∗𝐴

𝑖∗+1

𝑥𝑖∗+1⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚𝑔𝑞

𝑟𝑥𝑖∗

Consider a commitment 𝜎𝒙:

Trapdoor: 𝑔𝑞 (generator of 𝔾𝑞)

Project into 𝔾𝑞

Compute 𝑧 ← 𝑒(𝜎𝒙, 𝑔𝑞)

if 𝑧 = 1, output 𝑥𝑖∗ = 0

if 𝑧 ≠ 1, output 𝑥𝑖∗ = 1



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉

Generator 𝑔𝑝 and aggregated key 𝐴 part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-𝑝 subgroup and the order-𝑞 subgroup of 𝔾𝑇

Write 𝜎𝒙 = 𝑔𝑝
𝑠𝑔𝑞

𝑡

Key property: 𝑒 𝑔𝑝, 𝑉 is always in the order-𝑝 subgroup; adversary cannot influence the 

verification relation in the order-𝑞 subgroup

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡2 = 𝑡𝑟 mod 𝑞



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉

Generator 𝑔𝑝 and aggregated key 𝐴 part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-𝑝 subgroup and the order-𝑞 subgroup of 𝔾𝑇

Write 𝜎𝒙 = 𝑔𝑝
𝑠𝑔𝑞

𝑡

Key property: 𝑒 𝑔𝑝, 𝑉 is always in the order-𝑝 subgroup; adversary cannot influence the 

verification relation in the order-𝑞 subgroup

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡2 = 𝑡𝑟 mod 𝑞

If wire validity checks pass, then 𝑡 = 𝑏𝑖𝑟 where 𝑏𝑖 ∈ 0,1

Observe: 𝑏𝑖 ∈ 0,1 is also the extracted bit



Correctness of Extraction

Consider gate validity check:

𝑒 𝜎𝑤3
, 𝐴 𝑒 𝜎𝑤1

, 𝜎𝑤2
= 𝑒 𝐴, 𝐴 𝑒(𝑔𝑝,𝑊)



Correctness of Extraction

Consider gate validity check:

𝑒 𝜎𝑤3
, 𝐴 𝑒 𝜎𝑤1

, 𝜎𝑤2
= 𝑒 𝐴, 𝐴 𝑒(𝑔𝑝,𝑊)

Adversary chooses commitment 𝜎𝑤1
, 𝜎𝑤2

, 𝜎𝑤3
and proof 𝑊

Generator 𝑔𝑝 and aggregated key 𝐴 part of the CRS (honestly-generated)

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡3𝑟 + 𝑡1𝑡2 = 𝑟2 mod 𝑞

Write

𝜎𝑤1
= 𝑔𝑝

𝑠1𝑔𝑞
𝑡1

𝜎𝑤2
= 𝑔𝑝

𝑠2𝑔𝑞
𝑡2

𝜎𝑤3
= 𝑔𝑝

𝑠3𝑔𝑞
𝑡3

By wire validity checks: 𝑡𝑖 = 𝑏𝑖𝑟 where 𝑏𝑖 ∈ 0,1

𝑏3𝑟
2 + 𝑏1𝑏2𝑟

2 = 𝑟2 mod 𝑞

𝑏3 = 1 − 𝑏1𝑏2 = NAND(𝑏1, 𝑏2)



Correctness of Extraction

Consider gate validity check:

𝑒 𝜎𝑤3
, 𝐴 𝑒 𝜎𝑤1

, 𝜎𝑤2
= 𝑒 𝐴, 𝐴 𝑒(𝑔𝑝,𝑊)

Adversary chooses commitment 𝜎𝑤1
, 𝜎𝑤2

, 𝜎𝑤3
and proof 𝑊

Generator 𝑔𝑝 and aggregated key 𝐴 part of the CRS (honestly-generated)

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡3𝑟 + 𝑡1𝑡2 = 𝑟2 mod 𝑞

Write

𝜎𝑤1
= 𝑔𝑝

𝑠1𝑔𝑞
𝑡1

𝜎𝑤2
= 𝑔𝑝

𝑠2𝑔𝑞
𝑡2

𝜎𝑤3
= 𝑔𝑝

𝑠3𝑔𝑞
𝑡3

By wire validity checks: 𝑡𝑖 = 𝑏𝑖𝑟 where 𝑏𝑖 ∈ 0,1

𝑏3𝑟
2 + 𝑏1𝑏2𝑟

2 = 𝑟2 mod 𝑞

𝑏3 = 1 − 𝑏1𝑏2 = NAND(𝑏1, 𝑏2)

