Learning Sequences of Controllers for Complex Manipulation Tasks

Jaeyong Sung
Bart Selman
Ashutosh Saxena

JYSUNG@CS.CORNELL.EDU
SELMAN@CS.CORNELL.EDU
ASAXENAQCS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca, NY 14850 USA

Abstract

Many tasks in human environments require
performing a sequence of complex navigation
and manipulation tasks. In unstructured hu-
man environments, the locations and con-
figuration of the objects can change in un-
predictable ways. This requires a high-level
planning strategy that is robust and flexible
in an uncertain environment. We propose
a novel dynamic planning strategy, which
can be trained from a set of example ac-
tivities. High level activities are expressed
as a sequence of primitive actions or con-
trollers (with appropriate parameters). Our
planning model synthesizes a universal strat-
egy, where the a suitable next action is se-
lected based on the current state of the en-
vironment. By expressing the environment
using sets of attributes, the approach gener-
alizes well to unseen scenarios. By unfolding
our planning strategy into a Markov Random
Field approximation, we can effectively train
parameters using a maximum margin learn-
ing strategy. We provide a detailed empirical
validation of our overall framework demon-
strating successful plan strategies for a vari-
ety of tasks.

1. Introduction

In the area of robotics, carrying out complex manip-
ulation tasks requires piecing together a sequence of
controllers that operate in response to the perceived
state of the environment. In this work, we call these
sequences of controllers (or primitives), a program. As
an example, consider the task of a robot fetching a
magazine from a desk. The method to perform these
tasks would vary depending on several properties: for

Proceedings of the 30" International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

example, the robot’s relative distance from the maga-
zine, the robot’s relative orientation, thickness of the
magazine, and presence or absence of other items on
top of the magazine. If the magazine is very thin, the
robot may have to slide the magazine to the side of
the table to pick it up. If there is a mug sitting on top
of the magazine, it would have to be moved prior to
being picked up. Thus, there is a large variety in the
way we write a program for this task.

Manually writing such programs is not scalable be-
cause of the large variety of tasks and situations that
can arise. In recent years, there have been signifi-
cant developments in building low-level controllers for
robots (Thrun et al., 2005) as well as in perceptual
tasks such as object detection from sensor data (Kop-
pula et al., 2011). In this work, our goal is to enable
robots to develop programs (sequences of controllers
operating in response to the perceptual input) for new
tasks and situations. Learning from previously seen
examples of various activities will allow robot to in-
fer correct programs to achieve complex manipulation
tasks even if the robot has not seen a particular envi-
ronment in the context of this particular task. These
programs can in turn be sequenced together with just
high-level instructions.

We start by representing the objects in the environ-
ment with a set of attributes, such their size, shape-
related information, presence of handles, and so forth.
In other approaches, it is generally assumed that we
have an environment that contains only a single pos-
sible choice of object or specific object for the robot
to interact with. However, for a given task, there are
often multiple objects that can be used. For humans,
it is natural to reason and choose the most suitable
object for the given task (Kemp et al., 2010). Using
a attribute representation of a objects in the environ-
ment, our model, after a training phase, is similarly
capable of choosing the most suitable object for the
given task among many objects in the environment.

We take a dynamic planning approach to the prob-

Learning Sequences of Controllers for Complex Manipulation Tasks

lem of synthesizing, in the right order, the suitable
primitive controllers. The current environment is rep-
resented as a set of attributes. The best primitive
to execute at each discrete time-step is based on a
score function that represents the appropriateness of a
particular primitive for the current state of the envi-
ronment. Conceptually, a dynamic plan consists of a
loop containing a sequence of conditional statements
each with an associated primitive controller or action.
If the current environment matches the conditions of
one of the conditional statements, the corresponding
primitive controller is executed bringing the robot one
step closer to completing the overall task. We refer
to such a dynamic plan as a “Program.” For an ex-
ample program, see Section 3. We will show how to
generalize such programs to make them more flexible
and robust, by switching to an attribute based repre-
sentation. We then show how to unwind the loop into
a graph-based representation, isomorphic to a Markov
Random Field. We can then train the parameters of
the resulting model on a series of example controller se-
quences for high-level task. During the training stage,
we are given various environments and a set of avail-
able controllers for the robot along with example se-
quences of different manipulation tasks, and we use a
maximum-margin learning approach to train the pa-
rameters for sequencing controllers which will enable
the robot to carry out a variety of manipulation task
autonomously in previously unseen environments.

