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Abstract

Temperature scaling is a popular technique for
tuning the sharpness of a model distribution. It is
used extensively for sampling likely generations
and calibrating model uncertainty, and even fea-
tures as a controllable parameter to many large
language models in deployment. However, au-
toregressive models rely on myopic temperature
scaling that greedily optimizes the next token.
To address this, we propose Long Horizon Tem-
perature Scaling (LHTS), a novel approach for
sampling from temperature-scaled joint distribu-
tions. LHTS is compatible with all likelihood-
based models, and optimizes for the long horizon
likelihood of samples. We derive a temperature-
dependent LHTS objective, and show that finetun-
ing a model on a range of temperatures produces
a single model capable of generation with a con-
trollable long horizon temperature parameter. We
experiment with LHTS on image diffusion mod-
els and character/language autoregressive models,
demonstrating advantages over myopic tempera-
ture scaling in likelihood and sample quality, and
showing improvements in accuracy on a multiple
choice analogy task by 10%. Our code is available
at https://github.com/AndyShih12/
LongHorizonTemperatureScaling.

1. Introduction
Temperature scaling is a simple yet effective technique for
rescaling model outputs: lowering the temperature to in-
crease the probability of high-likelihood outcomes, or vice
versa. In discriminative settings, tuning the temperature has
shown success as a calibration method (Guo et al., 2017;
Nixon et al., 2019; Desai & Durrett, 2020). The model out-
puts a small set of class probabilities, which can be tractably
rescaled to match the desired calibration metric.
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In generative tasks, temperature scaling also serves as a
method for controlling the randomness of model outputs,
and has shown to be useful for many natural language gen-
eration tasks such as summarization and question answer-
ing (Liang et al., 2022). Many current models in deploy-
ment (Brown et al., 2020; Bommasani et al., 2021) even
expose the model temperature as a user-controllable param-
eter in their API. These autoregressive language models
execute temperature scaling one token at a time, rescal-
ing the probability of the next token to be proportional to
log p(xi|x<i)/T . However, this mechanism is myopic, op-
timizing for the next token instead of the full sequence.

We reexamine the current practice of temperature scaling for
generative models. Unlike discriminative tasks, generative
tasks produce high-dimensional outputs. In other words,
rescaling the model outputs should, in principle, rescale
joint probabilities according to log p(x)/T . Lowering the
temperature of a language model should ideally bias the
model towards generation of full text sequences with high
joint likelihood, not just greedy generation of the next likely
tokens. However, due to the intractability of joint tempera-
ture scaling, existing model families rely on various ad-hoc
approximations such as myopic temperature scaling. This
perspective highlights the following concerns.

A) Current temperature scaling for autoregressive models
is a myopic approximation to temperature scaling of
joint probabilities.

Many other model families do not support myopic approxi-
mations, and are left with the intractable problem of joint
temperature scaling. Some sidestep the problem by defining
various notions of pseudo-temperatures (Kingma & Dhari-
wal, 2018; Vahdat & Kautz, 2020).

B) Many non-autoregressive generative models either rely
on pseudo-temperatures or do not use temperature scal-
ing altogether.

To address these concerns, we aim head-on for the goal
of joint temperature scaling. Instead of handling various
model-specific temperature scaling techniques, we set out
to develop a practical and general mechanism for sampling
from temperature-scaled joint distributions. We propose

1

https://github.com/AndyShih12/LongHorizonTemperatureScaling
https://github.com/AndyShih12/LongHorizonTemperatureScaling


Long Horizon Temperature Scaling

Figure 1. Pitfalls of myopic temperature scaling. At the top of the diagram, we depict prompting a language model for a choice of three
actions. The language model may respond with each choice with a probability of 0.3 (shown in green), and a remaining probability of 0.1
of outputting irrelevant answers. To reduce the probability of irrelevant answers, we can lower the temperature of the model. In blue, we
show that myopic temperature scaling will unintuitively lump the probabilities for the two actions “tap cabinet” and “tap door”, because
they share the same first token “tap”. Therefore, lowering the myopic temperature will emphasize the probability on these two choices,
and diminish the probability of choosing “close door”. On the other other hand, in orange we show that long horizon temperature scaling
correctly scales the joint probability of the full sequence, equally distributing a probability of one-third among the three choices.

Long Horizon Temperature Scaling (LHTS), a novel and
tractable approach for sampling from a temperature-scaled
joint distribution that is A) non-myopic and B) compati-
ble with all likelihood-based generative models. LHTS re-
quires finetuning a likelihood-based model on a temperature-
dependent objective, after which the model can sample long
horizon temperature-scaled outputs without any additional
cost over standard sampling. By finetuning over a range
of temperatures, we can learn a single model capable of
generation with a controllable parameter, extrapolating even
to temperatures unseen during finetuning.

