Batch Arguments for NP from Standard Bilinear Group Assumptions

Brent Waters and David Wu

Batch Arguments for NP

Boolean circuit satisfiability $\mathcal{L}_C = \{x \in \{0,1\}^n : C(x,w) = 1 \text{ for some } w\}$

 $(x_1, ..., x_m)$

prover has m statements and wants to convince verifier that $x_i \in \mathcal{L}_C$ for all $i \in [m]$

Batch Arguments for NP

Boolean circuit satisfiability $\mathcal{L}_C = \{x \in \{0,1\}^n : C(x,w) = 1 \text{ for some } w\}$

Can the proof size be sublinear in the number of instances *m*? **Naïve solution:** send witnesses w_1, \dots, w_m and verifier checks $C(x_i, w_i) = 1$ for all $i \in [m]$

Goal: Amortize the Cost of NP Verification

Boolean circuit satisfiability $\mathcal{L}_C = \{x \in \{0,1\}^n : C(x,w) = 1 \text{ for some } w\}$

Proof size: $|\pi| = \text{poly}(\lambda, \log m, |C|)$

 λ : security

parameter

Proof size can scale with circuit size (not a SNARG for NP)

Goal: Amortize the Cost of NP Verification

Boolean circuit satisfiability $\mathcal{L}_{C} = \{x \in \{0,1\}^{n} : C(x,w) = 1 \text{ for some } w\}$

Batch Arguments for NP (BARGs)

This work: New constructions of non-interactive batch arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGs) Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation

BARGs from correlation intractable hash functions

Sub-exponential DDH (in pairing-free groups) + QR (with \sqrt{m} size proofs)[CJJ21a]Learning with errors (LWE)[CJJ21b]

BARGs from pairing-based assumptions

Non-standard, but falsifiable q-type assumption on bilinear groups [KPY19]

This Work

New constructions of non-interactive batch arguments for NP

BARGs for NP from standard assumptions over bilinear maps

- k-Linear assumption (for any $k \ge 1$) in prime-order bilinear groups
- Subgroup decision assumption in composite-order bilinear groups

Key feature: Construction is "low-tech"

- No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs Direct construction à la classic NIZK construction of Groth-Ostrovsky-Sahai
- Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS from standard bilinear map assumptions
 Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]
 Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions
 Previous bilinear map constructions: random oracle based [BGLS03]

Let $w_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire *i*

Prover commits to each vector of wire assignments

 $w_i = w_{i,1} \quad w_{i,2} \quad \cdots \quad w_{i,m} \quad \longrightarrow \quad \sigma_i$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:** $|\sigma_i| = \text{poly}(\lambda)$

 σ_i

Prover commits to each vector of wire assignments

W_{i,m}

Let $w_i = (w_{i,1}, \dots, w_{i,m})$ be vector of wire labels associated with wire *i*

Prover constructs the following proofs:

Input validity

Commitments to the statement wires are correctly computed

Commitments in our scheme are *deterministic*, so verifier can directly check

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:** $|\sigma_i| = \text{poly}(\lambda)$

 W_{i2}

 $w_i =$

2

Prover commits to each vector of wire assignments

 $w_i = w_{i,1} w_{i,2} \cdots w_{i,m} \longrightarrow \sigma_i$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:** $|\sigma_i| = \text{poly}(\lambda)$ Let $w_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire *i*

Prover constructs the following proofs: Input validity Wire validity

Commitment for each wire is a commitment to a 0/1 vector

Prover commits to each vector of wire assignments

 $w_i = w_{i,1} w_{i,2} \cdots w_{i,m} \longrightarrow \sigma_i$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:** $|\sigma_i| = \text{poly}(\lambda)$ Let $w_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire *i*

2 Prover constructs the following proofs: Input validity Wire validity

Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

Prover commits to each vector of wire assignments

 $\boldsymbol{w}_i = w_{i,1} w_{i,2} \cdots w_{i,m} \longrightarrow \sigma_i$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:** $|\sigma_i| = \text{poly}(\lambda)$ Let $w_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire *i*

2 Prover constructs the following proofs: Input validity

Wire validity

Gate validity

Output validity

Commitment to output wire is a commitment to the all-ones vector

Construction from Composite-Order Groups

Pedersen multi-commitments: (*without* randomness)

