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More Likely Samples

When T < 1, we bias sampling
towards high likelihood regions

When T=0, we compute argmax

8



More Likely Samples

When T < 1, we bias sampling
towards high likelihood regions

When T=0, we compute argmax

9

But…



Myopic Temperature

But current LMs temperature scale one token at a time…
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Pitfall of Myopic Temperature Scaling
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Pitfall of Myopic Temperature Scaling

How do we temperature 
scale over a long sequence? 
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Long Horizon Temperature Scaling
Non-myopic Temperature Scaling
For Optimizing Long Sequences
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but sampling from pT is hard
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Long Horizon Temperature Scaling

Objective: 

speed up by using data 
instead of sample

�̂� 𝑝 𝑞!
data model temperature 

scaled model

importance sampling
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Long Horizon Temperature Scaling

Non-myopic Applicable to all 
likelihood-based models

�̂� 𝑝 𝑞!
data model temperature 

scaled model

Objective: 
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Variance Reduction: the clean

Learnable Baseline

Suffix likelihood and Index-dependent Baseline (for AR models)
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multiplicative constant

how are you doing today



Variance Reduction: the messy

Weight clipping
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Variance Reduction: the messy

Weight clipping

Horizon clipping (for AR models)
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baseline b

clip c
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Diffusion Image Models
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Baseline: pseudo-temp
reduce noise of reverse diffusion

Better likelihood vs 
diversity tradeoff!



Autoregressive Character Models
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Autoregressive Character Models
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Temperature 
extrapolation!

Better likelihood vs 
diversity tradeoff!



Autoregressive Language Models
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GPT2-small GPT2-medium GPT2-large

myopic 𝑇 = 0.75
long horizon 𝑇 = 0.9

long horizon 𝑇 = 0.9

long horizon 𝑇 = 0.9

myopic 𝑇 = 0.775

myopic 𝑇 = 0.8

myopic 𝑇 = 0.75

myopic 𝑇 = 0.775

myopic 𝑇 = 0.8

myopic 𝑇 = 0.75

myopic 𝑇 = 0.775

myopic 𝑇 = 0.8



Autoregressive Language Models
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Question: Please choose the word pair that is most analogous to “Athens Greece”. 
Choices: “Moscow Japan”, “Rome Italy”, “Moscow Pakistan”, “Moscow Australia” 
Answer:

Question: Please choose the word pair that is most analogous to "boy girl".
Choices: "grandfather grandmother", "grandfather bride", "son grandma", "grandfather sisters”
Answer:

Analogy Multiple Choice



Autoregressive Language Models
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Analogy Multiple Choice

10% 
improvement
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