
Preempting Flaky Tests via Non-Idempotent-Outcome Tests
Anjiang Wei

Stanford University
anjiang@stanford.edu

Pu Yi
Peking University
lukeyi@pku.edu.cn

Zhengxi Li
University of Illinois
zli89@illinois.edu

Tao Xie
Peking University
taoxie@pku.edu.cn

Darko Marinov
University of Illinois
marinov@illinois.edu

Wing Lam
George Mason University

winglam@gmu.edu

ABSTRACT
Regression testing can greatly help in software development, but it
can be seriously undermined by flaky tests, which can both pass
and fail, seemingly nondeterministically, on the same code commit.
Flaky tests are an emerging topic in both research and industry.
Prior work has identified multiple categories of flaky tests, devel-
oped techniques for detecting these flaky tests, and analyzed some
detected flaky tests.

To proactively detect, i.e., preempt, flaky tests, we propose to
detect non-idempotent-outcome (NIO) tests, a novel category related
to flaky tests. In particular, we run each test twice in the same
test execution environment, e.g., run each Java test twice in the
same Java Virtual Machine. A test is NIO if it passes in the first
run but fails in the second. Each NIO test has side effects and “self-
pollutes” the state shared among test runs. We perform experiments
on both Java and Python open-source projects, detecting 223 NIO
Java tests and 138 NIO Python tests. We have inspected all 361
detected tests and opened pull requests that fix 268 tests, with 192
already accepted, only 6 rejected, and the remaining 70 pending.
ACM Reference Format:
Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam.
2022. Preempting Flaky Tests via Non-Idempotent-Outcome Tests. In 44th
International Conference on Software Engineering (ICSE ’22), May 21–29, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3510003.3510170

1 INTRODUCTION
Nondeterministic tests that can pass or fail for the same version of
the code under test are known by multiple names. Practitioners and
researchers most often call these tests “flaky” [37, 44, 65, 77, 91]
but also call them “flappers” [33], “unreliable tests” [40], “brittle
assertions” [48], “nondeterministic tests” [35], “erratic tests” [70],
and more. In this paper, we use the term flaky tests. Flaky tests have
been reported as an important problem in academic research (e.g., at
least seven papers from 2021 analyze [27, 30, 39, 85] and detect [21,
62, 84] flaky tests) and in both “grey literature” (e.g., blogs from
Gradle [94], Salesforce [33], and Thoughtworks [35]) and research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510170

papers by various companies (e.g., by Apple [55], Facebook [34, 44],
Google [19, 38, 69, 71, 100], Huawei [49], Microsoft [46, 47, 56, 57],
and Mozilla [83, 90]).

One well-studied category [23, 36, 40, 48, 58, 65, 76, 88, 99] of
flaky tests are order-dependent (OD) tests [99], whose outcome
depends on the order in which tests are run; OD tests occur in
two major situations. First, testing frameworks, such as JUnit, do
not mandate the order in which tests are run, and test suites that
pass in one order can start failing when run in another order. A
notorious example occurredwhen the Java standard library changed
from Java 6 to Java 7: many test suites that used to pass started
failing, resulting in many publicly reported complaints [52, 53, 66].
Second, tests can run in different orders due to the use of regression
testing techniques [59], such as test prioritization [32, 64, 86], test
selection [45, 96, 97], and test parallelization [26, 50, 54, 89].

The terminology on OD tests is somewhat confusing as prior
papers [23, 36, 40, 48, 58, 65, 76, 88, 99] used the same term with dif-
ferent meanings or introduced new terms for same/similar concepts.
We follow the most recently used terminology [39, 88]. Following
Shi et al. [88], we call a test a victim for a given test suite (e.g., t1 in
Figure 1) if the test failswhen run after another test, called a polluter,
in the same test suite (e.g., t2 in Figure 1) but passes when run before
that other test. The victim fails because the tests share some state
(x in Figure 1), and the polluter modifies (i.e., “pollutes” [40, 88])
the shared state. Huo and Clause [48] called the test assertions that
depend on the shared state “brittle assertions”. Each victim has at
least one brittle assertion, but not all tests with a brittle assertion
are victims (e.g., t3 in Figure 1 has a brittle assertion, but no test
pollutes z). We call a test a latent-victim if it has a brittle assertion
but may or may not be a victim in the current test suite.

Note that a polluter is defined with respect to a given test suite,
where the test suite has a victim. Gyori et al. [40] used the term
“polluter” to refer to any test that changes some shared state even if
it has no victim in the current test suite (e.g., t4 in Figure 1 modifies
y but no test fails because of that). To avoid confusion, we use
latent-polluter to refer to a test that modifies the shared state but
may or may not have a victim in the current test suite. Following
Musuvathi et al. [74], a latent-polluter can be also called a “non-
idempotent-state test”, because the test definitely modifies the state,
but running the test twice may or may not have a different behavior.

To reduce the risk that flaky tests fail at inopportune times,
practitioners [44, 90] and researchers [40, 48, 61] have advocated
for proactively detecting potential flaky tests, i.e., preempting them
from becoming flaky. For example, to preempt OD-related tests,
Huo and Clause [48] proposed using dynamic taint analysis to
detect latent-victims, and Gyori et al. [40] proposed monitoring

https://doi.org/10.1145/3510003.3510170
https://doi.org/10.1145/3510003.3510170
https://doi.org/10.1145/3510003.3510170

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam

1 // shared variables x, y, z, w are initialized to 0
2 void t1() { assert x == 0; } // victim
3 void t2() { x = 1; } // polluter
4 void t3() { assert z == 0; } // latent -victim
5 void t4() { y = 1; } // latent -polluter
6 void t5() { assert w == 0; w = 1; } // NIO

Figure 1: Example test suite containing different kinds of
victims and polluters, including an NIO test.

the shared heap state and file system to detect latent-polluters.
However, while detecting latent-victims and latent-polluters, the
key is to balance detecting as many tests as possible with detecting
tests that are worth fixing. For example, Gyori et al. [40, Figure
4] reported many false positives: they automatically found 575
latent-polluters, manually inspected all and filtered out 381 tests
that cannot reasonably become polluters (e.g., modify state that
cannot be observed via any public API but only through reflection),
and did not fix any of the remaining 194 tests.

To detect latent-victims and latent-polluters that are worth fixing,
we propose to focus on non-idempotent-outcome (NIO) tests, which
are related to OD tests [99] and similar to “unrepeatable tests” [70].
A test is an NIO test if the test outcome (pass or fail) changes after
repeated test runs, due to the changes of the state shared among
runs of the NIO test (e.g., t5 in Figure 1). For a test 𝑡 to be an
NIO test, 𝑡 must write and read some shared state (w in Figure 1).
Detecting 𝑡 can be helpful because an OD test can emerge when 𝑡 is
run together with another test (from the current or future versions
of the 𝑡 ’s test suite), where that other test writes or reads a part of
the state shared with 𝑡 . If the other test writes to the same shared
state, then 𝑡 can become flaky/victim; if the other test reads the
shared state, then 𝑡 can become a polluter with the other test as
flaky/victim. Figure 2 shows the relationship of multiple categories
of OD-related tests.

NIO tests are important to detect because they may be more
worthy fixing than other latent-victims and latent-polluters, con-
sidering that NIO tests are both latent-victims and latent-polluters
at the same time. In contrast to many false positives (66%) that
Gyori et al. [40] reported for latent-polluters, with no pull requests
opened, we find that developers are receptive to our NIO test fixes.
While debugging (NIO tests in) unfamiliar projects can be time-
consuming, we have fixed many NIO tests that we have detected
in open-source projects. Specifically, we have opened pull requests
for 268 tests. Developers have accepted fixes for 192 of the tests
with only 6 rejected, and the remaining 70 pending. (One project
is an outlier as we have opened fixes for 120 NIO tests, and the
developers have accepted our fixes for all 120 tests.)

To detect NIO tests, we use a simple idea: run each test twice
in the same test execution environment to check whether the
test passes in the first run but fails in the second run. As prior
work on flaky tests has been mostly for Java [77] and recently for
Python [39], we perform our evaluation on open-source Java and
Python projects; the general principle easily extends to other lan-
guages. We run each test twice in the same execution environment,
a Java Virtual Machine (JVM) or a Python interpreter for Java or
Python tests, respectively. A test is categorized as NIO if the test
outcome changes deterministically from “pass” to “fail”. More for-
mally, we require that there exists a test order ⟨. . . , 𝑡, 𝑡, . . .⟩ such
that running the test 𝑡 results in the outcomes “pass” and “fail”.

Figure 2: Relationship of polluters, victims, latent-polluters,
latent-victims, and NIO tests.

To detect NIO tests for Java projects, we evaluate three modes
that run tests in isolation or together. One mode reruns only one test
method in the same execution environment, another mode reruns
test methods from only one class, and the third mode reruns all
test methods from the entire test suite. We modify the iDFlakies
tool [58] to support running the same test twice without changing
the test code. By default, JUnit does not run the same test method
twice. Hence, prior tools for flaky tests (including DTDetector [99],
ElectricTest [24], iDFlakies [58], iFixFlakies [88], and PraDet [36])
do not contain this feature.

Our evaluation on 127 test suites from open-source Java projects
detects 223 NIO tests in 34 of the test suites. The three modes
detect only slightly different tests, but rerunning all tests from
the entire test suite runs the fastest. We apply that mode on 1006
Python projects and detect 138 NIO tests in 90 projects. Of the 361
detected NIO tests, 42 are not NIO in the latest version (i.e., already
fixed or deleted). We have inspected in detail all remaining 319
tests and opened pull requests for 84% (268/319) of the tests. Each
test requires building the project, running the test, and debugging
the shared state—usually requiring at least an hour from multiple
authors. Section 4.4 discusses our experience of fixing NIO tests
and Section 5 presents multiple real cases of our fixes.