Let \mathbb{G} be a group of order N = pq (composite order) Let $\mathbb{G}_p \subset \mathbb{G}$ be the subgroup of order p and let g_p be a generator of \mathbb{G}_p

crs: sample
$$\alpha_1, \dots, \alpha_m \leftarrow \mathbb{Z}_N$$

output $A_1 \leftarrow g_p^{\alpha_1}, \dots, A_m \leftarrow g_p^{\alpha_m}$

commitment to $x = (x_1, ..., x_m) \in \{0, 1\}^m$:

$$\sigma_x = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m} \quad \text{(subset product of the } A_i\text{'s)}$$

common reference string

$$A_{1} = g_{p}^{\alpha_{1}}$$
$$A_{2} = g_{p}^{\alpha_{2}}$$
$$\vdots$$
$$A_{m} = g_{p}^{\alpha_{m}}$$

Wire validity

Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an <u>efficiently-computable</u> bilinear map on \mathbb{G} : $e(g^x, g^y) = e(g, g)^{xy}$

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e\left(g_{p}^{\alpha_{1}x_{1}+\dots+\alpha_{m}x_{m}}, g_{p}^{\alpha_{1}x_{1}+\dots+\alpha_{m}x_{m}}\right)$$
$$= e\left(g_{p}, g_{p}\right)^{(\alpha_{1}x_{1}+\dots+\alpha_{m}x_{m})^{2}}$$

Consider the exponent:

$$(\alpha_1 x_1 + \dots + \alpha_m x_m)^2 = \sum_{i \in [m]} \alpha_i^2 x_i^2 + \sum_{i \neq j} \alpha_i \alpha_j x_i x_j$$

commitment to (x_1, \dots, x_m)

$$\sigma_{\boldsymbol{\chi}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

common reference string

$$A_{1} = g_{p}^{\alpha_{1}}$$
$$A_{2} = g_{p}^{\alpha_{2}}$$
$$\vdots$$
$$A_{m} = g_{p}^{\alpha_{m}}$$

commitment to (x_1, \dots, x_m)

 $\sigma_{\boldsymbol{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$

 $= g_n^{\alpha_1 x_1 + \dots + \alpha_m x_m}$

Wire validity

Commitment for each wire is a commitment to a 0/1 vector $x \in \{0,1\}$ if and only if $x^2 = x$

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an <u>efficiently-computable</u> bilinear map on \mathbb{G} : $e(g^x, g^y) = e(g, g)^{xy}$

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e\left(g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}, g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}\right)$$
$$= e\left(g_p, g_p\right)^{(\alpha_1 x_1 + \dots + \alpha_m x_m)^2}$$

Consider the exponent:

$$(\alpha_1 x_1 + \dots + \alpha_m x_m)^2 = \sum_{i \in [m]} \alpha_i^2 x_i^2 + \sum_{i \neq j} \alpha_i \alpha_j x_i x_j$$
cross-terms

common reference string

 $A_{1} = g_{p}^{\alpha_{1}}$ $A_{2} = g_{p}^{\alpha_{2}}$ \vdots $A_{m} = g_{p}^{\alpha_{m}}$

commitment to (x_1, \dots, x_m)

$$\sigma_{\boldsymbol{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

If $x_i^2 = x_i$ for all *i*, then these expressions are equal up to cross-terms

If
$$x_1, ..., x_m \in \{0, 1\}$$
, then $x_i^2 = x_i$ and

$$\sum_{i \in [m]} \alpha_i^2 x_i^2 = \sum_{i \in [m]} \alpha_i^2 x_i$$
Let $A = A_1 A_2 \cdots A_m = g_p^{\sum_{i \in [m]} \alpha_i}$
Next:
 $(\alpha_1 x_1 + \dots + \alpha_m x_m)(\alpha_1 + \dots + \alpha_m) = \sum_{i \in [m]} \alpha_i^2 x_i + \sum_{i \neq j} \alpha_i \alpha_j x_i$