Conclusion: extracted bits are consistent with gate operation



A Commit-and-Prove Strategy for BARGs

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7

Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Our construction: 𝜎𝑖 = poly(𝜆)

Remaining checks ensure that statement 
correctly encoded and output is 1

Implication: Successful extraction of 
valid witness for instance 𝑖∗



Proof Size

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7

Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Commitment size: 𝜎𝑖 = poly(𝜆)
Single group element

One group element

One group element

Overall proof size (𝒕 wires, 𝒔 gates):
2𝑡 + 𝑠 ⋅ poly 𝜆 = 𝐶 ⋅ poly 𝜆



Verification Time

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7

Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

𝑂 𝑚𝑛 group operations

𝑂(1) group operations

Overall verification time:
𝑛𝑚 ⋅ poly 𝜆 + 𝐶 ⋅ poly 𝜆

𝑂(1) group operations

Equality check



From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

𝔾 ≅ 𝔾𝑝 × 𝔾𝑞 composite-order group

prime-order group

𝔾 ≅ 𝔾𝑝 × 𝔾𝑞

⟨𝑔𝛼𝒖+𝛽𝒗⟩ ⟨𝑔𝒖⟩ ⟨𝑔𝒗⟩

𝒖, 𝒗 ∈ ℤ𝑝
2 (linearly independent)

Simulate subgroups
with subspaces

full space

ℤ𝑝
2

subspaces
of ℤ𝑝

2



From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

𝔾 ≅ 𝔾𝑝 × 𝔾𝑞 composite-order group𝔾 ≅ 𝔾𝑝 × 𝔾𝑞

⟨𝑔𝛼𝒖+𝛽𝒗⟩ ⟨𝑔𝒖⟩ ⟨𝑔𝒗⟩

Simulate subgroups
with subspaces

Normal mode: 𝑔𝑝
𝛼𝑖 → 𝑔𝛼𝑖𝒖

Extracting scheme: 𝑔𝑝
𝛼𝑖𝑔𝑞

𝑟 → 𝑔𝛼𝑖𝒖+𝑟𝒗

prime-order group

Indistinguishable
under DDH



From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

𝔾 ≅ 𝔾𝑝 × 𝔾𝑞 composite-order group𝔾 ≅ 𝔾𝑝 × 𝔾𝑞

⟨𝑔𝛼𝒖+𝛽𝒗⟩ ⟨𝑔𝒖⟩ ⟨𝑔𝒗⟩

Simulate subgroups
with subspaces

Normal mode: 𝑔𝑝
𝛼𝑖 → 𝑔𝛼𝑖𝒖

Extracting scheme: 𝑔𝑝
𝛼𝑖𝑔𝑞

𝑟 → 𝑔𝛼𝑖𝒖+𝑟𝒗

prime-order group

Indistinguishable
under DDH

Technically: move to asymmetric pairing-groups 
first (otherwise DDH does not hold)



From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

𝔾 ≅ 𝔾𝑝 × 𝔾𝑞 composite-order group𝔾 ≅ 𝔾𝑝 × 𝔾𝑞

⟨𝑔𝛼𝒖+𝛽𝒗⟩ ⟨𝑔𝒖⟩ ⟨𝑔𝒗⟩

Simulate subgroups
with subspaces

prime-order group

Pairing is an outer product:

𝑒 𝑔𝒖, 𝑔𝒗 = 𝑒 𝑔, 𝑔 𝒖⊗𝒗 = 𝑒 𝑔, 𝑔 𝒖𝒗T



From Composite-Order to Prime-Order

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

𝔾 ≅ 𝔾𝑝 × 𝔾𝑞𝔾 ≅ 𝔾𝑝 × 𝔾𝑞

⟨𝑔𝛼𝒖+𝛽𝒗⟩ ⟨𝑔𝒖⟩ ⟨𝑔𝒗⟩

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Composite-order setting: 𝑒 𝑔𝑝, 𝑉 cannot contain a 𝔾𝑞

component ⇒ isolate instance 𝑖∗ in 𝔾𝑞 subgroup

Prime-order setting: 𝑒 𝑔𝒖, 𝑉 cannot contain a 
𝒗𝒗Tcomponent ⇒ isolate instance 𝑖∗ in 𝒗𝒗T subspace