In this paper, we make the following main contributions:
• NIO Tests. We define NIO tests as tests that deterministi-
cally change outcome from “pass” to “fail” when run twice
in the same execution environment; NIO tests are in the
intersection of latent-polluters and latent-victims.

• Effective Detection. We propose three modes to detect
NIO tests by repeatedly running tests, either in isolation or
together, in the same execution environment.

• Empirical Evaluation. We evaluate all modes on 127 Java
test suites and detect 223 NIO tests. We also evaluate the
most effective mode on 1006 Python projects and detect
additional 138 NIO tests.

• Real Cases.We present multiple real cases of NIO tests to
illustrate the specific causes that make them NIO and discuss
our experience in fixing NIO tests.

• Well-Accepted Fixes. We have opened pull requests that
fix 268 tests, with 192 of them accepted, only 6 rejected, and
the remaining 70 pending.

Our dataset and scripts are publicly available [18].

2 BACKGROUND, MODES, AND EXAMPLES
NIO tests are related to OD tests, which can pass or fail based on
the order of the tests in the test suite. Section 1 has introduced
the most common kinds of OD-related tests. We introduce one less
common kind here. OD tests deterministically fail when run in
some pre-states. (A test that fails for all pre-states is a broken, not

Preempting Flaky Tests via Non-Idempotent-Outcome Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

flaky, test.) Beyond victims and polluters (defined in Section 1), Shi
et al. [88] defined a brittle as a test that fails even when run in the
starting execution environment state (i.e., a brittle 𝑏 fails in the
order ⟨𝑏⟩) and has at least one test 𝑠 in the test suite such that 𝑠
sets the state for the brittle to pass (i.e., 𝑏 passes in the order ⟨𝑠, 𝑏⟩).
In contrast, victims pass in the starting state (i.e., a victim 𝑣 passes
in the order ⟨𝑣⟩) but fail after a polluter 𝑝 (i.e., 𝑣 fails in the order
⟨𝑝, 𝑣⟩); victims are much more common than brittles. In all prior
work [77], various tests in the same order were all different tests
because each test was always run only once in a test order.

In contrast, NIO tests stem from repeating the same test. In the
simplest case, only one test 𝑡 is run twice, i.e., the order is ⟨𝑡, 𝑡⟩. If
the first run fails, the test is a brittle. However, if the first run passes
and the second run fails, the test is NIO. Note that each NIO test
is, by definition, both a latent-victim and a latent-polluter—it “self-
pollutes” the state on which it depends. Moreover, some NIO tests
may be victims or polluters in their test suite, but our evaluation
for Java tests shows that most of the NIO tests, 87.4% (195/223), are
neither polluters nor victims in their test suite.

2.1 Three Modes for Detecting NIO Tests
We evaluate three modes to detect NIO tests. Each mode repeatedly
runs (1) just a particular test method from a test class (isolated-
method), (2) all the test methods from a test class (isolated-class), or
(3) all the test methods from a test suite (entire-suite). For example,
consider a test suite with two test classes,𝐶 and 𝐷 , and three tests1
𝐶.𝑡 ,𝐶.𝑢, and𝐷.𝑣 with their explicitly listed classes: isolated-method
repeatedly runs each test in its own VM2 twice, e.g., ⟨𝐶.𝑡,𝐶.𝑡⟩;
isolated-class runs all tests from each test class in one VM, e.g.,
⟨𝐶.𝑡,𝐶.𝑡,𝐶.𝑢,𝐶.𝑢⟩; entire-suite runs all tests from the test suite in
one VM, e.g., ⟨𝐶.𝑡,𝐶.𝑡,𝐶.𝑢,𝐶.𝑢, 𝐷.𝑣, 𝐷.𝑣⟩.

Different modes for detecting NIO tests could have trade-offs in
terms of the tests that they detect or miss, and how fast they run.
Compared to isolated-class and entire-suite, isolated-method would
miss detecting a test 𝑡 as NIO if another test, 𝑡 ′, sets/pollutes the
state so that running ⟨𝑡 ′, 𝑡, 𝑡⟩ makes the second 𝑡 fail, while running
just ⟨𝑡, 𝑡⟩ makes both runs pass. In our experiments (Section 4),
we find that isolated-method does not miss detecting any NIO
test that isolated-class and entire-suite detect. However, isolated-
method needs to create a new VM for every test, so this mode
can run substantially slower than the other modes. Some prior
projects [22, 75] did compare running Java tests isolated in JVM vs.
all together in one JVM, but those projects were not repeating tests
trying to detect NIO tests.

On the other hand, isolated-class and entire-suite would also
miss detecting a test 𝑡 as NIO if some other test, 𝑡 ′′, sets/cleans the
state so that running ⟨𝑡 ′′, 𝑡, 𝑡⟩ makes both 𝑡 pass or both fail, while
running just ⟨𝑡, 𝑡⟩ makes the first 𝑡 pass and the second 𝑡 fail. In our
experiments, we find that entire-suite misses 13 (of 223) NIO tests
detected by isolated-method. Of the 13 tests, 10 are not detected
because they fail in both runs, which should prompt developers
to inspect them already. The remaining 3 tests are not detected
because they pass in both runs. Section 4.2 presents more details.
1We use the term “test” to refer to a test method, following the JUnit terminology and
how the test code is organized into test classes that contain test methods.
2We use the term “VM” to refer to an execution environment, such as a Java Virtual
Machine or a Python interpreter.

1 static AtomicInteger counter = new AtomicInteger ();
2 class Command ... Exception {
3 public void execute (...) {
4 counter.incrementAndGet ();
5 throw new ActivitiException("");
6 }
7 }
8 @Test
9 public void testRetryInterceptor () {
10 ... // setup retryInterceptor and processEngine
11 try {
12 processEngine.getManagementService ().

executeCommand(new Command ... Exception ());
13 Assert.fail("...");
14 } catch (ActivitiException e) {
15 ... // assert what number of retries failed
16 }
17 Assert.assertEquals(retryInterceptor.

getNumOfRetries () + 1, counter.get());
18 }
19 @After
20 public void shutdownProcessEngine () {
21 processEngine.close();
22 + counter.set(0);
23 }

Figure 3: Our fix for an example NIO test detected by all
modes in activiti [20].

To illustrate the differences and similarities, we next show two ex-
amples of real NIO tests that we detect in open-source Java projects:
(1) a test detected by all three modes and (2) a test detected by only
isolated-method. These examples come from popular Java projects,
showing that even mature, well-tested projects can have NIO tests.
Section 5 discusses more examples of NIO tests.

2.1.1 NIO Test Detected by All Modes. Figure 3 shows an NIO test
detected by all three modes. This test is from the project Activ-
iti [20], which is a light-weight workflow and Business Process
Management platform.

The testRetryInterceptor test starts by setting up a retryInter-
ceptor, which is used to set up a processEngine (Line 10). The test
then runs a command with the processEngine (Line 12) before as-
serting that some number of retries are performed (Lines 15 and 17).
By default, the retryInterceptor is set to retry a command three
times if it fails. Specifically, the command object used by the test is
Command...Exception, which simply increments the shared counter

before throwing an exception (Lines 4–5).
This test is NIO because of the shared counter value. The test

asserts (Line 17) that the number of retries recorded by retryIn-

terceptor is the same as the value of the counter. In the first test
run, the retryInterceptor ensures that the command (Line 12) is
retried three times (+1 for the first try), and the test passes as the
execute method (Line 3) will have run four times, setting counter

to four. However, in the second test run in the same JVM, the retry-
Interceptor is reinitialized and starts with zero retry, while the
counter is not reinitialized and will already be four from the first
run of this test. Indeed, the exception for the test failures in the
second run is that retryInterceptor.getNumOfRetries()+1 is four,
while counter.get() is eight from the two runs of the test.

We prepare a fix by resetting the counter to 0 in the @After

method of the class (Line 22). Our pull request [1] for this fix has
been accepted by the developers. (An alternative fix would have

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam

1 @Test
2 public void testSize () throws InterruptedException {
3 ... // create an object in InternalThreadLocal
4 Assert.assertTrue("size method is wrong!",

InternalThreadLocal.size() == 1);
5 ... // create an object in InternalThreadLocal
6 Assert.assertTrue("size method is wrong!",

InternalThreadLocal.size() == 2);
7 + InternalThreadLocal.removeAll();
8 }
9 @Test
10 public void testSetAndGet () {
11 ... // setup testVal and internalThreadLocal
12 ... // create an object in InternalThreadLocal
13 Assert.assertTrue("set is not equals get", Objects.

equals(testVal , internalThreadLocal.get()));
14 }

Figure 4: Our fix for an example NIO test (testSize) detected
by only the isolated-method mode in dubbo [28].

added counter = new AtomicInteger(); at the start of the test.) The
testRetryInterceptor test is neither a victim nor a polluter.

2.1.2 NIO Test Detected by One Mode. Figure 4 shows a test de-
tected as NIO in only the isolated-method mode. This test is from
the project Dubbo [28], which is a high-performance remote proce-
dure call framework.

The testSize test checks whether the size() method defined
in InternalThreadLocal correctly returns the total number of local
InternalThreadLocal objects bound to the current thread. The test
first creates a thread local object and asserts that size() returns
1 (Line 4). The test then creates another thread local object and
asserts that size() returns 2 (Line 6).