We have evaluated our model on 127 controller se-
quences (programs) for five manipulation tasks gen-
erated from 13 environments using 7 primitives. We
show that our model can predict suitable primitives
to be executed with the correct arguments in most
settings. Furthermore, we show that for five high-level
tasks, our algorithm was able to sequence together cor-
rect programs in different environments.

2. Related Work

There is large body of work in task planning across
various communities. We describe some of them in
the following categories.

Manual Controller Sequencing. Many work man-
ually sequences different types of controllers for spe-
cific applications such as baking cookies, making a
pancake or laundry folding (Bollini et al., 2011; Beetz
et al., 2011; Miller et al., 2012). Most of these work
have assumed a controlled environment, which is very
different from actual human households where objects
of interest can appear on table, on shelf or in refrig-
erator and the environment may even have a variety
of similar objects. More importantly, it cannot scale
to large number of tasks when each requires its own

complicated rules of sequencing controllers in order to
carry out tasks in human environment. Beetz et al.
(2011) retrieves sequence of “making pancake” from
online websites such as wikihow.com but requires good
labelling of the environment but was only tested in an
environment with single choices. Nguyen et al. (2013)
relies on human experts to generate hierarchical finite
state machine but requires user to put AR tags on
every object in order to re-use the sequence in new
environments.

Symbolic Planning. Planning has long been for-
malized as a deduction (Green, 1969) or satisfiabil-
ity problem (Kautz & Selman, 1992). Kaelbling &
Lozano-Pérez (2011) generate a plan hierarchically by
first planning abstractly and then generating a de-
tailed plan recursively. Such approaches can gener-
ate sequence of controllers that can be proven to be
correct (Johnson & Kress-Gazit, 2011). Rather than
defining precondition for each operation by hand, Yang
et al. (2007) learns PDDL representation (variant of
STRIPS style) of action and builds weighted propor-
tional satisfiability problem (MAX-SAT) from exam-
ples of recorded plans. Though it does not require
encoding all intermediate state information, it still re-
quires domain description for each planning domain
(e.g., load depot) such as types of each object (e.g.,
pallet crate z, truck hoist surface y) as well as any re-
lations (e.g., crate z on surface y, hoist z available).
Symbolic planners require encoding every precondi-
tion for each operation, or encoding domain knowledge
which may work well in restricted environments, but
will not be able to scale in human environments where
there is a large variation in the environments where
the task is to be performed.

Such STRIPS-style representation also restricts the en-
vironment to be represented as explicit labels. Though
there is a substantial body of work on labeling human
environments (Koppula et al., 2011), it still remains
to be a challenging task. A more reliable way of rep-
resenting an environment is a representation through
attributes (Ferrari & Zisserman, 2007; Farhadi et al.,
2009). Lampert et al. (2009) have shown that repre-
sentation through attributes even allows classification
of unseen object classes that does not appear in train-
ing data. Similarly in our work, we represent envi-
ronment as a set of attributes, allowing the robot to
search for objects with most suitable attributes rather
than looking for the specific object.

Predicting Sequences. Predicting sequence has
mostly been studied in a Markov Decision Process
(MDP) framework which finds optimal policy given
the reward for each state. Because the reward func-
tion cannot be easily specified in many applications,

Learning Sequences of Controllers for Complex Manipulation Tasks

Ng & Russell (2000) introduce inverse reinforcement
learning (IRL) for an MDP, which tries to learn re-
ward function from the expert’s policy. Abbeel & Ng
(2004) extend IRL to Apprenticeship Learning, based
on the assumption that the expert tries to optimize an
unknown reward function. However, such MDP-based
approaches require a state representation which is hard
to define for a human environment that can contain
different number of objects, and stepping through dif-
ferent policies and running a reinforcement learning
algorithm would be expensive given a large state space
and a large action space.

Most similar to our work, Ratliff et al. (2006) intro-
duces Max Margin Planning, where imitation learn-
ing is framed as a structured max margin learning
problem. However, it has only been applied to the 2-
dimensional path planning problem, which has much
smaller and clear set of states and actions compared
to our problem of sequencing different controllers.