Consider the exponent:

$$(\alpha_1 x_1 + \dots + \alpha_m x_m)^2 = \sum_{i \in [m]} \alpha_i^2 x_i^2 + \sum_{i \neq j} \alpha_i \alpha_j x_i x_j$$
cross-terms

common reference string

$$A_{1} = g_{p}^{\alpha_{1}}$$

$$A_{2} = g_{p}^{\alpha_{2}}$$

$$\vdots$$

$$Approach: augment$$

$$A_{m} = g_{p}^{\alpha_{m}}$$

$$CRS with cross-terms$$

$$A_{m} = g_{p}^{\alpha_{1}+\dots+\alpha_{m}}$$

$$Grace (x_{1}, \dots, x_{m})$$

$$\sigma_{x} = A_{1}^{x_{1}}A_{2}^{x_{2}}\cdots A_{m}^{x_{m}}$$

 $= g_n^{\alpha_1 x_1 + \dots + \alpha_m x_m}$

If $x_i^2 = x_i$ for all *i*, then these expressions are equal up to cross-terms If $x_1, \dots, x_m \in \{0, 1\}$, then $x_i^2 = x_i$ and $\sum_{i \in [m]} \alpha_i^2 x_i^2 = \sum_{i \in [m]} \alpha_i^2 x_i$

Let
$$A = A_1 A_2 \cdots A_m = g_p^{\sum_{i \in [m]} \alpha_i}$$

Next: $(\alpha_{1}x_{1} + \dots + \alpha_{m}x_{m})(\alpha_{1} + \dots + \alpha_{m}) = \sum_{i \in [m]} \alpha_{i}^{2}x_{i} + \sum_{i \neq j} \alpha_{i}\alpha_{j}x_{i}$ Some expressions modulo cross terms! $(\alpha_{1}x_{1} + \dots + \alpha_{m}x_{m})^{2} = \sum_{i \in [m]} \alpha_{i}^{2}x_{i}^{2} + \sum_{i \neq j} \alpha_{i}\alpha_{j}x_{i}x_{j}$ cross-terms

common reference string

$$A_{1} = g_{p}^{\alpha_{1}}$$

$$A_{2} = g_{p}^{\alpha_{2}}$$

$$\vdots$$

$$Approach: augment$$

$$A_{m} = g_{p}^{\alpha_{m}}$$

$$CRS with cross-terms$$

$$A = g_{p}^{\alpha_{1}+\dots+\alpha_{m}}$$
commitment to (x_{1}, \dots, x_{m})

$$\sigma_{\boldsymbol{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

If $x_i^2 = x_i$ for all *i*, then these expressions are equal up to cross-terms Prover now computes cross terms

$$V = \prod_{i \neq j} B_{i,j}^{x_i - x_i x_j} = g_p^{\sum_{i \neq j} \alpha_i \alpha_j x_i x_j - \alpha_i \alpha_j x_i}$$

Verifier now checks:

$$e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$$

Next:

$$(\alpha_{1}x_{1} + \dots + \alpha_{m}x_{m})(\alpha_{1} + \dots + \alpha_{m}) = \sum_{i \in [m]} \alpha_{i}^{2}x_{i} + \sum_{i \neq j} \alpha_{i}\alpha_{j}x_{i}$$
Some expressions modulo
cross terms!

$$(\alpha_{1}x_{1} + \dots + \alpha_{m}x_{m})^{2} = \sum_{i \in [m]} \alpha_{i}^{2}x_{i}^{2} + \sum_{i \neq j} \alpha_{i}\alpha_{j}x_{i}x_{j}$$
cross-terms

common reference string

$$\begin{array}{ll} A_{1} = g_{p}^{\alpha_{1}} & \\ A_{2} = g_{p}^{\alpha_{2}} & \forall i \neq j : B_{ij} = g_{p}^{\alpha_{i}\alpha_{j}} \\ \vdots & \text{Approach: augment} \\ A_{m} = g_{p}^{\alpha_{m}} & \text{CRS with cross-terms} \end{array}$$

 $A = g_p^{\alpha_1 + \dots + \alpha_m}$

commitment to (x_1, \dots, x_m)

$$\sigma_{\boldsymbol{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

If $x_i^2 = x_i$ for all *i*, then these expressions are equal up to cross-terms Prover now computes cross terms

$$V = \prod_{i \neq j} B_{i,j}^{x_i - x_i x_j} = g_p^{\sum_{i \neq j} \alpha_i \alpha_j x_i x_j - \alpha_i \alpha_j x_i}$$