This test first passes and then fails when run twice in the isolated-
method mode, because the test does not remove the two created
objects between the two test runs. Specifically, during the second
run of this test in the same JVM, three objects are bound to the
current thread (two objects from the previous run of the test and
one new object from the current run of the test), while during the
first run only one object is bound. Therefore, in the second run, the
test fails the first assertion (Line 4).

In contrast, testSize fails in both runs of the isolated-class and
entire-suite modes and is, thus, not reported as NIO. In these two
modes, testSize runs after testSetAndGet (Line 10), which also
creates a thread local object (Line 12) and does not remove it. Essen-
tially, testSize is not only NIO when run in the isolated-method
mode but also a victim with testSetAndGet being the polluter.

Although testSize is not reported as NIO in the isolated-class
and entire-suite modes, the test does fail in both modes, and devel-
opers would ideally fix all failing and NIO tests. Section 4.2 describes
an interesting case where a test passes in both isolated-class and
entire-suite modes, but is detected as NIO in isolated-method.

Our fix simply adds InternalThreadLocal.removeAll(); at the
end of the test (Line 7). Our pull request [2] for this fix has been
accepted by the developers.

3 RESEARCH QUESTIONS AND SETUP
To improve the understanding of NIO tests, we investigate the
following research questions (RQs):

RQ1: How prevalent are NIO tests in projects with flaky tests?
RQ2: How do different running modes affect NIO test detection?
RQ3: How do the runtimes of detection modes differ?
RQ4: How do developers respond to proposed fixes for NIO tests?
RQ5: How do NIO tests compare to other OD-related tests?

We empirically address these RQs on Java and Python projects.
We first describe how we select the projects for our evaluation. We
use Java projects for all five RQs but Python projects for only RQ1
and RQs4-5. We do not use Python projects for RQs2-3 to reduce the
machine costs; our evaluation on Java projects finds the entire-suite
mode to be the best trade-off. We next describe how we use/modify
some testing tools for our evaluation. We finally describe how we
confirm the detected NIO tests.

3.1 Projects
For Java, we use the projects from our recent studies [61, 92] on flaky
tests. The studies found at least one flaky test in 55 open-source Java
projects obtained from GitHub. For each project, we use the same
Git commit as the studies. We use the same projects and commits
because the studies detected victims and polluters in the specific
project commits, thereby allowing us to compare NIO tests that
we detect to previously detected tests (Section 4.5). However, these
project commits are somewhat older, so some detected NIO tests
may be already fixed or deleted in the latest project version.

All selected projects use the Maven build system [67], so each
test suite in our study, as in prior studies [61, 92], is a Mavenmodule.
Maven-based Java projects are organized in a set of modules that can
each have their own code under test and a test suite. Our study uses
127 of the 130 modules from the recent studies. We omit 3 modules
because we have trouble running their tests. All projects use JUnit,
the most popular testing framework for Java. Most Maven plugins
run the same operation on each module in the project. Surefire [68]
is the default Maven plugin for running tests; executing mvn test

at the top level of a Maven-based project runs Surefire for each
module in the project. Surefire then finds all test classes in the
module and passes them to JUnit, which for each test class finds
all test methods and runs them without repetition. As described
in Section 3.2, we adapt the iDFlakies tool [58] to enable running
various modes with test repetition.

For Python, we use the dataset from a recent study by Gruber et
al. [39]. The dataset has 1006 projects, each of which is reported to
have at least one flaky test. To detect NIO tests, we run each project
on the commit in which the dataset reports at least one flaky test.
Building Python projects can be difficult due to dependency-related
errors [73]. We use FlaPy [39], the infrastructure released with the
dataset for building the projects and running the tests.

3.2 Tools for Detecting NIO Tests
For Java, we modify a research testing tool, i.e., iDFlakies [58], to
enable repeating tests in one execution without any changes to
the test code. We choose iDFlakies because we are familiar with
the tool, and it works for the Java projects that we select [58].
Our extension is relatively simple as iDFlakies already treats the
input as a list of tests and allows repetition. However, the output
that iDFlakies produced for multiple test runs would overwrite the
results of earlier runs with the later runs because the test name was

Preempting Flaky Tests via Non-Idempotent-Outcome Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

used as a key to the run result. To support running test(s) multiple
times in one JVM, we change how iDFlakies reports results and
have added our change to iDFlakies.

For Python, the dataset that we use comes with an infrastructure
to run tests using pytest [80], the most popular testing frame-
work in Python. To run each test multiple times in one Python
interpreter, we use a pytest plugin called pytest-repeat [81]. We
invoke pytest-repeat with --count=2, with no modifications to the
test code. From the output, we exclude parameterized unit tests
(whose name includes a square bracket) and UnitTest style tests
(whose class extends unittest.TestCase) because pytest-repeat

cannot run them correctly [81]. If pytest-repeat did not have these
limitations, we could have detected even more NIO tests in the
projects that we evaluate. To ensure that our experiments finish in
a reasonable amount of time, we set a 10-second timeout for each
test. Only 486 of 34,446 tests time out.

We run setups and teardowns during NIO detection for both Java
and Python. We do not clean the disk state between runs because
the cleaning would be too expensive.

3.3 Confirming Detected NIO Tests
Running a test twice and observing the first run pass and the second
run fail does not guarantee that the test is NIO, because some tests
are non-deterministic [60], i.e., they can pass and fail in repeated
runs even for the same test order. Moreover, considering that iD-
Flakies or pytest-repeatmay have bugs, we want to check whether
all NIO tests detected by these two specialized tools can also be
detected using the tools that developers more commonly use to run
tests, such as Surefire and JUnit for Java and pytest for Python.

For both Java and Python, we confirm whether the detected
tests are NIO by adding a copy of the test and running together the
original and the copy, thus effectively running the test twice. For ex-
ample, for a Java test @Test public void testOriginal() {/*body*/},
we can add @Test public void copy() {testOriginal();}. Running
a test twice by adding a copy is fairly reliable and robust.3 Using a
copy to confirm the detected NIO tests, we remove the tests that
are brittles [88] or non-deterministic. Beyond confirming every test
from Table 2 by running a copy, we manually inspect the code to
identify the shared state. Our manual inspection and running of
the original and copy of the NIO tests confirm that every test in our
evaluation is indeed NIO (no false positives).

Another benefit of adding a test copy is to show that one need
not use specialized tools, such as iDFlakies and pytest-repeat, to
detect the NIO tests. For Java, we also consider confirming the NIO
tests with the @Rule and @ClassRule annotation from JUnit. We find
these annotations to be worse than adding a copy, because they do
not work for some older versions of JUnit or when the test class
uses some specialized test runners.

4 RESULTS
4.1 RQ1: Prevalence of NIO Tests
For Java, we detect a total of 223 NIO tests in 34 modules. We apply
our three detection modes to 127 modules and detect at least one

3Running a test copy, however, can mask the confirmation of NIO tests when the test
name affects the test behavior, e.g., the test name matches some external resource in
the file system. We do not observe such a problem in our additions of copy.

1 public class SearchQueryTest extends ... {
2 @Override public void setUp() {
3 super.setUp();
4 createUser("Bob", ...);
5 createUser("Barbara", ...);
6 createUser("Anton", ...);
7 createUser("Robert", ...);
8 createUser("John", ...);
9 Session session = getSession ();
10 session.flush();
11 session.getTransaction ().commit ();
12 session.beginTransaction ();
13 }
14 @Test
15 public void no_where () {
16 assertEquals (5, query().fetch().size());
17 }
18 }

Figure 5: NIO test (no_where) in querydsl [82].

NIO test in 26% of modules. These 127 modules have a total of
40,019 tests, so NIO tests are over 0.5% of all tests in these modules.
Module M20, with 122 NIO tests, is an outlier. Even ignoring this
module, we still find the ratio of NIO tests to be non-negligible, over
0.2% (101 out of 39,536) of all tests, in the remaining 126 modules.

For Python, we detect a total of 138 NIO tests in 90 projects. We
apply the entire-suite mode to 1006 projects and detect at least one
NIO test in about 9% of projects. This mode runs a total of 34,446
tests in these 1006 projects, so NIO tests are over 0.4% of all tests.

Table 1 shows the statistics of the NIO tests detected in 34 Java
modules. Due to limited space, we omit a detailed breakdown for 90
Python projects. For each Java module in which our experiments
detect at least one NIO test, we tabulate the GitHub slug (user-
name/project) and module name, the number of NIO tests that are
detected for isolated-method (IM), isolated-class (IC), and entire-
suite (ES) modes, the time to run our experiments for the three
different modes, and the time ratios. In Section 4.5, we compare
NIO tests to other kinds of OD-related tests in these Java modules
and Python projects.
A1: NIO tests are currently prevalent enough that every project
should run NIO detection at least once.

4.2 RQ2: NIO Tests Detected in Different Modes
Section 2 has introduced our three modes to detect NIO tests. In

our experiments, the majority (210) of NIO tests are detected by
all three modes. All tests detected by entire-suite are detected by
isolated-class, and all tests detected by isolated-class are detected
by isolated-method. In contrast, isolated-method detects 11 and
13 tests that are not detected by isolated-class and entire-suite,
respectively. Our inspection finds that 8 (resp. 10) tests are not
detected by isolated-class (resp. entire-suite), because they have
polluters in the test class (resp. test suite). These polluters run
before the NIO tests, making them fail twice, in the isolated-class
or entire-suite mode. Section 2.1.2 presents an example of one of
these tests where a polluter makes the example test fail in both
runs of the isolated-class and entire-suite modes.

