Satisfiability Modulo Finite Fields
with applications to Zero-Knowledge Proof Compilers

Alex Ozdemir, Gereon Kremer, Riad S. Wahby, Cesare Tinelli, Fraser Brown, Clark Barrett
“Bounded Verification for Finite-Field Blasting” (CAV’23)
“Satisfiability Modulo Finite Fields” (CAV’23)
Private cryptocurrencies

integrity:
• authorization
• conservation of $

privacy:
• transactions are hidden

Possible with: Zero-Knowledge Proofs (ZKPs)
How a private cryptocurrency is built

Idea

High-level code

Compile

Application

Program

\(f_n() \rightarrow \text{bool} \{
\ldots
\}
\)

\(Z_p : +, x, = (mod p) \)

\(F \)-equations

\(\omega, (\omega, \cdot) = 0 \)

\(Z_p \)-blaster

\(F \)-blaster

We verify this using SMT+\(F \)

covertly insolvent!

Zero-Knowledge Proof System

DAG

(Bool, \(Z_{2^n} \), \(F \))

pass_1

\(\cdots \)

pass_n

\(\cdots \)
Today’s Talk

I. Correctness for a ZKP compiler

II. A framework for verifiable \mathbb{F}-blasting
 • With automatic (bounded) verification

III. Satisfiability modulo finite fields

IV. Case study: bugs in CirC’s \mathbb{F}-blaster
Part I: Correct ZKP compilers
What is a ZKP System?

\[\text{prove: } \phi(x, w) \in C \text{ secret witness} \]

\[\exists w, \phi(x, w)? \]

\[\text{verify: } \{ \bot, T \} \text{ for payments} \]

Properties:

- **complete + sound***: valid \(w \leftrightarrow V \text{ accepts} \)
- **zero-knowledge***: hides \(w \)

* usually under computational assumptions
What is a correct ZKP compiler from $\mathcal{C} \rightarrow \mathcal{C'}$?

Compile($\phi(x, w) \in \mathcal{C}$) outputs:
- $\phi'(x', w') \in \mathcal{C'}$
- $E_x(x) \rightarrow x'$
- $E_w(x, w) \rightarrow w'$

Our definition: correctness as **equisatisfiability**:

demonstrable completeness
\[
\forall x, \forall w, \quad \phi(x, w) \Rightarrow \phi'(E_x(x), E_w(x, w))
\]

demonstrable soundness
\[
\exists \text{eff. } I(x, w') \rightarrow w, \ \forall x, \ \forall w', \quad \phi'(E_x(x), w') \Rightarrow \phi(x, I(x, w'))
\]
Properties of our definition

Theorem 1 (ZKPS Generalization):

Correct ZKP compiler from $C \rightarrow C'$

Secure ZKPS for C'

\equiv

Secure ZKPS for C

Theorem 2 (Compiler Composition):

Correct ZKP compiler from $C \rightarrow C'$

Correct ZKP compiler from $C' \rightarrow C''$

\equiv

Correct ZKP compiler from $C \rightarrow C''$
Part II: Verifiable F-blasting
The architecture of a Finite-Field blaster

High-Level Code

DAG (Bool, \(\mathbb{Z}_{2^n}\), \(\mathbb{F}\))

\[(b \; ? \; x \; : \; y) \leq (x + y) \]

\(b \in \text{Bool} \quad x, y \in \mathbb{Z}_{2^n} \)

\(= 1\)

\[\leq_u \]

encoding rule for \(\leq_u\) in \(\mathbb{Z}_{2^n}\)

encoding rule for \(+\) in \(\mathbb{Z}_{2^n}\)

encodings:

\[b' \in \{0, 1\}, c \in \mathbb{F} \quad x', y' \in \mathbb{Z}_{2^n} \]
Example rule: \(n \)-ary Boolean AND (complex)

- Encode a Boolean function:
 - \(y = x_1 \land \cdots \land x_n \)
- Assume:
 - \(p \gg n \)
 - Field variables \(x_i' \):
 - \(x_i' = \text{IfThenElse}(x_i, 1, 0) \)
- Task:
 - emit \(\mathbb{F} \)-equations, new variables
 - Ensure \(y' = \text{IfThenElse}(y, 1, 0) \)