Verifier now checks:

$$e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$$

$$e(\sigma_{x}, \sigma_{x}) = e(g_{p}, g_{p}) \xrightarrow{\sum_{i \in [m]} \alpha_{i}^{2} x_{i}^{2} + \sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}}$$
$$= e(g_{p}, g_{p}) \xrightarrow{\sum_{i \in [m]} \alpha_{i}^{2} x_{i}} + \sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i}$$

$$e(g_p, V) = e(g_p, g_p)^{\sum_{i \neq j} \alpha_i \alpha_j x_i x_j - \alpha_i \alpha_j x_i}$$

common reference string

$$\begin{array}{ll} A_{1} = g_{p}^{\alpha_{1}} & \\ A_{2} = g_{p}^{\alpha_{2}} & \forall i \neq j : B_{ij} = g_{p}^{\alpha_{i}\alpha_{j}} \\ \vdots & \text{Approach: augment} \\ A_{m} = g_{p}^{\alpha_{m}} & \text{CRS with cross-terms} \end{array}$$

 $A = g_p^{\alpha_1 + \dots + \alpha_m}$

commitment to (x_1, \dots, x_m)

$$\sigma_{\boldsymbol{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

If $x_i^2 = x_i$ for all *i*, then these expressions are equal up to cross-terms Prover now computes cross terms

$$V = \prod_{i \neq j} B_{i,j}^{x_i - x_i x_j} = g_p^{\sum_{i \neq j} \alpha_i \alpha_j x_i x_j - \alpha_i \alpha_j x_i}$$

Verifier now checks:

$$e(\sigma_{x},\sigma_{x}) = e(\sigma_{x},A)e(g_{p},V)$$

$$e(\sigma_{x}, \sigma_{x}) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} x_{i}^{2} + \sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j}}}$$

$$e(\sigma_{x}, A) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} x_{i} + \sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i}}}$$

$$e(g_{p}, V) = e(g_{p}, g_{p})^{\sum_{i \neq j} \alpha_{i} \alpha_{j} x_{i} x_{j} - \alpha_{i} \alpha_{j} x_{i}}}$$

common reference string

$$\begin{array}{l} A_{1} = g_{p}^{\alpha_{1}} \\ A_{2} = g_{p}^{\alpha_{2}} \\ \vdots \\ A_{m} = g_{p}^{\alpha_{m}} \\ A = g_{p}^{\alpha_{1} + \dots + \alpha_{m}} \end{array} \forall i \neq j : B_{ij} = g_{p}^{\alpha_{i}\alpha_{j}} \end{array}$$

Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

$$w_1$$

 w_2
NAND
 w_3
for all $i \in [m]: w_{3,i} = 1 - w_{1,i}w_{2,i}$

Can leverage same approach as before:

If $w_{3,i} + w_{1,i}w_{2,i} = 1$ for all i, then $\frac{e(\sigma_{w_3}, A)e(\sigma_{w_1}, \sigma_{w_2})}{e(A, A)}$ only consists of cross terms!

$$e(\sigma_{w_3}, A) = e(g_p, g_p)^{\sum_{i \in [m]} \alpha_i^2 w_{3,i} + \sum_{i \neq j} \alpha_i \alpha_j w_{3,i}}$$
$$e(A, A) = e(g_p, g_p)^{\sum_{i \in [m]} \alpha_i^2 + \sum_{i \neq j} \alpha_i \alpha_j}$$
$$e(\sigma_{w_1}, \sigma_{w_2}) = e(g_p, g_p)^{\sum_{i \in [m]} \alpha_i^2 w_{1,i} w_{2,i} + \sum_{i \neq j} \alpha_i \alpha_j w_{1,i} w_{2,j}}$$

common reference string

$$\begin{array}{l} A_{1} = g_{p}^{\alpha_{1}} \\ A_{2} = g_{p}^{\alpha_{2}} \\ \vdots \\ A_{m} = g_{p}^{\alpha_{m}} \\ A = g_{p}^{\alpha_{1} + \dots + \alpha_{m}} \end{array} \forall i \neq j : B_{ij} = g_{p}^{\alpha_{i}\alpha_{j}} \end{array}$$

Gate validity

For each gate, commitment to output wires is consistent with gate operation and commitment to input wires

Can leverage same approach as before:

If
$$w_{3,i} + w_{1,i}w_{2,i} = 1$$
 for all i , then

$$\frac{e(\sigma_{w_3}, A)e(\sigma_{w_1}, \sigma_{w_2})}{e(A, A)}$$
only consists of cross terms!