𝑘-Linear assumption (for any 𝑘 ≥ 1) in prime-order asymmetric bilinear groups

Generalizes to yield a BARG from



Reducing CRS Size

𝐴1 𝐴2 ⋯ 𝐴𝑚

Common reference string:

𝐵1,2 𝐵1,𝑚⋯

𝐵2,𝑚⋯

⋮

Size of CRS is 𝑚2 ⋅ poly(𝜆)

Can rely on recursive composition to reduce CRS size:
𝑚2 ⋅ poly 𝜆 → 𝑚𝜀 ⋅ poly 𝜆

for any constant 𝜀 > 0

Similar approach as [KPY19]

𝐵1,3

𝐵2,3

⋱

𝐵𝑚−1,𝑚



The Base Case

𝑥1 𝑥2 ⋯ 𝑥ℓ

𝑥ℓ+1 𝑥ℓ+2 ⋯ 𝑥2ℓ

⋮ ⋮ ⋱ ⋮

𝑥ℓ2−ℓ+1 𝑥ℓ2−ℓ+2 ⋯ 𝑥ℓ2

ℓ = 𝑚

𝜋1

𝜋2

⋮

𝜋ℓ

Use BARG on ℓ = 𝑚
instances to prove 

each batch

𝜋

Prove knowledge of BARG 
proofs 𝜋𝑖 for each batch 

of statements

Both BARGs are on 
ℓ = 𝑚 statements

Verification algorithm for a batch needs to 
read the statements (of length ℓ), so 

Verify ≥ 𝑚 ⋅ poly 𝜆

Soundness necessitates somewhere 
extractability of base BARG



BARGs with Split Verification

Verify crs, 𝐶, 𝒙1, … , 𝒙𝑚 , 𝜋

GenVK crs, 𝒙1, … , 𝒙𝑚 → vk

OnlineVerify vk, 𝐶, 𝜋

Runs in time poly 𝜆,𝑚, 𝑛

vk = poly(𝜆, log𝑚 , 𝑛)

Preprocesses statements into a 
short verification key

Runs in time poly 𝜆, log𝑚 , 𝐶
Fast online verification

(Similar property from [CJJ21])



Recursive Bootstrapping

𝑥1 𝑥2 ⋯ 𝑥ℓ

𝑥ℓ+1 𝑥ℓ+2 ⋯ 𝑥2ℓ

⋮ ⋮ ⋱ ⋮

𝑥ℓ2−ℓ+1 𝑥ℓ2−ℓ+2 ⋯ 𝑥ℓ2

ℓ = 𝑚

𝜋1

𝜋2

⋮

𝜋ℓ

Use BARG on ℓ = 𝑚
instances to prove 

each batch

𝜋

Prove knowledge of BARG 
proofs 𝜋𝑖 for each batch 

of statements

Both BARGs are on 
ℓ = 𝑚 statements

BARG used to check the relation

ℛ 𝐶, vk1, … , vkℓ , 𝜋1, … , 𝜋ℓ = 1

if OnlineVerify vk𝑖, 𝐶, 𝜋𝑖 = 1

OnlineVerify = poly 𝜆, log𝑚 , 𝐶

Overall proof size:
poly(𝜆, log𝑚 , 𝐶 )

CRS size: 𝑚 ⋅ poly 𝜆

After 𝑘 ≈ log 1/𝜀 steps ⇒𝑚𝜀 ⋅ poly(𝜆) size CRS



BARG with Split Verification

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7

Verifier checks the following

Input validity

Wire validity

Gate validity

Output validity

𝐶 ⋅ poly(𝜆)
constant number of group 
operations per wire/gate

𝑛𝑚 ⋅ poly(𝜆) Given 𝒙1, … , 𝒙𝑚 ∈ 0,1 𝑛 𝑚, verifier computes 
commitments to bits of the statement

∀𝑗 ∈ 𝑛 ∶ 𝜎𝑗 ← ෑ

𝑖∈ 𝑚

𝐴
𝑖

𝑥𝑖,𝑗

Only depends on the statement!