LHTS enables autoregressive models to optimize for high
likelihood outputs over a long horizon instead of a single
token (Figure 1). For other likelihood-based models (e.g.
VAEs, normalizing flows, diffusion models), LHTS presents
a unified model-agnostic temperature scaling mechanism.
We experiment with LHTS in three settings: a diffusion
image model, an autoregressive character model, and au-
toregressive large language models. Our experiments show
that LHTS can achieve a better tradeoff between likelihood
and diversity compared to pseudo-temperature scaling for
diffusion models, and compared to myopic temperature scal-
ing for autoregressive models. On a downstream analogy
multiple-choice task, LHTS improves the accuracy of GPT-2
by 10% over myopic temperature scaling.

2. Background
For generative tasks, we have access to a data distribution
pdata(x) in the form of a training set D of i.i.d. samples,
from which we aim to learn a faithful model p(x) of the
data distribution. In principle, having learned the ideal
model p(x) for our downstream task, we would be satisfied
with drawing conditional/unconditional samples from p(x).

However, in practice, biasing samples towards higher like-
lihood regions of the model distribution is often benefi-
cial. For example, we often choose to calibrate the entropy
of a suboptimal model (Holtzman et al., 2019), generate
less noisy behavior by taking the argmax action, or simply
sample from a sharper distribution. The most prominent
technique for biasing towards high likelihood regions is
temperature scaling with a scalar T .

log pT (x) = log p(x)/T − logZpT
(1)

where ZpT
is the partition function. For temperatures T < 1,

the scaled model pT (x) defines a sharper distribution, which
is useful for a variety of applications mentioned above.

2.1. Myopic temperature scaling

Autoregressive models, such as GPT (Radford et al., 2019;
Brown et al., 2020), implement a myopic approximation to
temperature scaling. Autoregressive models learn a set of
univariate conditional distributions log p(xi|x<i) and rely
on the factorization of the joint distribution via chain rule
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log p(x) =
∑

i log p(xi|x<i). When sampling with a tem-
perature T , they rescale each univariate conditional by T .

log pmyopic
T (xi|x<i) = log

elog p(xi|x<i)/T∑
k e

log p(xi=k|x<i)/T
(2)

This approach is efficient since it handles one dimension at a
time and only requires rescaling the output logits. However,
since the scaling is myopic, the chain rule factorization does
not preserve the scaled joint distribution in Eq 1.

log pT (x) ̸=
∑
i

log pmyopic
T (xi|x<i) (3)

It is easy to see that in the extreme case, myopic scaling of
an autoregressive model with T → 0 will not necessarily
produce the argmax sample of the joint distribution.

2.2. Pseudo-temperature scaling

Non-autoregressive models are often associated with various
ad-hoc notions of pseudo-temperature scaling. For example,
some latent variable models (Kingma & Dhariwal, 2018;
Vahdat & Kautz, 2020) rescale the variance of the prior
of the latent variable. However, these notions of pseudo-
temperature are often model-specific, and have an unclear
relationship to temperature scaling of the data likelihood.

3. Related Work
Temperature scaling is an effective method for calibration
in discriminative settings (Guo et al., 2017; Nixon et al.,
2019; Desai & Durrett, 2020), where the output predic-
tions of a model can be rescaled post-hoc. In generative
settings, such as natural language generation, myopic tem-
perature scaling serves as an important knob for controlling
the randomness of autoregressive models, often featuring as
a user-controllable parameter in deployment (Brown et al.,
2020; Bommasani et al., 2021). For latent variable models,
such as normalizing flows or VAEs, reducing the variance
of the prior during sampling has been explored as a pseudo-
temperature mechanism (Kingma & Dhariwal, 2018; Vah-
dat & Kautz, 2020). Due to the high-dimensional output
space of generative tasks, however, these above methods are
approximations that do not directly scale the temperature
of the joint distribution, and are typically model-specific.
Compared to these methods, LHTS presents a unified and
tractable mechanism for temperature scaling of the joint
distribution.

Other techniques for post-hoc manipulation of autoregres-
sive model generation include top-k (Fan et al., 2018) or
nucleus sampling (Holtzman et al., 2019). More intensive
search-based alternatives are also popular, such as beam
search (Li et al., 2016; Vijayakumar et al., 2018) for pick
out high-likelihood generations. In terms of computational

cost, LHTS only requires a one-time finetuning of the model,
after which long horizon temperature-scaled outputs can be
generated directly without search.