3. Our Approach

A program is a sequence of primitives (low-level con-
trollers in our case). In order to make programs gener-
alizable, primitives should have the following two prop-
erties. First, each primitive should specialize to an
atomic operation such as move_close, pull, grasp, and
release. Second, a primitive should not be specific to a
single overall activity or task. By limiting the role of
each primitive and keeping it general, many different
manipulation tasks can be accomplished with the same
small set of primitives, and our approach becomes easy
to adapt to different robots by providing implementing
primitives on the new robot.

For illustration, we write a program for “throw garbage
away” in Program 1. Most programs could be written
in such format, where there are many if statements
inside the loop. However, even for a simple “throw
garbage away” task, the program is quite complex.

Program 1 is an example of what is commonly referred
to as reactive planning or dynamic planning (Russell
& Norvig, 2010; Koenig, 2001). In traditional, deliber-
ative planning, a planning algorithm synthesizes a se-
quence of steps that start from given state and reaches
given goal state. Current symbolic planners can find
optimal plan sequences consisting of hundreds of steps.
However, in dynamic environments, such long plan se-
quences often break down because unexpected events
may occur during the execution of the plan sequence.
A dynamic plan provides a much more robust alter-
native. At each step, the current state of the world is
considered (“sensed’) and the next appropriate action
is selected by one of the conditional statements in the
main loop. A well-constructed dynamic plan will iden-

Program 1 “throw garbage away.”

Input: environment e, trash a;
gc = find_garbage_can(e)
repeat
if a1 is in hand & gc is close then
release(ay)
else if a; is in hand & far from gc then
move_close(gc)
else if a; is close & a; not in hand & nothing on
top of a; then

grasp(a1)

else if q; is far then
move_close(ay)
end if

until a; inside gc

tify the next required step in any possible world state
bringing the agent closer to the overall goal. (There
may be more than one suitable next step. In that case,
a simple random selection from the feasible options
works.) In complex planning domains, dynamic plans
may become too complex. However, we are consider-
ing basic human activities, such as following a recipe
for cooking. In this setting, dynamic plans are gener-
ally quite compact and effectively lead the agent to the
goal state. Moreover, as we will demonstrate below,
we can often learn the dynamic plan from observing a
series of action sequences in related environments.

In order to make our approach more general, we in-
troduce a feature (or attribute) based representation
for the entities in the environment. This attribute set
represents the state of the world (and hence the pro-
gram, in a dynamic planning setting). We can extract
some features from the environment along with the ac-
tion that will be executed in the body of if statement.
With extracted features ¢ and some weight vector w
for each if statement, the same conditional statements
can be written as w” ¢, since the environment will al-
ways contain the rationale for executing certain prim-
itive. Such a feature-based approach allows us to re-
write Program 1 in the form of Program 2.

Now all the if statements have the same form, where
the same primitive is used in both if condition as well
as the body of the if statement. We can therefore re-
duce all if statements inside the loop further down to
a simple line which depends only on the weight vector
and joint feature map, as shown in Program 3.

The approach taken in Program 3 also allowed remov-
ing find_garbage_can(e). Both Program 1 and Pro-
gram 2 requires find_garbage_can(e) which depends

Learning Sequences of Controllers for Complex Manipulation Tasks

Program 2 “throw garbage away.”

Input: environment e, trash a;
gc = find_garbage_can(e)
repeat
e; = current environment
if w! ¢(es,release(ar)) > 0 then
release(ay)
else if wl ¢(e;;move_close(gc)) > 0 then
move_close(gc)

else if wl ¢(e;;move_close(a;)) > 0 then
move_close(ay)
end if
until a; inside gc

Program 3 “throw garbage away.”

Input: environment e, trash aq
repeat
e; = current environment

(ﬁta &1,t7 dQ,t) = arg max
ptE€EP,a1,¢,a2,t€EE
execute Py(G1,t, o)
until p, = done

on semantic labeling of each object in the environment.
The attributes of objects will allow the program to in-
fer which object is a garbage can without explicitly
encoding.

Program 3 provides a generic representation of a dy-
namic plan. We will now discuss an approach to learn-
ing a set of weights, which defines the particular overall
activity or task. To do so, we will employ a graph-like
representation obtained by “unrolling” the loop repre-
senting discrete time steps by different layers. We will
obtain a representation that is isomorphic to a Markov
Randon Field, and will use a maximum margin based
approach to train the weight vector. Our empirical
results show that such framework is effectively train-
able with relatively small sets of example sequences.
Our feature-based dynamic plan formulation therefore
offers a highly effective and general representation to
learn and generalize from action sequences accomplish-
ing high-level tasks in a dynamic environment.