GenVK crs, 𝒙1, … , 𝒙𝑚 → 𝜎1, … , 𝜎𝑛

In online phase, verifier uses 
commitments 𝜎1, … , 𝜎𝑛 for the bits of 

input wires

(no more input validity checks)



BARGs with Short CRS

Corollary: BARGs for NP from standard assumptions over bilinear maps
𝑘-Linear assumption (for any 𝑘 ≥ 1) in prime-order bilinear groups

Subgroup decision assumption in composite-order bilinear groups

For a proof on 𝑚 instances of length 𝑛:
• CRS size: crs = 𝑚𝜀 ⋅ poly 𝜆 for any constant 𝜀 > 0
• Proof size: 𝜋 = poly 𝜆, 𝐶
• Verification time: Verify = poly 𝜆, 𝑛,𝑚 + poly 𝜆, 𝐶



Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:

BARG with split 
verification

Somewhere 
extractable 

commitment

Delegation 
scheme for RAM 

programs

succinct vector commitment that 
allows extracting on single index

succinct argument for 
polynomial-time computations



Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:

BARG with split 
verification

Somewhere 
extractable 

commitment

Delegation 
scheme for RAM 

programs

succinct vector commitment that 
allows extracting on single index

succinct argument for 
polynomial-time computations

This work
(from 𝑘-Lin)

𝐴1, … , 𝐴𝑚, 𝒙 → 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴𝑚
𝑥𝑚

Recall vector commitment we use for committing to wire values:

Same technique (cross-term cancellation) yields a somewhere extractable commitment (in 
combination with somewhere statistically binding hash functions [HW15])
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Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:

BARG with split 
verification

Somewhere 
extractable 

commitment

Delegation 
scheme for RAM 

programs

This work + [OPWW15]
(from SXDH)

This work
(from 𝑘-Lin)

Corollary. RAM delegation from SXDH on prime-order pairing groups
To verify a time-𝑇 RAM computation:

• CRS size: crs = 𝑇𝜀 ⋅ poly 𝜆 for any constant 𝜀 > 0
• Proof size: 𝜋 = poly 𝜆, log 𝑇
• Verification time: Verify = poly 𝜆, log 𝑇

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]



Application to Aggregate Signatures

Folklore construction from succinct arguments for NP (SNARKs for NP):

prove knowledge of 𝜎1, … , 𝜎𝑘 such that Verify vk,𝑚𝑖 , 𝜎𝑖 = 1

𝑚1

𝜎1

𝑚2

𝜎2

⋯

⋯

𝑚𝑘

𝜎𝑘

Given 𝑘 message-signature pairs 𝑚𝑖 , 𝜎𝑖

𝑚1, … ,𝑚𝑘
𝜎∗

Short signature 𝜎∗ on 𝑚1, … ,𝑚𝑘 :
𝜎∗ = poly(𝜆, log 𝑘)



Application to Aggregate Signatures

Can replace SNARKs for NP with a (somewhere extractable) BARG for NP:

prove knowledge of 𝜎1, … , 𝜎𝑘 such that Verify vk,𝑚𝑖 , 𝜎𝑖 = 1

𝑚1

𝜎1

𝑚2

𝜎2

⋯

⋯

𝑚𝑘

𝜎𝑘

Given 𝑘 message-signature pairs 𝑚𝑖 , 𝜎𝑖

𝑚1, … ,𝑚𝑘
𝜎∗

Short signature 𝜎∗ on 𝑚1, … ,𝑚𝑘 :
𝜎∗ = poly(𝜆, log 𝑘)



Application to Aggregate Signatures

Can replace SNARKs for NP with a (somewhere extractable) BARG for NP:

prove knowledge of 𝜎1, … , 𝜎𝑘 such that Verify vk,𝑚𝑖 , 𝜎𝑖 = 1

This work: BARG for bounded number of instances

Corollary. Aggregate signature supporting bounded aggregation from bilinear maps

First aggregate signature with bounded aggregation from standard pairing-
based assumptions (i.e., 𝑘-Lin) in the plain model 

Previous pairing constructions: unbounded aggregation from standard pairing-
based assumptions in the random oracle model [BGLS03]



Summary

BARGs for NP from standard assumptions over bilinear maps

Key feature: Construction is “low-tech”

Direct “commit-and-prove” approach like classic pairing-based proof systems

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS

Corollary: Aggregate signature with bounded aggregation

Thank you!

https://eprint.iacr.org/2022/336

Open Question: BARG with unbounded number of instances from bilinear maps