Biasing the model towards higher-likelihood samples can
also be viewed as controllable generation. Some rele-
vant works include Quark (Lu et al., 2022), which parti-
tions the dataset based on a control signal of interest (e.g.
toxicity), and reinforces the model with its own genera-
tions. Other works on controllable generation include class-
conditional generation, for example with diffusion models
for images (Nichol & Dhariwal, 2021).

Finally, LHTS relates closely to amortized inference (Gersh-
man & Goodman, 2014), since we learn a model to predict
intractable temperature-scaled joint distributions. As the
temperature approaches zero, LHTC approximates MAP
inference (Koller & Friedman, 2009).

4. Long Horizon Temperature Scaling
We propose long horizon temperature scaling (LHTS), a
general method to temperature scale the joint distribution of
likelihood based models. LHTS proceeds by directly learn-
ing a model qT to match the temperature scaled distribution
in Eq. 1. The model qT should have tractable likelihood
and sampling, but typically this is satisfied by choosing the
same model family as p, or even finetuning from p.

min
qT

KL(pT ||qT ) = min
qT

Ex∼pT
[log pT (x)− log qT (x)]

= min
qT

Ex∼pT
[− log qT (x)]

Although we don’t have sample access to pT , we can appeal
to importance sampling from p.

Ex∼pT
[− log qT (x)]

=Ex∼p
e(log p(x)/T )−logZpT

p(x)
[− log qT (x)]

=Ex∼pe
1−T
T log p(x)−logZpT [− log qT (x)] (4)

Optimizing qT with Eq. 4 will give us the desired tempera-
ture scaled distribution from Eq. 1, although the variance of
the loss can be high due to the importance weights.

We note that the intractable constant logZpT
can be ignored

since it evaluates as a constant multiplicative factor of the en-
tire expression. More importantly, though, the same insight
allows us to subtract an arbitrary data-independent baseline
b for variance reduction. Since the importance weights are
not in log-space, we need to carefully choose a baseline to
keep the weights within a manageable range. We opt for
keeping the weights close to 1 by matching the empirical
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mean of the exponent.

b =
1

|D|
∑
x∈D

1− T

T
log p(x) (5)

Put together, the loss for training qT can be understood
as a reweighing of data by a factor wT (x) based on the
temperature-scaled joint probabilities.

wT (x) = exp(
1− T

T
log p(x)− b) (6)

L(qT ) = −Ex∼p[wT (x) log qT (x)] (7)

Corollary 4.1. eb

ZpT
L(qT ) = KL(pT ||qT ) +H(pT ).

Proof. Evaluating eb

ZpT
L(qT ) gives Eq. 4, which is equal to

KL(pT ||qT ) +H(pT ).

The idea of LHTS is to train a model qT with tractable sam-
pling on the objective in Eq. 7, so that we can sample from
qT ≈ pT efficiently after training. In this sense, LHTS can
be considered an amortized inference method for accessing
otherwise intractable temperature-scaled joint distributions.
Compared to myopic temperature scaling, LHTS is not a
pure post-hoc transformation since it requires model learn-
ing. Nevertheless, we can avoid learning completely from
scratch, by finetuning qT from p (which can be thought of as
qT=1). In return for the cost of finetuning, LHTS improves
upon myopic temperature scaling in two ways. First, the
temperature operates on the joint (long horizon) distribution,
instead of greedily on one dimension at a time. Second,
LHTS can be readily applied to any likelihood-based gener-
ative model, beyond just autoregressive models.

In the rest of this section, we examine LHTS on hierarchical
latent variable models and autoregressive models.

4.1. LHTS on Hierarchical Latent Variable Models

Applying LHTS on hierarchical latent variable models is
straightforward, by using their variational lower bound esti-
mates of the data likelihood.

log p(x0) ≥ Eh

[
DKL(h(xK |x0)||p(xK))− log p(x0|x1)

+
∑
k>1

DKL(h(xk−1|xk, x0)||p(xk−1|xk))
]

(8)

We can then plug in this likelihood lower bound to LHTS
to compute the importance weights for each data point, and
finetune qT with Eq. 7, where the inner likelihood is again
evaluated with the lower-bound in Eq. 8.

Diffusion Models Although diffusion models can also be
formulated as a hierarchical latent variable model, they are

often trained using a simpler MSE loss on the noise (Ho
et al., 2020). Nevertheless, LHTS is still directly applicable
by scaling the loss for each point by the importance weight.