 $e(\sigma_{w_{3}}, A) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} w_{3,i} + \sum_{i \neq j} \alpha_{i} \alpha_{j} w_{3,i}}$ $e(A, A) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} + \sum_{i \neq j} \alpha_{i} \alpha_{j}}$ $e(\sigma_{w_{1}}, \sigma_{w_{2}}) = e(g_{p}, g_{p})^{\sum_{i \in [m]} \alpha_{i}^{2} w_{1,i} w_{2,i} + \sum_{i \neq j} \alpha_{i} \alpha_{j} w_{1,i} w_{2,j}}$

Is This Sound?

common reference string

$$A_{1} = g_{p}^{\alpha_{1}}$$

$$A_{2} = g_{p}^{\alpha_{2}}$$

$$\vdots$$

$$A_{m} = g_{p}^{\alpha_{m}}$$

$$A = g_{p}^{\alpha_{1} + \dots + \alpha_{m}}$$

commitment to (x_1, \dots, x_m)

$$\sigma_{\boldsymbol{x}} = A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$
$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m}$$

Soundness requires some care:

Groth-Ostrovsky-Sahai NIZK based on similar commit-and-prove strategy

Soundness in GOS is possible by *extracting* a witness from the commitment

For a false statement, no witness exists

Our setting: commitments are *succinct* – <u>cannot</u> extract a full witness

Solution: "local extractability" [KPY19] or "somewhere extractability" [CJJ21]

Approach: Program the CRS to extract a witness for instance *i* Implies non-adaptive (and semi-adaptive) soundness

Somewhere Soundness

CRS will have two modes:

Normal mode: used in the real scheme

Extracting on index *i*: supports witness extraction for instance *i* (given a trapdoor)

CRS in the two modes are computationally indistinguishable

Similar to "dual-mode" proof systems and somewhere statistically binding hash functions

Implies non-adaptive soundness

Fix any tuple $(x_1, ..., x_m)$ where $x_i \notin \mathcal{L}_C$ for some *i*

Suppose prover constructs accepting proof π of $(x_1, ..., x_m)$

Switch CRS to be extracting on *i*

CRS indistinguishability implies that proof still verifies

In extracting mode, we can recover w_i such that $C(x_i, w_i) = 1$ so $x_i \in \mathcal{L}_C$

If proof π verifies, then we can extract a witness w_i such that $C(x_i, w_i) = 1$

Local Extraction

Subgroup decision assumption [BGN05]:

Random element in subgroup (\mathbb{G}_p)

 \approx

Random element in full group (G)

Local Extraction

CRS in extraction mode (for index i^*):

$$A_1$$
 A_{i^*-1} A_{i^*} A_{i^*+1} A_m $g_p^{\alpha_1}$ \cdots $g_p^{\alpha_{i^*-1}}$ $g_p^{\alpha_i^*}g_q^r$ $g_p^{\alpha_{i^*+1}}$ \cdots $g_p^{\alpha_m}$

Trapdoor: g_q (generator of \mathbb{G}_q)

Consider a commitment σ_x :

$$\sigma_{\boldsymbol{x}} = A_1^{x_1} A_2^{x_2} \cdots A_{i^*-1}^{x_{i^*-1}} A_{i^*}^{x_{i^*}} A_{i^*+1}^{x_{i^*+1}} \cdots A_m^{x_m}$$

$$= g_p^{\alpha_1 x_1 + \dots + \alpha_m x_m} g_q^{r x_{i^*}}$$

$$Project into \mathbb{G}_q$$
if $z = 1$, output $x_{i^*} = 0$
if $z \neq 1$, output $x_{i^*} = 1$

$$Compute z \leftarrow e(\sigma_x, g_q)$$

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_p, V)$$

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_p, V)$$

Adversary chooses commitment σ_x and proof *V*

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_p, V)$$

Adversary chooses commitment σ_x and proof V

Generator g_p and aggregated key A part of the CRS (<u>honestly-generated</u>)

If this relation holds, it must hold in **both** the order-p subgroup **and** the order-q subgroup of \mathbb{G}_T

Key property: $e(g_p, V)$ is **always** in the order-p subgroup; adversary **cannot** influence the verification relation in the order-q subgroup