3.1. Model Formulation

We are given a set of possible primitives P to work with
(see Section 4), Using these primitives, the robot has to
accomplish a manipulation task g € 7. The manipula-
tion task g is followed by the arguments {ga1,ga2} C €
which give specification of the task. For example, the
program “throw garbage away” would have a single
argument which would be an object id of the object

wT¢(€t, pt(al,ta az,t))

Figure 1. Figure showing Markov Random Field represen-
tation of our model at discrete time-step t. The middle
layer represents the sequence of primitives, and the top
layer represents the arguments associated with each prim-
itive. The bottom node represents the environment. Goal
task node consisting of g, ga1, ga2 is not explicitly shown
but is connected to all of nodes at time ¢ as well as primi-
tives at previous time-steps.

that needs to be thrown away.

At each time step ¢ (i.e., at each iteration of the loop
in Program 3), our environment e; will dynamically
change, and we will represent it with a joint set of at-
tributes. These attributes would include information
about the physical and semantic properties of the ob-
ject as well as information about its location in the
environment (see Section 4).

Now our goal is to predict the best primitive p, € P
to execute at each discrete time-step, along with its
arguments p; (a1 ¢, as,.). We will do so by designing a
score function S(-) over the attributes of the environ-
ment, primitives and the arguments that represents
the correctness of executing a primitive in the current
environment for a task.

S(etapt(al,h a2,t)) = wT¢(et7pt(a1,t7 a2,t))

In order to incorporate all the affects, the size of the
attribute vector above would be quite big. We there-
fore decompose our score function using a model iso-
morphic to a Markov Random Field (MRF) shown in
Figure 1. This also allows us to capture the depen-
dency on the primitives and arguments executed in
the previous time-steps. In the figure, the bottom
node represents environment e; at time ¢ as well as
the goal task (g, ga1, ga2) though it is not shown explic-
itly. The middle layer represents the sequence of prim-
itives and the top layer represents the arguments asso-
ciated with each primitive. Note that we also take into
account the previous two primitives in the past, to-
gether with their arguments: py_1(a1,—1,a2,—1) and
pi—2(ait—2,a2¢ 2).

Now the decomposed score function is:
S = Sa,e + Spg + Saet + Saae + Spae + S;Dpt + Spaae

The terms associated with a edge in the graph are
defined as a linear function of respective features ¢

Learning Sequences of Controllers for Complex Manipulation Tasks

Figure 2. Figure showing two of our 13 environments in our
evaluation dataset using 43 objects along with PR2 robot.

and weights w:

Sae = waelT¢ae(a1,t7 et) + wa52T¢ae(a2,ty et)

Spg = wpgT¢pg (pt, 9)

Similarly, the terms associated with a clique in the
graph are defined as a linear function of respective
features ¢ and weights w:

Saet = waet1T¢aet(al,t, et,g) + waet2T¢aet(a2,t, et,9g)
Saae = Waae Paae(a1t,as,t,er)

Spae = Wpael " Gpae(Pt, A1t,€t) + Wpaes dpac(Pt, a2,t, €r)
Sppt = wpptlTCbWt(ptfl,ptv g)+ wppt2T¢ptt(pt72aPt, t)

S _ T
paae — wpaaeijk ¢puae (pt, Ak, Ajt, et)
i,5€(1,2),ke(t—2,t—1)

Using these edge terms and clique terms, our score
function S(x,y) can be simply written in the following
form, which we have seen in Program 3: S(x,y) =

wlo(x,y).
3.2. Features

In this section, we describe our features ¢(-) for the
different terms in the previous section.

o Arguments-environment (¢qe): The robot should
be aware of its location and the current level of
interaction (e.g., grasped) with: (i) the objects of
interest given as task arguments gq1, gu2, and (ii)
also with the objects of possible interest given as
possible primitive argument candidate aj ¢, as ;.
The robot should be aware of how far it is cur-
rently located from objects it will interact with.
Therefore we add one feature for the distance from
the robot to each primitive arguments and one
binary feature which tells whether each primitive
argument is already in the robot’s manipulator.

o Arguments-environment-task (¢pqet): We add a bi-
nary feature vector of length 4 which indicates
whether the objects of possible interest (two prim-
itive arguments) is same as the objects given by
the two task arguments. Another feature vector
of length 4 is added to indicate whether task ar-
guments and primitive arguments are in collision
when viewed from the top in order to retrieve
some spatial information between these objects.