L(qT ) = (9)

Ek,x0,ϵ

[
wT (x0)||ϵ− ϵqT (

√
ᾱkx0 +

√
1− ᾱkϵ, k)||2

]
We can apply LHTS in exactly the same way for other
likelihood-based models by scaling the log-likelihood loss
of each datapoint by its importance weight. For autore-
gressive models, however, we can take advantage of the
autoregressive factorization to derive a variance-reduced
formulation of LHTS, which we describe next.

4.2. Variance-Reduced LHTS on Autoregressive Models

To apply LHTS to autoregressive models, we first rewrite
the LHTS objective from Eq. 7 into a form that is amenable
to autoregressive architectures by first sampling the index i
uniformly, then the prefix x<i, and then the suffix x≥i.

− Ex∼p[wT (x) log qT (x)]

=− Ex∼p[
∑
i

wT (x) log qT (xi|x<i)]

=− Ei,x<i∼pEx≥i∼p(·|x<i)[wT (x) log qT (xi|x<i)]

The purpose of this roundabout rewriting of the expectation
is to illustrate that the autoregressive objective is composed
of many univariate conditional losses, for each index i and
prefix x<i. This derivation allows us to design the baseline
more carefully, since we can choose a different baseline for
each univariate conditional loss while still trivially preserv-
ing the strict properness of the overall loss function.

Proposition 4.2. Let LAR(qT ) =

−Ei,x<i∼pe
−b(x<i)Ex≥i∼p(·|x<i)[wT (x) log qT (xi|x<i)]

If b(x<i) is finite for all x<i, then LAR
qT is a strictly proper

loss function, i.e. the unique global optimum is qT = pT .

Proof. Each inner expectation takes on an importance-
weighted log loss of the univariate conditional, correspond-
ing to optimizing KL(pT (·|x<i)||qT (·|x<i)). Since an
autoregressive model fits all the univariate conditionals
separately, these are independent optimization problems
each with strictly proper losses. Any positive combination
(b(x<i) is finite) preserves strict properness of the loss.

In particular, we can set b(x<i) =
1−T
T log p(x<i)+b(i)−b

to be the temperature scaled joint distribution of the prefix,
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giving us a variance-reduced importance weight.

− Ei,x<i∼pe
−b(x<i)Ex≥i∼p(·|x<i)[wT (x) log qT (xi|x<i)]

=− Ei,x<i∼pe
1−T
T log p(x<i)−b(x<i)

Ex≥i∼p(·|x<i)[e
1−T
T log p(x≥i|x<i)−b log qT (xi|x<i)]

=− Ei,x∼p[e
1−T
T log p(x≥i|x<i)−b(i) log qT (xi|x<i)] (10)

Compared to Eq. 7, in Eq. 10 we modified the expression
in the exponent of the importance weight from log p(x) to
log p(x≥i|x<i). This makes sense intuitively: once we have
fixed a prefix x<i of the sequence, we only need to learn
how likely a suffix should be relative to other suffixes, so we
can ignore the probability of the prefix p(x<i). Moreover,
appealing to Proposition 4.2, we transformed the term b to
an index-dependent term b(i). In a similar spirit to Eq. 5,
we will set b(i) to keep the weights close to 1 by matching
the empirical mean of the suffix log-likelihoods.

b(i) =
1

|D|
∑
x∈D

1− T

T
log p(x≥i|x<i) (11)

Computing Suffix Likelihoods One important consider-
ation is the efficient implementation of variance-reduced
LHTS on modern causal architectures of autoregressive
models. Conveniently, we can vectorize the computation of
suffix log-likelihoods vi(x) = log p(x≥i|x<i) via a reverse
cumulative sum on the vector of univariate conditionals
ui = log p(xi|x<i).

Suffix Horizon Length Even with the above baseline, the
variance of joint likelihoods can still grow quickly when
the sequence length is long, e.g. 1024. A practical ap-
proach to reducing the variance even more is by limiting
the horizon to some length h. This means replacing all
the suffix log-likelihoods log p(x≥i|x<i) with a horizon-
bounded suffix log-likelihood log p(xi:k|x<i) where k =
min(i+ h, context length).

5. Implementation
In this section, we describe a list of practical considerations
for implementing LHTS, and include concrete pseudocode
for our implementation.

Clipping Even with a baseline to keep the exponents
small, the importance weights still involve exponentiation.
Therefore, the weights can become unstable when the log
probabilities are much higher than the baseline or when the
long horizon temperature is small. Therefore, we clip the
log of the importance weights, introducing bias but reducing
variance to help stabilize training.