The remaining 3 out of 13 tests, which pass in the first run
and fail in the second run in isolated-method, interestingly pass
in both runs in the isolated-class and entire-suite modes. All three
tests are from the module M22 (querydsl-hibernate-search), and

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam

Table 1: Statistics about the NIO tests detected and the time taken in various modes (IM: isolated-method; IC: isolated-class;
ES: entire-suite). Overhead shows the ratio of runtime for various modes.

NIO Tests Time to Run [s] Overhead
ID Project User/Name - Module IM IC ES IM IC ES IM/IC IM/ES
M1 activiti/activiti - activiti-engine 2 2 2 15729 4694 604 3.4 26.0
M2 activiti/activiti - activiti-spring-boot-starter 7 6 6 726 369 229 2.0 3.2
M3 apache/hadoop - hadoop-hdfs-httpfs 3 3 2 2981 904 596 3.3 5.0
M4 apache/hadoop - hadoop-hdfs-nfs 1 0 0 1290 880 749 1.5 1.7
M5 apache/hadoop - hadoop-mapreduce-client-app 3 3 3 6087 2258 1400 2.7 4.3
M6 apache/hadoop - hadoop-mapreduce-client-core 3 1 1 3689 1617 841 2.3 4.4
M7 apache/hadoop - hadoop-mapreduce-client-jobclient 5 5 5 29354 19702 7200 1.5 4.1
M8 apache/hbase - hbase-server 13 13 13 180778 55207 10320 3.3 17.5
M9 apache/incubator-dubbo4 - dubbo-cluster 3 3 3 927 450 221 2.1 4.2
M10 apache/incubator-dubbo - dubbo-common 6 5 5 3341 751 292 4.4 11.4
M11 apache/incubator-dubbo - dubbo-config-api 2 2 1 2184 411 215 5.3 10.2
M12 apache/incubator-dubbo - dubbo-monitor-default 1 1 1 258 249 255 1.0 1.0
M13 apache/incubator-dubbo - dubbo-remoting-netty 1 1 1 374 356 310 1.1 1.2
M14 apache/incubator-dubbo - dubbo-rpc-api 4 4 4 577 382 236 1.5 2.4
M15 apache/incubator-dubbo - dubbo-rpc-rest 2 2 2 315 256 216 1.2 1.5
M16 eclipse-ee4j/tyrus - non-deployable 1 1 1 433 201 112 2.2 3.9
M17 elasticjob/elastic-job-lite - elastic-job-lite-core 4 4 4 2890 964 188 3.0 15.4
M18 looly/hutool - hutool-core 1 1 1 2967 651 85 4.6 34.9
M19 orbit/orbit - actor-tests 1 1 1 8518 752 278 11.3 30.6
M20 pholser/junit-quickcheck - core 122 122 122 2687 671 101 4.0 26.6
M21 pholser/junit-quickcheck - generators 4 4 4 6255 2294 156 2.7 40.1
M22 querydsl/querydsl - querydsl-hibernate-search 3 0 0 386 372 316 1.0 1.2
M23 spring-projects/spring-boot - spring-boot 2 2 2 148990 12299 384 12.1 388.0
M24 spring-projects/spring-boot - spring-boot-actuator 12 11 11 21821 5416 368 4.0 59.3
M25 spring-projects/spring-boot - spring-boot-actuator-autoconfigure 2 2 2 21866 9357 429 2.3 51.0
M26 spring-projects/spring-boot - spring-boot-test 1 1 1 23505 5623 242 4.2 97.1
M27 spring-projects/spring-boot - spring-boot-test-autoconfigure 4 4 4 6468 4358 538 1.5 12.0
M28 spring-projects/spring-ws - spring-ws-core 1 1 1 4529 1247 223 3.6 20.3
M29 undertow-io/undertow - servlet 1 0 0 2289 1133 297 2.0 7.7
M30 vmware/admiral - kubernetes 1 1 1 684 308 182 2.2 3.8
M31 vmware/admiral - common 4 4 4 668 285 142 2.3 4.7
M32 vmware/admiral - request 1 0 0 3995 1833 995 2.2 4.0
M33 wildfly/wildfly - server-integration 1 1 1 690 457 271 1.5 2.5
M34 zalando/riptide - riptide-spring-boot-starter 1 1 1 494 321 134 1.5 3.7
Sum × 3 | Arith. Mean × 3 | Geo. Mean × 2 223 212 210 14963 4030 857 2.5 8.4

all three tests have the same root cause. One of the three tests
(SearchQueryTest.no_where) is shown in Figure 5.

Unlike the two examples described in Section 2, the polluted state
that causes no_where to fail is not on the heap but in a database
stored in the file system. Specifically, the test adds five entries to a
database and then checks whether the database contains five entries
(Line 16). The entries added to the database are saved to the file
system only after all of the tests finish and the JVM exits. Therefore,
in the isolated-class and entire-suite modes, even when this test is
run multiple times, and the setUp() method is run multiple times,
all of the runs use a new (empty) database and all of the runs
pass. However, we find no_where to pass in the first run and fail in
the second run in the isolated-method mode because we already
run (twice) another test in the SearchQueryTest class, saving the
database to the file system before no_where runs. The first run of

4apache/incubator-dubbo now redirects to apache/dubbo, but we keep the old name
to be consistent with prior work.

no_where in the isolated-method mode passes even with a polluted
database because the database is loaded asynchronously, and if the
database is not ready by the first run, then it simply uses a new
database from memory. On the other hand, the second run typically
uses the polluted database from the file system and consequently
fails. Section 5.1 describes more details about this test.
A2:All three modes detect similar tests, but isolated-method detects
slightly more than isolated-class, which detects slightly more than
entire-suite.

4.3 RQ3: Runtime of Different Modes
Section 2 has discussed how the three different modes can vary in
the runtime due to the number of JVMs that the modes need to
run. In all three modes, the total number of test runs is exactly the
same, but the number of JVM runs differs greatly. Each JVM run
has to start a JVM and load the required classes, taking nontrivial
time. The number of JVM runs needed is the same as the number

Preempting Flaky Tests via Non-Idempotent-Outcome Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

of tests, the number of test classes, and one in the isolated-method,
isolated-class, and entire-suite modes, respectively.

Table 1 presents the time to run the three detection modes. As
expected, the isolated-method mode is the slowest among the three
modes. Specifically, the (geo. mean) overhead of the isolated-method
mode is 8.4x and 2.5x over the entire-suite and isolated-class modes,
respectively. These numbers confirm that the overhead for each
JVM run is nontrivial [22, 75]. Our results also show that the M23
module has a much higher overhead for isolated-method/entire-
suite than other modules. We find that the higher overhead is be-
cause M23 has the highest number of tests (2,108) of all the modules,
and consequently, isolated-method runs 2,108 JVMs, while entire-
suite runs only 1 JVM. As the entire-suite mode runs substantially
faster than the other two modes and yet misses detecting only 5.8%
(13/223) of NIO tests, we recommend that developers regularly run
the entire-suite mode and only rarely run the isolated-method mode
to detect NIO tests that the entire-suite mode may miss. Follow-
ing our own recommendation, we run only the entire-suite mode
for Python projects but confirm the detected Python NIO tests by
running each test twice in isolation.
A3: The most cost-beneficial mode is entire-suite; we suggest run-
ning entire-suite periodically and isolated-method for only newly-
added or directly-modified tests [61].

4.4 RQ4: Experience with Fixing NIO Tests
We fix and open pull requests for 268 NIO tests. 192 of them are
accepted, only 6 rejected, and the remaining 70 pending. Table 2
shows the statistics about our pull requests. The rows “Java” and
“Python” show the sum for all Java modules and Python projects,
respectively. To illustrate diversity, we show details for each Java
module. Due to space limit, we show only the sum for Python.

Our experiments use an older version of projects (to compare
with victims and polluters; Section 4.5), but tests are worth fixing
only in the latest version. The table marks as “N/A” 42 tests that
are not NIO in the latest version, i.e., fixed, deleted, ignored (e.g.,
annotated with @Ignore in Java) or archived.

We inspect all 361 NIO test that we detect, even “N/A”. For each
NIO test, we inspect for at least one hour before giving up and
proceeding to the next test. Each NIO test that we do not fix in our
first iteration is reinspected later. In the end, we do not fix 51 tests
(17 Java and 34 Python) for three reasons: (1) we cannot localize
the pollution (for 3 Java and 16 Python tests); (2) we localize the
pollution but it is difficult to clean (for 13 Java and 13 Python tests);
and (3) we do not fix tests that are specified to run in specific orders
(for 1 Java and 5 Python tests, e.g., annotated with @TestMethodOrder

in Java) because developers are likely already aware of the state
pollution, thus unlikely to want to clean the state pollution that
makes other tests pass (in other words, the NIO test sets state for
some brittle test [88]).

An example test that we do not fix because we cannot localize
the state pollution is AuthUtilsTest.testValidateSessionData from
M31. The test tries to create a new user each time, checks several
functionalities of the session, and then clears the session. In the
second run, the test fails the assertion assertEquals(authCtxUser,

getOp.getAuthorizationContext()), because the call getAuthoriza-
tionContext() returns null instead of the expected object. We find

Table 2: Statistics about our pull requests (PRs) for NIO tests;
“N/A” marks tests not available in the latest project version.