Before interacting with the object, it is often im-
portant to realize the type of the object (e.g. ta-
ble, shelf) that is supporting it. Such realization
will be relevant depending on what is robot try-
ing to accomplish next in the sequence, which we
can get some information by checking whether the
robot is holding any object or not. For most of the
primitives, the first primitive argument results in
a higher level of interaction with the robot com-
pared to the second primitive argument, we ex-
tract attributes of object that supports (‘is be-
low’) first primitive argument. We store this in-
formation in a feature vector of size twice the
length of attributes (21) where we store extracted
attributes in the first half or the second half if the
robot is grabbing holding task argument object.

The set of robot’s possibly interested objects
(primitive arguments) should be influenced by
what task it is trying to accomplish. The binary
matrix feature of size |7| x 2l stores the object
attributes of the primitive arguments a; ¢, a2 on
g'" row. And a binary vector of size |T| encodes
on ¢'" row whether the robot is currently holding
primitive arguments in hand.

Primitive-task (¢pq): Depending on the task in-
formation provided, the primitive should be se-
lected differently. We create a |T| x |P| binary
matrix where each entry indicates whether that
primitive is relevant for that task at all. This bi-
nary matrix represents a co-occurrence between
two terms. Only non-zero entry term in this ma-
trix will be g** row and p,/* column.

Arguments-environment (daae)- To capture
whether there is any spatial relation between
objects of possible interest, we add one binary
feature indicating whether primitive arguments
a1, a2, are currently in collision with each other.
Primitive-arguments-environment (¢pqe). De-
pending on the type of primitive to take, it would
sometimes require primitive argument to be al-
ready grabbed or sometime requires not to be
grabbed. We create a |P| x 2 where row for cur-
rent primitive (p;*" row) contains two binary val-
ues indicating whether each primitive argument is
in the manipulator.

Primitive-primitive(previous)-task (¢ppt). De-
pending on the task, the robot would take differ-
ent transition of primitives. Just like the feature
in ¢pg, we use a binary co-occurrence matrix of
size | T| x |P|? where each cell represents specific
transition between primitives and each row forms
a transition occurrence for a task. We generate
two of these binary matrices where one is con-
cerning the transition from ¢ — 2 to ¢ for task g

Learning Sequences of Controllers for Complex Manipulation Tasks

and the other concerning the transition from ¢ —1
to t for task g.

o Primitive-arqument-argument(previous)-
environment (¢paqe). Depending on the type of
primitive, the objects could match with previous
arguments or sometimes it should not match
because the interaction is over. Thus, the matrix
of size |P| x 8 is created to represent for p;*" row
to contain 8 binary values representing whether
the two primitive arguments at time ¢ is same as
the two primitive arguments at t — 1 or the two
primitive arguments at ¢t — 2.

Attributes. Every object in the environment
including tables and floors 1is represented us-
ing the following set of attributes: height A,
max(width w,dlength 1), min(w,l), volume(w x*
I % h), min(w,l, h)-over-max(w,, h), median(w, !, h)-
over-max(w, [, h), cylinder-shape, box-shape, liquid,
container, handle, movable, large-horizontal-surface,
and multiple-large-horizontal-surface. Attributes such
as cylinder-shape, box-shape, container, handle, and
large-horizontal-surface were previously shown to be
reliably extracted from RGB or RGBD images and
was shown to be useful in different applications (Fer-
rari & Zisserman, 2007; Farhadi et al., 2009; Lampert
et al., 2009; Koppula et al., 2011).