Naively, binary \(\land \):
- \(t_0' = 1 \)
- \(t_{i+1}' = x_i' t_i' \)
- \(y' = t_n' \)

Fewer non-linear \(\times \)s:
- Idea: \(y' = \text{AreEqual}(n, \sum_i x_i') \)
- Implemented as:
 1) \((n - \sum_i x_i')z' = 1 - y' \)
 2) \((n - \sum_i x_i')y' = 0 \)

What does this mean? {complete? sound?}
A framework for a verifiable \mathbb{F}-blaster

- **DSL for**
 - encoding schemes
 - encoding rules

- **Operational semantics**
 - \mathbb{F}-blaster

- **VCs for each rule**:
 - “assumes validly encoded inputs”
 - “must validly encode outputs”
 - Idea: verify with SMT+\mathbb{F}

<table>
<thead>
<tr>
<th>Original Term</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean x</td>
<td>$x' \in {0,1} \in \mathbb{F}$</td>
</tr>
<tr>
<td>bit-vector $x \in \mathbb{Z}_{2^b}$</td>
<td>$x' \in {0, \ldots, 2^b - 1} \in \mathbb{F}$</td>
</tr>
<tr>
<td>bit-vector $x \in \mathbb{Z}_{2^b}$</td>
<td>$x_1', \ldots, x_b' \in {0,1} \in \mathbb{F}$</td>
</tr>
<tr>
<td>field elem. $x \in \mathbb{F}$</td>
<td>$x' \in \mathbb{F}$</td>
</tr>
</tbody>
</table>

- **Encodings**
 - bv.add
 - bv.sub
 - bv.lshl
 - bv.shr
 - bv.ashl
 - bool.and
 - bool.or
 - ff.add
 - ff.div
 - conversions
 - new vars
 - priv. vars

Theorem 3: VCs \Rightarrow correct \mathbb{F}-blaster
Part III: Satisfiability Modulo Finite Fields
Satisfiability Modulo Theories

\[\neg (A[x]=y \land x \neq y) \Rightarrow \neg A[x]=x \land y > x \]

\[A[x]=y \land x \neq y \]

SMT Core

CDCL!

SMT Formula

conjunctons

Integer Solver

Bit-Vector Solver

Field Solver

Array Solver

Datatype solver

UNSAT (+core) or SAT (+solution)
Prime-Order Finite Fields

• Written \mathbb{Z}_p, \mathbb{F}_p, or \mathbb{F}
• A set of integers: \{0, ..., $p - 1$\}
• Operations:
 • + (mod p)
 • \times (mod p)
 • $=$
• Our theory: fixed p

\[
X = X + 1
\]
\[
\forall
\]
\[
Y^2 = Y
\]

SAT : $x = 0, y = 0$

\[
X = X + 1
\]

UNSAT
theory solver, preprocessing:

Step 1: homogenize (convert disequalities to equalities)

\[\bigwedge a_i = b_i \land \bigwedge c_i \neq d_i \]

\[\bigwedge (c_i - d_i)w - 1 = 0 \]
If theory solver, main sketch:

Problem: SAT in extension field \(x=F_i \) → Unsound!

Solution: field polynomials \(x^p-x \)

Pro: roots are (just) \(\mathbb{Z}_p \)

Con: degree is \(p \) (~2^{255})

\(\mathbb{Z}_p \)-equations

\(\bigwedge_i f_i(\bar{X}) = 0 \)

Gröbner Basis: \(\exists \in \langle f_i \rangle \)?
The Backtracking Search

At each node:

- Compute a GB B

- Branch in one of three ways:
 - If \exists univariate $p(X) \in B$:
 - factor and branch on X values
 - If $\dim \mathcal{V}(\langle B \rangle) = 0$:
 - compute a minimal $p(X) \in \langle B \rangle$, factor, and branch on X values
 - Otherwise, exhaustion:
 - $X = 1, Y = 1, X = 2, Y = 2, \ldots$

Worst-case $O_{n,d}(p)$
SMT + \mathbb{Z}_p is the best choice for ZK verification

cvc5 + \mathbb{Z} Z3 + \mathbb{Z} bitwuzla + \mathbb{Z}_{2^n}
SMT + \mathbb{Z}_p is the best choice for ZK verification

solvers: bitwuzla-1.0pre (QF_BV), z3-4.11.2 (QF_NIA), cvc5 nightly 17 Dec ’22 (QF_NIA,QF_FF), CoCoALib 0.998
SMT + \mathbb{Z}_p is the best choice for ZK verification.