NIO Tests # NIO Tests in Our PRs
ID detected N/A opened accepted rejected
M1 2 0 2 2 0
M2 7 7 N/A 0 0
M3 3 0 3 0 1
M4 1 0 1 1 0
M5 3 0 3 1 0
M6 3 0 3 1 0
M7 5 0 5 1 0
M8 13 3 7 1 0
M9 3 0 2 2 0
M10 6 0 6 6 0
M11 2 1 1 1 0
M12 1 0 0 0 0
M13 1 1 N/A 0 0
M14 4 0 4 4 0
M15 2 2 N/A 0 0
M16 1 0 1 1 0
M17 4 0 4 4 0
M18 1 1 N/A 0 0
M19 1 1 N/A 0 0
M20 122 2 120 120 0
M21 4 0 4 4 0
M22 3 0 3 3 0
M23 2 1 1 0 0
M24 12 0 2 0 0
M25 2 0 2 0 0
M26 1 0 1 0 1
M27 4 1 3 0 3
M28 1 0 1 0 0
M29 1 0 1 0 0
M30 1 0 1 0 0
M31 4 0 3 0 0
M32 1 0 1 0 0
M33 1 0 0 0 0
M34 1 0 1 1 0
Java 223 20 186 153 5
Python 138 22 82 39 1
Total 361 42 268 192 6

that null is returned because at the end of the first run, the regu-
lar user “logs out” via AuthUtils.cleanupSessionData(getOp). How-
ever, after careful inspection, we find that seemingly all the variables
involved in the test code are newly initialized, and therefore, we
cannot easily identify the exact global variable that is shared be-
tween the two runs. We envision that future research can apply
program analysis techniques to help developers localize the shared
state for NIO tests.

An example test that we do not fix because we cannot clean the
pollution is WebMvcMetricsFilterTests.regexBasedRequestMapping
from M24. In the second run, the test fails the assertion assert-

That([...].timer().count()).isEqualTo(1L) because count() re-
turns 2L instead of the expected 1L. It is obvious that we need
to reset the timer (or the object that stores the timer) to clean the

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam

pollution. However, after extensive code search, we cannot find
a reasonable cleaning method. Moreover, the receiver object for
timer() is created by a class imported from a library dependency,
preventing us from easily implementing the functionality to reset
the timer’s state in the module M24 itself.

Overall, we fix 268 (of the available 319) tests by revising/adding
code to clean the shared state of the NIO tests, thereby making them
idempotent. The number of opened pull requests (PRs) is “N/A” if
all NIO tests detected in a module are no longer applicable in the
latest version. Our fixes cover at least one test in 82 out of 109
components—27/29 Java modules and 55/80 Python projects—that
have at least one NIO test remaining in the latest version.

Based on the acceptance rate and developers’ comments, most of
our fixes have been appreciated by developers. Ignoring the outlier
M20, of all the accepted tests, 40% for Java (19% for Python) were
accepted without comments, while 60% (81%) were accepted with
developer compliments (e.g., “nice catch”, “thanks”, “lgtm”); only 2
for Java (5 for Python) tests had some discussions with developers
(e.g., asking us to modify ‘@Before’). Out of the 268 fixed tests,
only 6 (5 for Java and 1 for Python) had our PRs rejected. For the
rejected tests in M3 and M26, the developers believed that the
polluted state would affect only the test itself and not any other
test, and thus claimed that no fixes were needed [3, 4]. For the
three rejected tests in M27, the developers believed that our fix
was potentially “masking” the problem [5]. For the rejected Python
test, the developer appreciated our finding by confirming that the
NIO test is “certainly a valid issue”, but rejected our PR because the
developer wanted to completely refactor the code instead [6].

The module M20 is a big outlier with 120 tests. We point out that
the fixes for these 120 tests do have some diversity, e.g., modifying
eight different sets of data structures. Moreover, each test requires a
different line to be fixed, so fixing all the tests is not simply changing
one line that is shared across all the tests.

Reflecting on our PRs and our limited discussions with the devel-
opers, the lessons learned are that providing (1) steps to reproduce
test failures and (2) explanations of why fixing NIO is beneficial can
improve the likelihood that PRs get accepted. For example, for one
PR [7], we had initially reported the failure message from running
the test twice without providing (1) or (2). The developer com-
mented “I’m not sure how this would solve the [failure], and I’ve
never come across it” and closed our PR. After we provided (1) and
(2), including “clean state pollution so that some other tests won’t
fail in the future”, the developer promptly reopened and merged
our PR, replying “Thanks for the explanation. The PR makes sense”.
Our recent PRs include both (1) and (2).
A4: Developers are generally positive about fixes for NIO tests;
providing reproducing steps and explaining the motivation help.

4.5 RQ5: NIO – Victim – Polluter Comparison
Every NIO test is both latent-victim and latent-polluter, and some
NIO tests may be victims or polluters in their test suite. To un-
derstand how the NIO tests that we detect relate to OD-related
tests detected in prior work, we intentionally use the same pro-
jects/modules and commits as prior studies for Java [61, 92] and
Python [39] that have reported some victims or polluters. Detecting
victims is expensive and typically requires running many random

Figure 6: Number of (fixed) Java and Python NIO tests and
their overlap with victim and (for Java only) polluter tests.

orders of test suites or sophisticated analyses of test dependen-
cies [36, 58, 92, 99]. Detecting (all) polluters is even more expensive
as the detection can require checking all test pairs [36, 88, 92]. In
fact, the Python dataset [39] that we use reports only victims but
does not report polluters.

Figure 6 (top row) shows Venn diagrams relating the number
of NIO, victim, and (for Java only) polluter tests in these datasets.
Of 223 Java NIO tests, only 13 are victims but not polluters, 7 are
polluters but not victims, and 8 are both victims and polluters. Of
138 Python NIO tests, only 36 are victims. We find that a large
number of victims and polluters detected in prior work are not
NIO tests. On the other hand, despite the relation of victims and
polluters to NIO tests, the majority of the NIO tests that we detect
were not detected before.

Figure 6 (bottom row) shows Venn diagrams focusing on the 268
NIO tests that we fix. Of 186 fixed Java NIO tests, only 12 are also
victims, 7 are also polluters, and 1 is both victim and polluter. Of
82 fixed Python NIO tests, only 16 are victims. The Venn diagrams
show some of the diversity of the NIO tests that we fix.
A5:NIO tests are related to but not subsumed by OD tests; detecting
NIO tests can be an effective way to preempt OD tests.

5 CASE STUDIES
We next discuss some interesting examples of NIO tests that we
inspect or fix. While all NIO tests pollute some part of the shared
state, different tests pollute different parts. These examples illustrate
various parts of the shared state that cause NIO tests.

5.1 Java – Database
Three tests from querydsl [82] (Section 4.2) are NIO because of the
state polluted through a database stored on the disk. Specifically,
the test fails an assertion (Line 16 in Figure 5) with the message
expected:<5> but was:<10>. The test class SearchQueryTest extends
AbstractQueryTest whose @Before public void setUp() method
inserts five new users into a database (Line 8). Whenever JUnit runs
the test class, it invokes the setup method that inserts five more
users into the database. Indeed, if we run the test in two JVMs, the
failure in the second JVM is due to every user being added twice.

Our inspection reveals that each JVM run adds some files in the
directory querydsl-hibernate-search/target/lucene/indexes/com.

querydsl.hibernate.search.User/. These files are database-related,
persist across different JVMs, and make the test NIO. Interestingly,
these files are only persisted after the JVM finishes. Therefore,

Preempting Flaky Tests via Non-Idempotent-Outcome Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 @Test
2 public void testAsync () {
3 RpcContext rpcContext = RpcContext.getContext ();
4 Assert.assertFalse(rpcContext.isAsyncStarted ());
5 rpcContext.setAsyncContext(new AsyncContext ...);
6 ... // checks no asyncContext has started
7 RpcContext.startAsync ();
8 Assert.assertTrue(rpcContext.isAsyncStarted ());
9 asyncContext.write(new Object ());
10 ... // assert something was done by asyncContext
11 rpcContext.stopAsync ();
12 Assert.assertTrue(rpcContext.isAsyncStarted ());
13 + RpcContext.removeContext();
14 }

Figure 7: Developer fix for NIO test in dubbo [28].

running the same test twice or even more times in the same JVM,
from a clean disk state, does not lead to any test failure.

The fix for these tests is simple, just correcting a typo: changing
FileUtils.delete(new File("target/lucene3")) to FileUtils.del-

ete(new File("target/lucene")) in the setup method. This project
uses Travis CI for continuous integration, but this issue is not de-
tected in CI because it runs the entire test suite (without repeated
tests) in one JVM always from a clean disk state. In contrast, running
the test suite multiple times on the samemachine (e.g., a developer’s
laptop) would have detected the issue. We opened a PR [8] with
our fix, and the developers accepted it and replied “Thanks!”.

5.2 Java – File System
The test TestViewfsWithNfs3.testNfsRenameSingleNN from hadoop

checks whether it can rename a file represented by an HdfsFile

object. This test is NIO because of disk updates. The test first gets
the HdfsFile that it tries to rename and checks the status of this
HdfsFile. The test then renames that HdfsFile and checks its sta-
tus after renaming. In the second run on the same JVM, this test
raises a NullPointerException, specifically from invoking status-

BeforeRename.isDirectory(). Before renaming, the test checks that
the HdfsFile is not a directory. The problem is that the test gets
the HdfsFileStatus object for statusBeforeRename based on the file
name, but the name has been changed in the first run, so statusBe-

foreRename becomes null and causes the exception. Our proposed
fix [9] renames the HdfsFile again back to its original name at the
end of the test, and was accepted with “Merged. Thank you”.

In the same project, the test TestTaskProgressReporter.test-

BytesWrittenRespectingLimit writes some bytes to the local file
system. It also increments some counters that are written to the
file system. However, after the test finishes, the counters are not
reset, making one assertion fail when the test runs for the second
time. Our fix [10] invokes FileSystem.clearStatistics() to reset
the counters at the end of the test, and was also accepted.