3.3. Learning

We use maximum margin based approach to train a
single model for all tasks. The maximum margin ap-
proach fits our formulation since it assumes discrimi-
nant function is a linear function of a weight vector w
and a joint feature map ¢(z,y), and it has time com-
plexity linear with the number of training examples
when solved using the cutting plane method (Joachims
et al., 2009). We formalize out problem as “l-slack”
structural SVM optimization problem:

mln 1w w + C¢

02
st V(g g eV Vi €
1 n 19 1 & 15"
EwTZ:Z xjvyj l‘;,g; ZEZZ y;;@f -

with the loss function defined as:

A(y y ({p7 a17a2} {p,a1,a2})

:1@#p}%ﬂm#aﬂ+ﬂ@2#@)

With learned w, we choose the mnext ac-
tion in sequence by selecting the primi-
tive that gives largest discriminant value:

ArgMAX,,, cp g, , a5, cE wl ¢(ey, pear e, asy)).

pour ==

pour
Figure 3. Figure showing few snapshots of learned pro-
grams forming higher level task of serving sweet tea which
takes the sequence of pouring tea into a cup, pouring sugar
into a cup and then stirring it.

4. Experiments

4.1. Data

We considered seven primitives (low-
level controllers): move_close(4),
grasp(4), release(4), place_above(A,B),

hold_above(A,B), follow_traj_circle(A) and
follow_traj_pour(A,B). Depending on the envi-
ronment and the task, these primitives could be
instantiated with different arguments. For example,
consider an environment that contains a bottle
(objO4) containing liquid (obj16) and an empty cup
(obj02) placed on the top of the shelf, among other
objects. If, say from a recipe, our task is to pour the
liquid, then our program should figure out the correct
sequence of primitives with correct arguments (based
on the objects’ attributes, etc.):

{pour(obj16);env2} —

{move_close(obj02); grasp(obj02); move_close(objo04);
place_above(obj02,0bj26); release(obj02);
hold_above(obj04,0bj02); follow_traj_pour(objO4,0bj02)}

grasp(objo4) ;

Note that actual sequence does not directly interact
with liquid (obj16) but rather with a container of
liquid (obj04), an empty cup (obj02), and an table
(0bj26).

For evaluation, we prepared a dataset where the goal
was to produce correct programs for the following tasks
in different environments:

e stir(A): Given a liquid A, robot has to figure
out ideal size stirrer (from several), and stir the
liquid A on top of the table. The objects may not
be on the table but on a shelf. In all of programs,
the robot can only interact with the container of
the liquid rather than the liquid itself whenever
liquid needs to be carried or poured. Therefore
our learning algorithm should learn this property.

e pick_and place(A,B): The robot has to place A
on top of B where A could sometimes be under
some other object.

e pour (A): The robot has to find a bowl or a pot
and pour the liquid A into it.

e pour_to(A,B): The liquid A has to be poured into
a container B. (A variant of the previous where
the container B was specified.)

e throw_away(A): The robot has to locate the

Learning Sequences of Controllers for Complex Manipulation Tasks

garbage can in the environment and throw out
object A.

In order to learn these programs, we collected 127 se-
quences for 113 unique scenarios. We considered a
single-armed mobile manipulator robot for these pro-
grams. In order to extract information about environ-
ments at each time frame of every sequence, we have
implemented each primitive using OpenRAVE simula-
tor (Diankov, 2010). Though most of the scenarios had
a single optimal sequence, multiple sequences were in-
troduced when there were other acceptable variations.
The length of each sequence varies from 4 steps to 10
steps, providing total of 736 instances of primitives.
For ensuring variety of sequences, sequences were gen-
erated based on the 13 environments shown in Figure 2
using 43 objects.

4.2. Evaluation and Results

We have evaluated our data through 6-fold cross-
validation for computing accuracies over primitives
(and primitives with arguments). Because we predict
next correct primitive and argument pair to be taken,
even if a sequence is not correctly predicted at time ¢,
for data at time ¢t + 1, we assume that the correct se-
quence was executed up to time t and tries to predict
next best sequence. Figure 4(a) shows the confusion
matrix for the prediction of our seven primitives. Our
model is very robust for most of primitives.

With our dataset, our model was able to correctly pre-
dict next primitive along with correct set of arguments
90.0% on average (Table 1). Just considering the prim-
itives, it was able to correctly predict 96.7% on aver-
age. For comparison, we have trained multiclass SVM
to only learn correct primitives, using the same set of
features. Because it only takes ¢(x) rather than the
joint feature ¢(z,y), many features had to be adjusted
to use previous timestep’s primitives and arguments.
It predicted well on some of the primitives but suffered
greatly from primitives like place_above, hold_above
and follow_traj_pour which will drastically impact
constructing overall sequence even with correct argu-
ment selected.