Write $\sigma_x = g_p^s g_q^t$ Write $A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$ In the <u>order-q</u> subgroup, exponents must satisfy: $t^2 = tr \mod q$

Consider wire validity check:

$$e(\sigma_{\mathbf{x}}, \sigma_{\mathbf{x}}) = e(\sigma_{\mathbf{x}}, A)e(g_p, V)$$

Adversary chooses commitment σ_x and proof V

Generator g_p and aggregated key A part of the CRS (honestly-generated)

If this relation holds, it must hold in **both** the order-*p* subgroup and the order-*a* subgroup of \mathbb{C} . If wire validity checks pass, then $t = b_i r$ where $b_i \in \{0,1\}$ Write $\sigma_x = g_p^s g_q^t$ Write $A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$ Deserve: $b_i \in \{0,1\}$ is also the extracted bit In the order-*q* subgroup, exponents must satisfy: $t^2 = tr \mod q$

Consider gate validity check:

$$e(\sigma_{w_3}, A)e(\sigma_{w_1}, \sigma_{w_2}) = e(A, A)e(g_p, W)$$

Consider gate validity check:

$$e(\sigma_{W_3}, A)e(\sigma_{W_1}, \sigma_{W_2}) = e(A, A)e(g_p, W)$$

Adversary chooses commitment σ_{w_1} , σ_{w_2} , σ_{w_3} and proof WGenerator g_p and aggregated key A part of the CRS (<u>honestly-generated</u>)

Write

$$\sigma_{w_{1}} = g_{p}^{s_{1}} g_{q}^{t_{1}}$$

$$\sigma_{w_{2}} = g_{p}^{s_{2}} g_{q}^{t_{2}}$$

$$\sigma_{w_{3}} = g_{p}^{s_{3}} g_{q}^{t_{3}}$$

Write $A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$

In the order-q subgroup, exponents must satisfy: $t_3r + t_1t_2 = r^2 \mod q$

By wire validity checks: $t_i = b_i r$ where $b_i \in \{0,1\}$

$$b_3 r^2 + b_1 b_2 r^2 = r^2 \mod q$$

 $b_3 = 1 - b_1 b_2 = \operatorname{NAND}(b_1, b_2)$

Consider gate validity check:

$$e(\sigma_{W_3}, A)e(\sigma_{W_1}, \sigma_{W_2}) = e(A, A)e(g_p, W)$$

Adversary chooses commitment $\sigma_{w_1}, \sigma_{w_2}, \sigma_{w_3}$ and proof W

Generator g_p and aggregated key A part of the CRS (honestly-generated)

Write

$$\sigma_{w_{1}} = g_{p}^{s_{1}} g_{q}^{t_{1}}$$

$$\sigma_{w_{2}} = g_{p}^{s_{2}} g_{q}^{t_{2}}$$

$$\sigma_{w_{3}} = g_{p}^{s_{3}} g_{q}^{t_{3}}$$

Write $A = g_p^{\sum_{i \in [m]} \alpha_i} g_q^r$

In the order-q subgroup, exponents must satisfy:

$$t_3r + t_1t_2 = r^2 \mod q$$

Conclusion: extracted bits are consistent with gate operation

$$b_3 = 1 - b_1 b_2 = \text{NAND}(b_1, b_2)$$

Let $w_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire *i*

2 Prover constructs the following proofs: Input validity Wire validity Gate validity

Prover commits to each vector of wire assignments

 $w_i = w_{i,1} \quad w_{i,2} \quad \cdots \quad w_{i,m} \quad \longrightarrow \quad \sigma_i$

Requirement: $|\sigma_i| = \text{poly}(\lambda, \log m)$ **Our construction:** $|\sigma_i| = \text{poly}(\lambda)$

Output validity

Remaining checks ensure that statement correctly encoded and output is 1 **Implication:** Successful extraction of valid witness for instance i^*

Proof Size

 σ_i

Prover commits to each vector of wire assignments

 $W_{i,m}$

Let $w_i = (w_{i,1}, ..., w_{i,m})$ be vector of wire labels associated with wire *i*

Prover constructs the following proofs:
 Input validity
 Wire validity
 One group element
 Gate validity
 One group element

Commitment size: $|\sigma_i| = \text{poly}(\lambda)$ Single group element

 W_{i2}

 $\boldsymbol{w}_i =$

Overall proof size (*t* wires, *s* gates): $(2t + s) \cdot poly(\lambda) = |C| \cdot poly(\lambda)$