5.3 Java – Heap Reachable from Static Fields
The most common case for NIO tests is heap “pollution”: either the
static fields themselves or the objects reachable from the static fields
are polluted. Figure 7 shows an example NIO test from Dubbo [28].
The test testAsync starts by getting a Remote Procedure Call con-
text (Line 3). The test aims to check whether the context properly
exercises some task asynchronously. In doing so, the test also checks

1 @Test
2 public void testSigTermedFunctionality () throws ... {
3 AppContext mockContext = Mockito.mock(AppContext.

class);
4 JHEventHandlerForSigtermTest jheh =
5 new JHEventHandlerForSigtermTest(mockContext , 0);
6 // adds some jobId to the static fileMap
7 jheh.stop();
8 // adds some jobId to the static fileMap
9 jheh.stop();
10 // assertions at the end of the test
11 }
12 // a method to execute jheh.stop()
13 @Override
14 protected void serviceStop () throws Exception {
15 // log the info
16 for (Map.Entry <JobId ,MetaInfo > jobIt : fileMap.

entrySet ()) {
17 JobId toClose = jobIt.getKey ();
18 // log the info
19 final Job job = context.getJob(toClose);
20 int successfulMaps = job.getCompletedMaps ()
21 - job.getFailedMaps () - job.getKilledMaps ();
22 // NullPointerException raised in the second run
23 // stop the job
24 }
25 ...
26 // helper class for testSigTermedFunctionality
27 class JHEventHandlerForSigtermTest extends

JobHistoryEventHandler {
28 public JHEventHandlerForSigtermTest(AppContext

context , int startCount) {
29 super(context , startCount);
30 + JobHistoryEventHandler.fileMap.clear();
31 }
32 }

Figure 8: Our fix for NIO test in hadoop [43].

four times (Lines 4, 6, 8, and 12) whether the async task in rpcCon-

text has started. The first two checks before the rpcContext starts
the async task (Line 7) are expected to be false, while the later
two checks are expected to be true. The test is NIO because the
rpcContext (from Line 3) is shared in all runs of this test. Therefore,
the first check (Line 4) in the second run fails, because the async
task has already started during the first run. Note that even though
Line 11 stops the async task, the check on Line 12 still passes in
the first run (while Line 4 fails in the second run) because rpc-

Context.isAsyncStarted() is simply checking whether the async
task has started before, and not whether it is still ongoing. In the
latest version, the developers have cleaned the state pollution by
adding RpcContext.removeContext(); at the end (Line 13), so the
test is “N/A” in Table 2.

TestJobHistoryEventHandler.testSigTermedFunctionality from
hadoop is NIO. Figure 8 shows the relevant code snippet. The root
cause of the failure is that this test adds some entries to the static
field JobHistoryEventHandler.fileMap, which is shared among tests,
and does not remove the entries from the map. JobHistoryEven-
tHandler.fileMap has as keys the ids of the jobs that have been
created. The call jheh.stop() (Line 7) in the test calls another
method serviceStop (Line 14), which iterates over the JobHisto-

ryEventHandler.fileMap to get the job ids, then gets each Job object
by its id, and finally stops it. After the first test run, the created Job

objects are cleaned, but their stale ids remain in JobHistoryEven-

tHandler.fileMap. Therefore, in the second run, the test gets null
from these stale ids (Line 19) and throws NullPointerException

(Line 22). Our fix is to clear JobHistoryEventHandler.fileMap at the

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam

1 def cmd_mock ():
2 def _cmd_mock(name: str):
3 cmd.__overrides__[name] = ['/bin/true']
4 yield _cmd_mock
5 - cmd.__overrides__ = []
6 + cmd.__overrides__ = {}

Figure 9: Our fix for NIO test in benchbuild [25].

end of the constructor of class JHEventHandlerForSigtermTest, a
helper class of this test (Line 30). In fact, the constructor of another
helper class, JHEvenHandlerForTest, in the same file clears JobHisto-
ryEventHandler.fileMap, so the same clean up needs to take place
in the constructor of JHEventHandlerForSigtermTest. Our PR [11]
for this test has been merged by the developers.

MetricsTest.shouldRecordCircuitBreakers from riptide is an-
other test that is NIO due to the pollution of the shared static field.
This test adds new timers to the SimpleMeterRegistry but does not
clear them. In the second test run, the assertion assertEquals(4,

timer.count()) at the end fails because the timer.count() has been
incremented to 8 after two runs. Interestingly, this state pollution
not only makes the test fail in the second run but also causes an-
other test, shouldRecordRequests in the same test class, to fail. In
other words, shouldRecordCircuitBreakers is a polluter for the vic-
tim shouldRecordRequests. Because this issue affects multiple tests,
we do not fix just one test body but add to the class a teardown()

method, which cleans SimpleMeterRegistry after each test run. Our
PR [12] for this test was promptly accepted (within 10 minutes), and
the developers gave a thumb up and thanked for our contribution.

5.4 Java – System Property
SecurityUtilsTest.testEnsureTrustStoreSettings in admiral tests
whether it can properly set some system properties. For example,
for SECURITY_PROPERTIES, the test starts by getting the value of the
system property with System.getProperty(SECURITY_PROPERTIES).
Then it checks that this property has not been set, by comparing the
value to null and an empty string. This check passes in the first test
run. The test then runs System.setProperty(SECURITY_PROPERTIES,
...); and assertEquals(...); to set another value to that system
property and to assert that it has been properly set. The test is NIO
because it does not reset this system property at the end. In the
second run of the test on the same JVM, the first assertion (checking
that this property has not been set) fails.

The fix for this test is to clean the polluted system properties, e.g.,
we add System.clearProperty(SECURITY_PROPERTIES);. Our PR [13]
was pending review before the project got archived.

5.5 Python – Buggy Cleaning
The test test_cli_slurm.test_slurm_command from benchbuild [25]
is NIO due to an interesting state pollution: developers have code
to clean the state but mistakenly pollute the type of a variable so
that the test fails on the second run. This type mistake is more
likely to appear in a dynamically typed language. Figure 9 shows
the relevant code and our fix. The test calls the function cmd_mock

that itself returns a function _cmd_mock that can add the correspond-
ing value of the key name to a dictionary called cmd.__overrides__.
Note that cmd.__overrides__ is a global variable shared among test

1 def to_zero(tvd , northing , easting , surface_northing ,
surface_easting):

2 # perform some checking
3 - northing -= surface_northing
4 - easting -= surface_easting
5 + northing = northing - surface_northing
6 + easting = easting - surface_easting
7 return tvd , northing , easting
8
9 # initialization for global variables g1, g2, ..., g5
10 g1 = ...
11 def test_zero ():
12 # global variables passed in as arguments
13 v1, v2, v3 = to_zero(g1, g2, g3, g4, g5)
14 np.testing.assert_equal (...) # assertion

Figure 10: Our fix for NIO test in wellpathpy [93].

1 def test_celery_integration ():
2 server_address = ("", 8080)
3 server = HTTPServer(server_address , Handler)
4 # perform some assertions
5 + server.socket.close()

Figure 11: Our fix for NIO test in pybrake [79].

runs. In the second run, the test fails reporting TypeError: list

indices must be integers or slices, not str. The root cause
is cmd.__overrides__ = [] that sets the global variable to be an
empty list. While developers had thought to clean the state, they
mistakenly wrote the wrong cleaning code. Our fix changes the
empty list to the empty dictionary. The developers accepted our
PR [14] and said “Thanks, good catch!”.

5.6 Python – Function Side Effect
The test test_location.test_zero from wellpathpy [93] is NIO due
to state pollution stemming from the side effects in the function
under test. Figure 10 shows the test and the function to_zero. The
test calls to_zero by passing 5 global variables (of type numpy
arrays) initialized outside test_zero. The second run of the test
fails, causing AssertionError when executing Line 14. The root
cause is that to_zero modifies the data in the numpy arrays passed
in (namely g2 and g3). Within to_zero, northing and easting point
to the same numpy arrays as g2 and g3, respectively. A discussion
of such aliasing for numpy arrays is on StackOverflow [15]. Our fix
replaces the operator -= that modifies array data in place with an
assignment that creates new arrays and does not modify the arrays
passed in. The developers merged our PR [16] and commented “This
is a good change”.

5.7 Python – Network Related
The test test_celery_integration.test_celery_integration from
pybrake [79] is NIO due to state pollution related to network. Fig-
ure 11 shows the relevant code and our fix. The second test run
throws OSError: [Errno 98] Address already in use. The reason
is that the test does not release the network resource at the end
of the execution, and therefore, the second run cannot initialize
the server using the same address. Our fix is to close the server to
make the address reusable after the test execution. The developers
merged our PR [17].

Preempting Flaky Tests via Non-Idempotent-Outcome Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

6 DISCUSSION
Motivation and cost for rerunning a passing test. One could
question why rerun tests twice when it is not usually done and
takes time. The cost of rerunning tests twice to detect NIO tests
has the benefit to preempt order-dependent (OD) tests, a prominent
category of flaky tests [31, 58, 65, 99]. As a cost-effective approach
to proactively detect OD-related tests, instead of rerunning all
tests twice all the time, developers could rerun (1) only sometimes:
all tests periodically (e.g., every weekend) or (2) only some tests:
newly-added or recently-modified tests for all regression runs. We
previously proposed these two options for other flaky-test-detection
approaches [61] but not for rerunning tests twice.
Evidence of NIO tests becoming polluters or victims. We de-
scribe the history of two examples from hadoop. An example NIO
test that became a polluter is TestJobHistoryEventHandler.testSig-
TermedFunctionality, which one developer had added (in 5f52156a)
and later became a polluter when another developer added (in
64e4fb98) three victims ten months later. For this NIO test, the
developers accepted our fix [11] with compliments. Had the first
developer used our approach to detect NIO tests, the test could have
been fixed before the victims were added. An example NIO test that
became a victim is TestTaskProgressReporter.testTaskProgress,
which one developer had added first (in 7e6f384d) and then became
a victim when another developer added (in cb26cd4b) a polluter
about seven months later. Yet again, using our approach could have
prevented the later polluter-victim pair.