The last column of Table 1 shows the performance
on whether the complete sequence was correct or not.
Over five different programs, our model was able to cor-
rectly construct complete sequence 69.7% on average.
For example, on “pouring” program, it has learned not
only to bring a cup over to the table but also to pick
out the cup when there were multiple other objects like
a pot, a bowl and a can that could look similar to a
cup. Because of such large search space, if it was pre-
dicted at random, none of the sequences would be cor-
rect. Also, by varying the set of features, it is evident

that without very robust primitive-level accuracies, it
is unable to construct a single correct sequence.

These learned programs can form higher level tasks
such as a recipe found online. For example, for serving
sweet tea, it would require following steps of pouring
tea into a cup, pouring sugar into a cup, and stirring it
(Figure 3). We have tested four tasks in three environ-
ments for each task: serve-sweet-tea, serve-coffee-with-
milk, empty-container-and-throw-away, and serve-
and-store. Each four task can be sequenced in fol-
lowing manner by programs respectively: pour_to
— pour_to — stir, pour_to — pour_to, pour —
throw_away, and pour — pick_and_place. Out of to-
tal 12 scenarios, it was able to successfully complete
the task 9 times.

In an assistive robotics settings, the robots will be ac-
companied by an human observer. With a help from
human observer, the performance can be greatly im-
proved. Instead of choosing a primitive and argu-
ment pair that maximizes the discriminant function,
the robot can present top 2 or top 3 primitive and ar-
gument pairs to human observer who can simply give
feedback on the best option among those 2 or 3 choices.
At initial timestep of the sequence, with only a single
feedback given 2 or 3 choices, performance improves
to 74.1% and 75.6% from 69.7% respectively (Figure
4(b)). If the feedback was provided through whole se-
quence with top 2 or 3 choices, it further improves to
76.7% and 81.4%. Furthermore, also for four high-level
task (recipe) considered earlier also shows that with a
single feedback at initial timestep of a each program,
the results improves from 75% to 100% (Figure 4(c)).

5. Conclusion

In this paper, we considered the problem of learn-
ing sequences of controllers for robots in unstructured
human environments. We took a dynamic planning
approach, where we represent the current state of
the environment using a set of attributes. Concep-
tually, a dynamic plan can be captured by an loop
that selects an appropriate primitive action at each
discrete time-step, given the current state of the en-
vironment. Our primitive actions (or controllers) rep-
resent generic steps and can be used to compose a
wide variety of high-level tasks, when appropriately se-
quenced together. To ensure that our dynamic plans
(programs) are as general and flexible as possible, we
use a attribute based representation of the environ-
ment, and train a set of parameters weighing the var-
ious attributes from example sequences. By unrolling
the program, we can obtain a Markov Random Field
style representation, and use a maximum margin learn-
ing strategy. We demonstrated on a series of example

Learning Sequences of Controllers for Complex Manipulation Tasks

Table 1. Result of baseline, our model with variations of feature sets, and our full model on out dataset consisting of 127
sequences. The “prim” columns represent percentage of primitive correctly chosen regardless of arguments, and “args”
columns represent percentage of a correct pair of primitive and argument. The last column shows average percentage of

sequences correct over five programs we have evaluated.

move_close grasp release place_above | hold_above traj_circle traj_pour Average Sequence
prim arg | prim arg | prim arg | prim arg | prim arg | prim arg prim arg | prim arg | prim arg

chance 143 11 | 143 1.1 | 143 1.1 | 143 0.1 | 143 0.1 14.3 1.1 143 0.1 | 143 0.7 0 0
multiclass 99.6 - 90.4 - 95.7 - 68.5 - 79.7 - 100.0 - 14.7 - 78.4 - - -
Only edge features 235 153 | 56.4 455 | 93.5 935 | 0.0 0.0 | 188 9.4 | 100.0 100.0 | 50.0 44.1 | 48.9 44.0 0 0
Only clique features | 99.6 1.9 | 96.8 82.7 | 90.2 90.2 | 72.8 15.2 | 87.5 15.6 | 96.7 96.7 | 100.0 97.1 | 91.9 57.0 | 45.0 0
Ours - full 99.3 828 | 96.8 84.0 | 978 97.8 | 89.1 79.3 | 96.9 92.2 | 100.0 100.0 | 97.1 94.1 | 96.7 90.0 | 91.6 69.7

84% 100%

82% 95%

80% 920%

g7 § %

5 76% §

: : 80%

g o -

2 72% 2

2 70% g 70%

R o R e

66% 60%

62% 50%

o 1 2 3 4 5 6 7 8 9 10 o 1 2 3

(a) Confusion matrix for the
seven primitives in our dataset.
Our dataset consist of 736 in-
stances of seven primitives in
127 sequences on five manipula-
tion tasks.