Solvers: bitwuzla-1.0pre (QF_BV), z3-4.11.2 (QF_NIA), cvc5 nightly 17 Dec '22 (QF_NIA,QF_FF), CoCoALib 0.998
SMT + \mathbb{Z}_p is the best choice for ZK verification

cvc5 + \mathbb{Z} Z3 + \mathbb{Z} bitwuzla + \mathbb{Z}_{2^n} Comp. Alg. cvc5 + \mathbb{Z}_p (two versions)

solvers: bitwuzla-1.0pre (QF_BV), z3-4.11.2 (QF_NIA), cvc5 nightly 17 Dec ’22 (QF_NIA,QF_FF), CoCoALib 0.998
Part IV: Case Study
Verified \mathbb{F}-blasting in CirC

• CirC [IEEE S&P’22]
 • compiler infrastructure
 • to ZKPSs, MPCs, SMT, ...
 • state-of-the-art for ZKPS
• \mathbb{F}-blaster:
 • 4 encoding schemes
 • 80+ encoding rules
• Implementation:
 • \mathbb{F}-blaster DSL
 • operational semantics
 • VC generation
 • rules from original \mathbb{F}-blaster

4 bugs

cvc5 + \mathbb{F}
(Simplified) Soundness bug

• Rule for: \(z = x \geq_s 0 \)
 • \(x \in \mathbb{Z}_{2^b} \), signed comparison
 • \(\geq_s : \text{signed} \geq \)

• Assume: signed representation
 • \(x' \in \{-2^{b-1}, \ldots, 2^{b-1} - 1\} \subset \mathbb{F} \)

• Goal: \(z' = \text{IfThenElse}(z, 1, 0) \)
 • \(z' = 1 \) iff
 • \(x' \in \{0, \ldots, 2^{b-1} - 1\} \)

• Broken approach:
 • “Attempt” an unsigned decomposition
 • Introduce \(y' \in \{0, \ldots, 2^{b-1} - 1\} \)
 • \(y' = \sum_{i=0}^{b-2} 2^i b'_i \)
 • \(b'_i(b'_i - 1) = 0, i \in \{0, \ldots, b - 2\} \)
 • \(z' = \text{AreEqual}(x', y') \)
 • If \(x <_s 0 \): \(y' \) cannot equal \(x' \)
 • If \(x \geq_s 0 \): \(y' \) can still differ from \(x' \)!

• Potential impact: insolvency
• Fix: split \(x' \) into signed bits
 • flip sign bit
Satisfiability Modulo \mathbb{F} & Bounded Verification for \mathbb{F}-Blasting

Alex Ozdemir, Gereon Kremer, Riad S. Wahby, Cesare Tinelli, Fraser Brown, Clark Barrett

Talk Summary

I. ZKP compiler correctness

II. Verified \mathbb{F}-blasting

III. Satisfiability modulo \mathbb{F}
 - Avoids field polynomials

IV. Case study: CirC (4 bugs)

Thesis: Verification for ZK is **crucial**. With SMT+\mathbb{F} it is **feasible**.

What should we verify next?
Where else do fields matter?
Appendices
Effect of Field Polynomials

Field polys: terrible for even tiny fields

Field polys scale poorly with field size

(p: 4-12 bits, 8GB, 5min) (commonly solved SAT)
Comparison with Bit-Vectors

(p: 5-60 bits, 1CPU, 8GB, 5min)

BV is worse, even for small fields

(commonly solved)

BV scales poorly with field size