7 THREATS TO VALIDITY
Some key threats to validity are the runtime ratios and whether the
tests that we detect are really NIO andworth fixing. Our comparison
of the runtime for different modes (Section 4.3) can be affected by
the noise in the measurement of time. To mitigate this threat, we
run the experiments on isolated Azure machines, and claim only a
general trend of the overhead of different modes.

As our evaluation for NIO tests involves rerunning the tests,
our results could be affected by flakiness itself. For example, a test
may appear NIO (first run passes, second run fails), although the
test is actually idempotent and happens to exhibit NIO-like results
because of some nondeterminism. To mitigate this threat, we rerun
the NIO tests with various tools and additionally manually inspect
all detected NIO tests to obtain higher confidence in the tests that
we study. In fact, the projects under evaluation likely have more
NIO tests that are not detected because of tool limitations (e.g.,
pytest-repeat does not run certain kinds of Python tests).

We also use many existing tools and modify some to detect NIO
tests. In principle, many of these tools, such as Maven Surefire [68],
JUnit [51], pytest [80], or pytest-repeat [81], could have bugs that
impact our results. We mitigate this threat by choosing some of
the most widely used build systems and testing frameworks. Our
own modifications to iDFlakies [58] are more likely to have bugs.
We mitigate this threat by having multiple authors check iDFlakies
modifications and manually inspect various results. Finally, the best
way to alleviate concerns about usefulness of NIO tests is to provide
fixes that developers largely accept: paraphrasing the saying “the
proof is in the pudding”, we could say “the proof is in PRing”, i.e.,
opening pull requests that get accepted.

8 RELATEDWORK
A recent survey [77] reviews many papers that have studied various
causes and categories of flaky tests [21, 24, 29, 31, 36, 39, 42, 48, 57,
58, 60, 65, 72, 78, 85, 87, 88, 99]. These papers focus on tests that
can pass or fail when running each test in a test suite only once. In
contrast, we are the first to investigate NIO tests, which pass and
fail when run twice in the same VM.

To help with the problem of flaky tests, various tools have also
been proposed to help detect these tests [24, 36, 48, 58, 78, 99]. Most
tools require running the tests and observing whether a test can
pass in some runs and fail in other runs. Similar to these tools, our
detection of NIO tests is based on whether a test can pass and fail in
various runs. Unlike these prior tools, we run the tests twice in the
same VM. Our findings for NIO tests are particularly important to
the topic of flaky-test detection, because NIO tests can pollute the
state used by other tests and they can fail themselves depending
on the state set by other tests. Much of prior work on flaky-test
detection has been on order-dependent tests, which pass or fail due
to the pollution of other tests.

Beyond detecting flaky tests, related work has also proposed
automatically fixing flaky tests [30, 63, 88, 98], tolerating flaky
tests by resetting state [23], accommodating test dependencies [24],
generating order-dependent flaky tests using mutations [41], and
accommodating order-dependent tests in regression testing [59].
The ideas from these projects could help automatically fix or ac-
commodate NIO tests in the future.

NIO tests are both latent-victim and latent-polluter tests. Oracle-
Polish [48] and PolDet [40] use sophisticated techniques to detect
latent-victim and latent-polluter tests, respectively. However, they
report many more tests that developers consider false positives.
More recently, additional tools have been proposed to detect pol-
luters [88, 95]. We report the important intersection of latent-victim
and latent-polluter tests. Our approach is simple but effective at
preempting polluters and victims. Our approach is also portable,
e.g., we evaluate on both Java and Python tests.

9 CONCLUSION
This paper has focused on NIO tests, which pass in the first run
but fail in the second run in the same VM. We have proposed
three modes to detect NIO tests; these modes detect 223 NIO Java
tests, and the most practical mode detects 138 NIO Python tests.
These NIO tests are mostly new and have not been detected by
prior research on flaky tests. We have opened pull requests for 268
NIO tests and developers have accepted many of them. We hope
that our promising results on NIO tests and our publicly available
dataset [18] can spur more research on this topic.

ACKNOWLEDGMENTS
We thank Yang Chen, Ruixin Wang, Satvik Eltepu, Reed Oei, and
Jonathan Stein for their help. This work was partially supported
by US NSF grants CCF-1763788 and CCF-1956374, and by Natural
Science Foundation of China (Grant No. 62161146003), and the
XPLORER PRIZE. Tao Xie (the corresponding author) is also with
the Key Laboratory of High Confidence Software Technologies
(Peking University), Ministry of Education, China. We acknowledge
support for research on flaky tests from Facebook and Google.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam

REFERENCES
[1] 2022. https://github.com/Activiti/Activiti/pull/3488
[2] 2022. https://github.com/apache/dubbo/pull/6936
[3] 2022. https://github.com/apache/hadoop/pull/2482
[4] 2022. https://github.com/spring-projects/spring-boot/pull/25435
[5] 2022. https://github.com/spring-projects/spring-boot/pull/27664
[6] 2022. https://github.com/josiest/geom/pull/1
[7] 2022. https://github.com/mtik00/yamicache/pull/10
[8] 2022. https://github.com/querydsl/querydsl/pull/2658
[9] 2022. https://github.com/apache/hadoop/pull/2724
[10] 2022. https://github.com/apache/hadoop/pull/2500
[11] 2022. https://github.com/apache/hadoop/pull/2499
[12] 2022. https://github.com/zalando/riptide/pull/1020
[13] 2022. https://github.com/vmware/admiral/pull/319
[14] 2022. https://github.com/PolyJIT/benchbuild/pull/425
[15] 2022. https://stackoverflow.com/questions/11585793/are-numpy-arrays-

passed-by-reference
[16] 2022. https://github.com/Zabamund/wellpathpy/pull/50
[17] 2022. https://github.com/airbrake/pybrake/pull/163
[18] 2022. NIO Tests. https://sites.google.com/view/nio-tests
[19] 2022. TotT: Avoiding flakey tests. http://googletesting.blogspot.com/2008/04/

tott-avoiding-flakey-tests.html
[20] Activiti 2022. https://github.com/activiti/activiti
[21] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan

Bell. 2021. FlakeFlagger: Predicting flakiness without rerunning tests. In ICSE.
[22] Jonathan Bell. 2014. Detecting, isolating, and enforcing dependencies among

and within test cases. In FSE Doctoral Symposium.
[23] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In

ICSE.
[24] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient

dependency detection for safe Java test acceleration. In ESEC/FSE.
[25] BenchBuild 2022. https://github.com/PolyJIT/benchbuild
[26] Jeanderson Candido, Luis Melo, and Marcelo d’Amorim. 2017. Test suite paral-

lelization in open-source projects: A study on its usage and impact. In ASE.
[27] Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury. 2021.

Flaky test detection in Android via event order exploration. In ESEC/FSE.
[28] Dubbo 2022. https://github.com/apache/dubbo
[29] Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain,

and Sasa Misailovic. 2020. Detecting flaky tests in probabilistic and machine
learning applications. In ISSTA.

[30] Saikat Dutta, August Shi, and Sasa Misailovic. 2021. FLEX: Fixing flaky tests in
machine learning projects by updating assertion bounds. In ESEC/FSE.

[31] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding flaky tests: The developer’s perspective. In ESEC/FSE.

[32] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Priori-
tizing test cases for regression testing. In ISSTA.

[33] Lamyaa Eloussi. 2016. Flaky tests (and how to avoid them). https://engineering.
salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60

[34] Facebook testing and verification request for proposals 2019. https:
//research.fb.com/programs/research-awards/proposals/facebook-testing-
and-verification-request-for-proposals-2019

[35] Martin Fowler. 2011. Eradicating non-determinism in tests. https://martinfowler.
com/articles/nonDeterminism.html

[36] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test depen-
dency detection. In ICST.

[37] Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. 2015.
Making system user interactive tests repeatable: When and what should we
control?. In ICSE.

[38] Google. 2008. Avoiding flakey tests. http://googletesting.blogspot.com/2008/
04/tott-avoiding-flakey-tests.html

[39] Martin Gruber, Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021. An
empirical study of flaky tests in Python. In ICST.

[40] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:
Detecting state-polluting tests to prevent test dependency. In ISSTA.

[41] Sarra Habchi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2021. On the
use of mutation in injecting test order-dependency. In MSR.

[42] Sarra Habchi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2021. A
replication study on the usability of code vocabulary in predicting flaky tests.
In MSR.

[43] Hadoop 2022. https://github.com/apache/hadoop
[44] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportu-

nities and open problems for static and dynamic program analysis. In SCAM.
[45] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,

Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi.
2001. Regression test selection for Java software. In OOPSLA.

[46] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015.
The art of testing less without sacrificing quality. In ICSE.

[47] Kim Herzig and Nachiappan Nagappan. 2015. Empirically detecting false test
alarms using association rules. In ICSE.

[48] Chen Huo and James Clause. 2014. Improving oracle quality by detecting brittle
assertions and unused inputs in tests. In FSE.