Verification Time

 σ_i

2

Prover commits to each vector of wire assignments

 W_{i2}

 $W_{i,m}$

 $w_i =$

Let $\boldsymbol{w}_i = (w_{i,1}, \dots, w_{i,m})$ be vector of wire labels associated with wire *i*

Prover constructs the following proofs:
 Input validity
 O(mn) group operations
 Wire validity
 O(1) group operations
 O(1) group operations
 O(1) group operations
 Dutput validity Equality check

Overall verification time: $nm \cdot poly(\lambda) + |C| \cdot poly(\lambda)$

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

 $\langle g^{\alpha u + \beta v} \rangle \langle g^{u} \rangle \langle g^{v} \rangle$ full space subspaces $(\mathbb{Z}_{p}^{2}) of \mathbb{Z}_{p}^{2}$

 $\mathbb{G} \cong \mathbb{G}_p \times \mathbb{G}_q$

composite-order group Simulate subgroups with subspaces

prime-order group $u, v \in \mathbb{Z}_p^2$ (linearly independent)

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

Simulate subgroups with subspaces

composite-order group

 $\langle g^{\alpha u + \beta v} \rangle \langle g^{u} \rangle \langle g^{v} \rangle$

 $\mathbb{G} \cong \mathbb{G}_p \times \mathbb{G}_q$

prime-order group

Normal mode: $g_p^{\alpha_i} \rightarrow g^{\alpha_i u}$

Extracting scheme: $g_p^{\alpha_i} g_q^r \to g^{\alpha_i u + rv}$

Indistinguishable under DDH

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

 $\mathbb{G} \cong \mathbb{G}_p \times \mathbb{G}_q$

 $\langle a^{\alpha u + \beta v} \rangle \langle a^{u} \rangle$

Simulate subgroups with subspaces

composite-order group

prime-order group

Technically: move to <u>asymmetric</u> pairing-groups first (otherwise DDH does not hold)

 $\langle q^{\nu} \rangle$

Indistinguishable under DDH

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

Simulate subgroups with subspaces

prime-order group

composite-order group

Pairing is an <u>outer product</u>: $e(g^{u}, g^{v}) = e(g, g)^{u \otimes v} = e(g, g)^{uv^{T}}$

 $\langle q^{v} \rangle$

 $\mathbb{G} \cong \mathbb{G}_p \times \mathbb{G}_q$

 $\langle a^{\alpha u+\beta v}\rangle \langle a^{u}\rangle$

BARGs for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

$$e(\sigma_x, \sigma_x) = e(\sigma_x, A)e(g_p, V)$$

Composite-order setting: $e(g_p, V)$ <u>cannot</u> contain a \mathbb{G}_q component \Rightarrow isolate instance i^* in \mathbb{G}_q subgroup

Prime-order setting: $e(g^u, V)$ <u>cannot</u> contain a vv^T component \Rightarrow isolate instance i^* in vv^T subspace

Generalizes to yield a BARG from

k-Linear assumption (for any $k \ge 1$) in prime-order asymmetric bilinear groups

Reducing CRS Size

Common reference string:

Am A_1 A_2 • • • $B_{1,m}$ B_{1,3} *B*_{1,2} • • • B_{2,3} $B_{2,m}$ • • • • $B_{m-1,m}$

Size of CRS is
$$m^2 \cdot \operatorname{poly}(\lambda)$$

Can rely on recursive composition to reduce CRS size: $m^2 \cdot \text{poly}(\lambda) \rightarrow m^{\varepsilon} \cdot \text{poly}(\lambda)$ for any constant $\varepsilon > 0$

Similar approach as [KPY19]

The Base Case

 $\ell = \sqrt{m}$ statements

BARGs with Split Verification

Verify(crs, C, $(x_1, \dots, x_m), \pi$)

$$GenVK(crs, (x_1, ..., x_m)) \to vk$$

Runs in time $poly(\lambda, m, n)$ $|vk| = poly(\lambda, \log m, n)$

OnlineVerify(vk, C, π) Runs in time poly(λ , log m, |C|)

Preprocesses statements into a <u>short</u> verification key

Fast online verification

(Similar property from [CJJ21])

Recursive Bootstrapping

BARG with Split Verification

In online phase, verifier uses commitments $(\sigma_1, \dots, \sigma_n)$ for the bits of input wires

(no more input validity checks)

Verifier checks the following

Input validity Wire validity Gate validity Output validity

 $nm \cdot \text{poly}(\lambda)$ $|C| \cdot \text{poly}(\lambda)$ constant number of group operations per wire/gate Only depends on the statement!