Figure 4. Results with cross-validation.

sequence timestep

(b) Percentage of programs correct.
Without any feedback in completely au-
tonomous mode, the accuracy is 69.7%.
With feedback (number of feedbacks on x-
axis), the performance increases. This is on
full 127 sequence dataset.

(a) On predicting the correct

sequence timestep

(c) Percentage of programs correct
for 12 high-level tasks such as making
sweet tea. Without any feedback in com-
pletely autonomous mode, the accuracy is
75%. With feedback (number of feedbacks
on x-axis), the performance increases.

primitive individually. (b) On predicting

programs, with and without user intervention. (c¢) On performing different tasks with the predicting programs.

activities that our approach can effectively learn dy-
namic plans for various complex high-level tasks.

References

Abbeel, Pieter and Ng, Andrew Y. Apprenticeship learning
via inverse reinforcement learning. In ICML, 2004.

Beetz, M., Klank, U., Kresse, 1., Maldonado, A., Mosen-
lechner, L., Pangercic, D., Ruhr, T., and Tenorth, M.
Robotic roommates making pancakes. In Humanoids,
2011.

Bollini, M., Barry, J., and Rus, D. Bakebot: Baking cook-
ies with the pr2. In The PR2 Workshop, IROS, 2011.

Diankov, R. Automated Construction of Robotic Manipula-
tion Programs. PhD thesis, Carnegie Mellon University,
2010.

Farhadi, A., Endres, 1., Hoiem, D., and Forsyth, D. De-
scribing objects by their attributes. In CVPR, 2009.

Ferrari, Vittorio and Zisserman, Andrew. Learning visual
attributes. In NIPS, 2007.

Green, Cordell. Application of theorem proving to problem
solving. Technical report, DTIC Document, 1969.

Joachims, T., Finley, T., and Yu, C-N. J. Cutting-plane
training of structural svms. Machine Learning, 77(1):
27-59, 2009.

Johnson, B. and Kress-Gazit, H. Probabilistic analysis of
correctness of high-level robot behavior with sensor er-
ror. In RSS, 2011.

Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical task
and motion planning in the now. In ICRA, 2011.

Kautz, Henry and Selman, Bart. Planning as satisfiability.
In European conference on Artificial intelligence, 1992.

Kemp, Charles, Goodman, Noah D, and Tenenbaum,
Joshua B. Learning to learn causal models. Cognitive
Science, 34(7), 2010.

Koenig, Sven. Agent-centered search. In AI Magazine 22.4:
109, 2001.

Koppula, H., Anand, A., Joachims, T., and Saxena, A.
Semantic labeling of 3d point clouds for indoor scenes.
NIPS, 2011.

Lampert, C. H., Nickisch, H., and Harmeling, S. Learn-
ing to detect unseen object classes by between-class at-
tribute transfer. In CVPR, 2009.

Miller, S., Van Den Berg, J., Fritz, M., Darrell, T., Gold-
berg, K., and Abbeel, P. A geometric approach to
robotic laundry folding. IJRR, 2012.

Ng, Andrew Y and Russell, Stuart. Algorithms for inverse
reinforcement learning. In ICML, 2000.

Nguyen, H., Ciocarlie, M., Hsiao, J., and Kemp, C. C. Ros
commander (rosco): Behavior creation for home robots.
In ICRA, 2013.

Ratliff, N., Bagnell, J. A.; and Zinkevich, M. Maximum
margin planning. In ICML, 2006.

Russell, S. J. and Norvig, P. Artificial intelligence: a mod-
ern approach. Vol. 2. Prentice Hall, 2010.

Thrun, Sebastian, Burgard, Wolfram, Fox, Dieter, et al.
Probabilistic robotics. MIT press Cambridge, 2005.

Yang, Q., Wu, K., and Jiang, Y. Learning action models
from plan examples using weighted max-sat. Artificial
Intelligence, 171, 2007.