[49] He Jiang, Xiaochen Li, Zijiang Yang, and Jifeng Xuan. 2017. What causes my
test alarm? Automatic cause analysis for test alarms in system and integration
testing. In ICSE.

[50] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In ICSE.

[51] JUnit 2022. https://junit.org
[52] JUnit and Java 7 2012. http://intellijava.blogspot.com/2012/05/junit-and-java-

7.html
[53] JUnit test method ordering 2022. http://www.java-allandsundry.com/2013/01/

junit-test-method-ordering.html
[54] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich. 2013. Optimizing unit

test execution in large software programs using dependency analysis. In APSys.
[55] Emily Kowalczyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long, and Atif

Memon. 2020. Modeling and ranking flaky tests at Apple. In ICSE SEIP.
[56] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-

malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
ISSTA.

[57] Wing Lam, Kivanç Muşlu, Hitesh Sajnani, and Suresh Thummalapenta. 2020. A
study on the lifecycle of flaky tests. In ICSE.

[58] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In ICST.

[59] Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie.
2020. Dependent-test-aware regression testing techniques. In ISSTA.

[60] Wing Lam, Stefan Winter, Angello Astorga, Victoria Stodden, and Darko Mari-
nov. 2020. Understanding reproducibility and characteristics of flaky tests
through test reruns in Java projects. In ISSRE.

[61] Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan
Bell. 2020. A large-scale longitudinal study of flaky tests. In OOPSLA.

[62] Johannes Lampel, Sascha Just, Sven Apel, and Andreas Zeller. 2021. When life
gives you oranges: Detecting and diagnosing intermittent job failures at Mozilla.
In ESEC/FSE.

[63] Chengpeng Li, Chenguang Zhu, Wenxi Wang, and August Shi. 2022. Repairing
order-dependent flaky tests via test generation. In ICSE.

[64] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining
prioritization: Continuous prioritization for continuous integration. In ICSE.

[65] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In FSE.

[66] Maintaining the order of JUnit3 tests with JDK 1.7. 2013. https://coderanch.
com/t/600985/engineering/Maintaining-order-JUnit-tests-JDK

[67] Maven 2022. https://maven.apache.org
[68] Maven Surefire plugin 2022. https://maven.apache.org/surefire/maven-surefire-

plugin
[69] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-

borski, and John Micco. 2017. Taming Google-scale continuous testing. In ICSE
SEIP.

[70] Gerard Meszaros. 2007. xUnit Test Patterns: Refactoring Test Code.
[71] John Micco. 2017. The state of continuous integration testing at Google. In ICST.

https://bit.ly/2OohAip
[72] Rashmi Mudduluru, Jason Waataja, Suzanne Millstein, and Michael D. Ernst.

2021. Verifying determinism in sequential programs. In ICSE.
[73] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing

dependency errors for Python build reproducibility. In ISSTA.
[74] Madan Musuvathi, Shaz Qadeer, and Thomas Ball. 2007. CHESS: A systematic

testing tool for concurrent software. Technical Report MSR-TR-2007-149.
[75] Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell,

and Milos Gligoric. 2020. Debugging the performance of Maven’s test isolation:
Experience report. In ISSTA.

[76] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2020.
Flake it ’till you make it: Using automated repair to induce and fix latent test
flakiness. In ICSE (Workshops).

[77] Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A survey of flaky tests. TOSEM (2021).

[78] Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. 2020. What is the vocabulary of
flaky tests?. In MSR.

[79] pybrake 2022. https://github.com/airbrake/pybrake
[80] pytest 2022. https://docs.pytest.org/en/6.2.x
[81] pytest-repeat 2022. https://pypi.org/project/pytest-repeat
[82] Querydsl 2022. https://github.com/querydsl/querydsl
[83] Md Tajmilur Rahman and Peter C. Rigby. 2018. The impact of failing, flaky, and

high failure tests on the number of crash reports associated with Firefox builds.
In ESEC/FSE.

[84] Maaz Hafeez Ur Rehman and Peter C. Rigby. 2021. Quantifying no-fault-found
test failures to prioritize inspection of flaky tests at Ericsson. In ESEC/FSE.

https://github.com/Activiti/Activiti/pull/3488
https://github.com/apache/dubbo/pull/6936
https://github.com/apache/hadoop/pull/2482
https://github.com/spring-projects/spring-boot/pull/25435
https://github.com/spring-projects/spring-boot/pull/27664
https://github.com/josiest/geom/pull/1
https://github.com/mtik00/yamicache/pull/10
https://github.com/querydsl/querydsl/pull/2658
https://github.com/apache/hadoop/pull/2724
https://github.com/apache/hadoop/pull/2500
https://github.com/apache/hadoop/pull/2499
https://github.com/zalando/riptide/pull/1020
https://github.com/vmware/admiral/pull/319
https://github.com/PolyJIT/benchbuild/pull/425
https://stackoverflow.com/questions/11585793/are-numpy-arrays-passed-by-reference
https://stackoverflow.com/questions/11585793/are-numpy-arrays-passed-by-reference
https://github.com/Zabamund/wellpathpy/pull/50
https://github.com/airbrake/pybrake/pull/163
https://sites.google.com/view/nio-tests
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html
https://github.com/activiti/activiti
https://github.com/PolyJIT/benchbuild
https://github.com/apache/dubbo
https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60
https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60
https://research.fb.com/programs/research-awards/proposals/facebook-testing-and-verification-request-for-proposals-2019
https://research.fb.com/programs/research-awards/proposals/facebook-testing-and-verification-request-for-proposals-2019
https://research.fb.com/programs/research-awards/proposals/facebook-testing-and-verification-request-for-proposals-2019
https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html
https://github.com/apache/hadoop
https://junit.org
http://intellijava.blogspot.com/2012/05/junit-and-java-7.html
http://intellijava.blogspot.com/2012/05/junit-and-java-7.html
http://www.java-allandsundry.com/2013/01/junit-test-method-ordering.html
http://www.java-allandsundry.com/2013/01/junit-test-method-ordering.html
https://coderanch.com/t/600985/engineering/Maintaining-order-JUnit-tests-JDK
https://coderanch.com/t/600985/engineering/Maintaining-order-JUnit-tests-JDK
https://maven.apache.org
https://maven.apache.org/surefire/maven-surefire-plugin
https://maven.apache.org/surefire/maven-surefire-plugin
https://bit.ly/2OohAip
https://github.com/airbrake/pybrake
https://docs.pytest.org/en/6.2.x
https://pypi.org/project/pytest-repeat
https://github.com/querydsl/querydsl

Preempting Flaky Tests via Non-Idempotent-Outcome Tests ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[85] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang.
2021. An empirical analysis of UI-based flaky tests. In ICSE.

[86] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing test cases for regression testing. TSE (2001).

[87] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. De-
tecting assumptions on deterministic implementations of non-deterministic
specifications. In ICST.

[88] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In ESEC/FSE.

[89] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the validity
and value of empirical assessments of the accuracy of coverage-based fault
locators. In ISSTA.

[90] Test verification 2022. https://developer.mozilla.org/en-US/docs/Mozilla/QA/
Test_Verification

[91] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An empirical study of
flaky tests in Android apps. In ICSME.

[92] Anjiang Wei, Pu Yi, Tao Xie, Darko Marinov, and Wing Lam. 2021. Probabilistic
and systematic coverage of consecutive test-method pairs for detecting order-
dependent flaky tests. In TACAS.

[93] wellpathpy 2022. https://github.com/Zabamund/wellpathpy
[94] Eric Wendelin. 2022. Introducing flaky test mitigation tools. https://blog.gradle.

org/gradle-flaky-test-retry-plugin
[95] Pu Yi, Anjiang Wei, Wing Lam, Tao Xie, and Darko Marinov. 2021. Finding

polluter tests using Java PathFinder. SEN (2021).
[96] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection

and prioritization: A survey. STVR (2012).
[97] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2012. Re-

gression mutation testing. In ISSTA.
[98] Peilun Zhang, Yanjie Jiang, Anjiang Wei, Victoria Stodden, Darko Marinov, and

August Shi. 2021. Domain-specific fixes for flaky tests with wrong assumptions
on underdetermined specifications. In ICSE.

[99] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In ISSTA.

[100] Celal Ziftci and Jim Reardon. 2017. Who broke the build?: Automatically iden-
tifying changes that induce test failures in continuous integration at Google
scale. In ICSE.

https://developer.mozilla.org/en-US/docs/Mozilla/QA/Test_Verification
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Test_Verification
https://github.com/Zabamund/wellpathpy
https://blog.gradle.org/gradle-flaky-test-retry-plugin
https://blog.gradle.org/gradle-flaky-test-retry-plugin

	Abstract
	1 Introduction
	2 Background, Modes, and Examples
	2.1 Three Modes for Detecting NIO Tests

	3 Research Questions and Setup
	3.1 Projects
	3.2 Tools for Detecting NIO Tests
	3.3 Confirming Detected NIO Tests

	4 Results
	4.1 RQ1: Prevalence of NIO Tests
	4.2 RQ2: NIO Tests Detected in Different Modes
	4.3 RQ3: Runtime of Different Modes
	4.4 RQ4: Experience with Fixing NIO Tests
	4.5 RQ5: NIO – Victim – Polluter Comparison

	5 Case Studies
	5.1 Java – Database
	5.2 Java – File System
	5.3 Java – Heap Reachable from Static Fields
	5.4 Java – System Property
	5.5 Python – Buggy Cleaning
	5.6 Python – Function Side Effect
	5.7 Python – Network Related

	6 Discussion
	7 Threats to validity
	8 Related Work
	9 Conclusion
	References