Given $(x_1, ..., x_m) \in (\{0,1\}^n)^m$, verifier computes commitments to bits of the statement

$$\forall j \in [n]: \sigma_j \leftarrow \prod_{i \in [m]} A_i^{x_{i,j}}$$

 $\operatorname{GenVK}(\operatorname{crs},(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_m)) \to (\sigma_1,\ldots,\sigma_n)$

BARGs with Short CRS

Corollary: BARGs for NP from standard assumptions over bilinear maps

- k-Linear assumption (for any $k \ge 1$) in prime-order bilinear groups
- Subgroup decision assumption in composite-order bilinear groups

For a proof on *m* instances of length *n*:

- **CRS size:** $|\operatorname{crs}| = m^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ for any constant $\varepsilon > 0$
- **Proof size:** $|\pi| = \text{poly}(\lambda, |C|)$
- Verification time: $|Verify| = poly(\lambda, n, m) + poly(\lambda, |C|)$

Choudhuri et al. [CJJ21] showed:

BARG with split verification

succinct argument for polynomial-time computations

Delegation scheme for RAM programs

succinct vector commitment that allows extracting on single index

Choudhuri et al. [CJJ21] showed:

succinct argument for polynomial-time computations

Delegation scheme for RAM programs

This work (from k-Lin)

succinct vector commitment that allows extracting on single index

Recall vector commitment we use for committing to wire values:

$$A_1, \ldots, A_m, \mathbf{x} \to A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$

Same technique (cross-term cancellation) yields a somewhere extractable commitment (in combination with somewhere statistically binding hash functions [HW15])

Choudhuri et al. [CJJ21] showed:

Recall vector commitment we use for committing to wire values:

$$A_1, \ldots, A_m, \mathbf{x} \to A_1^{x_1} A_2^{x_2} \cdots A_m^{x_m}$$

Same technique (cross-term cancellation) yields a somewhere extractable commitment (in combination with somewhere statistically binding hash functions [HW15])

Choudhuri et al. [CJJ21] showed:

Corollary. RAM delegation from SXDH on prime-order pairing groups To verify a time-T RAM computation:

- **CRS size:** $|\operatorname{crs}| = T^{\varepsilon} \cdot \operatorname{poly}(\lambda)$ for any constant $\varepsilon > 0$
- **Proof size:** $|\pi| = \operatorname{poly}(\lambda, \log T)$
- **Verification time:** $|Verify| = poly(\lambda, \log T)$

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]

Application to Aggregate Signatures

Folklore construction from succinct arguments for NP (SNARKs for NP): prove knowledge of $\sigma_1, ..., \sigma_k$ such that $Verify(vk, m_i, \sigma_i) = 1$

Application to Aggregate Signatures

Can replace SNARKs for NP with a (somewhere extractable) BARG for NP: prove knowledge of $\sigma_1, ..., \sigma_k$ such that $Verify(vk, m_i, \sigma_i) = 1$

Application to Aggregate Signatures

Can replace SNARKs for NP with a (somewhere extractable) BARG for NP: prove knowledge of $\sigma_1, ..., \sigma_k$ such that $Verify(vk, m_i, \sigma_i) = 1$

This work: BARG for <u>bounded</u> number of instances

Corollary. Aggregate signature supporting <u>bounded</u> aggregation from bilinear maps

First aggregate signature with bounded aggregation from standard pairingbased assumptions (i.e., k-Lin) in the plain model

Previous pairing constructions: unbounded aggregation from standard pairingbased assumptions in the random oracle model [BGLS03]

Summary

BARGs for NP from standard assumptions over bilinear maps

Key feature: Construction is "low-tech"

Direct "commit-and-prove" approach like classic pairing-based proof systems

Corollary: RAM delegation (i.e., "SNARG for P") with sublinear CRS

Corollary: Aggregate signature with bounded aggregation

Open Question: BARG with unbounded number of instances from bilinear maps

https://eprint.iacr.org/2022/336 Thank you!