Data Sampling The LHTS objective is written as an ex-
pectation over samples from p. We can indeed sample from
p in the training loop, although this empirically slowed down
training by around a factor of 3 for autoregressive language
models. In practice, we can assume that p is close to the data
distribution pdata, and evaluate the LHTS objective using the
training set D. The weights of samples from D are then
computed using p, which is faster than sampling from p.

Multi-Temperature Finetuning In some of the experi-
ments, we finetune a single weight-tied model on a set of
discrete temperatures T1 . . . Tk. Due to the differences in
importance weights, more extreme temperatures incurred
higher loss and hindered the training of other temperatures.
Hence, we normalize the loss of each temperature to help
with balanced training across the different temperatures.

KL Loss Following design choices of Quark (Lu et al.,
2022), we include a KL loss to avoid diverging from the
base model p too much. However, empirically we did not
observe differences from the inclusion of this auxiliary loss.

Streaming Statistics As written in Eq. 5 and Eq. 11, we
choose the baseline to be the empirical mean of the data
(suffix) log-likelihood. In practice, since the dataset could be
very large (e.g. OpenWebText), we instead use the running
mean of the data statistics as the baseline.

5.1. Pseudocode

Putting all the implementation details together, we present
the pseudocode for LHTS finetuning in Alg. 1. We only
present the variance-reduced LHTS for autoregressive mod-
els, since LHTS for diffusion models takes on a simpler
form. The horizon likelihood is computed in lines 4&5,
where RevCumSum computes reverse cumulative sum, and
pad(sh:,0:h) appends a vector of h zeros to the end of
sh:. Importantly, the weight in line 8 is tailored to each
index of the context window, using the formulation derived
from Section 4.2. On line 10, StopGradient prevents
the loss normalization calculations from affecting the gra-
dient computation. The algorithm outputs parameters for a
weight-tied model for sampling from multiple long horizon
temperatures. In practice, designing the temperature embed-
dings to be linearly constrained (Section 6.2) even allows
extrapolation to temperatures unseen during training.

6. Experiments
We examine LHTS on three types of models: a diffusion-
based image model (DDPM), an autoregressive character
model, and an autoregressive language model (GPT-2 (Rad-
ford et al., 2019)). For diffusion models, we compare against
a pseudo-temperature baseline that reduces the variance of
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Algorithm 1: LHTS Finetuning
Input: Training data D, model pϕ, temperatures

{T1, . . . , Tk}, clip c, suffix horizon h
Output: Parameters θ for LHTS weight-tied

models qT1
. . . qTk

1 b,m, n, θ ← 0,0, 0, ϕ
2 while training do

/* Sample training data and temperature Tj */
3 x ∼ D j ∼ U(1, k)

/* Compute suffix log likelihood */
4 s← RevCumSum(log pϕ(xi|x<i))

/* Limit suffix horizon */
5 s← s− pad(sh:,0:h)

/* Update streaming statistics */
6 n← n+ 1 b← b+ s

/* Compute LHTS importance weights */

7 w← exp(min( 1−Tj

Tj
(s− b

n ), c))

/* Compute index-weighted log loss */
8 L ← −

∑
i wi log qTj ,θ(xi|x<i)

/* Compute KL Loss */
9 K ←

∑
i DKL(pϕ(·|x<i)||qTj ,θ(·|x<i))

/* Normalize loss for each temperature */
10 mj ←mj + StopGradient(L+ βK)

/* Update model parameters */
11 θ ← θ −∇θ(mj/n)

−1(L+ βK)
Return: θ

the diffusion noise. For autoregressive models, we com-
pare against myopic temperature scaling. We aim to show
that LHTS can generate samples with higher likelihood and
more diversity, compared to the baseline temperature scal-
ing methods. Finally, we test the practical benefits of the
LHTS language model on a multiple choice task.

6.1. Diffusion Image Model

First, we apply LHTS on diffusion image models. Training
diffusion models from scratch can be compute intensive, so
we instead take a pretrained DDPM (Ho et al., 2020) and
finetune with the LHTS objective. We compute the ELBO of
each image in the CIFAR-10 (Krizhevsky et al., 2009) train-
ing set with respect to the pretrained DDPM in joint space
(i.e., without dividing by the number of dimensions) and
compute the LHTS importance weight of each image. Then,
we finetune for 50000 steps using the DDPM objective in
Eq. 9 scaled by the computed importance weights.

Since there is no natural temperature scaling baseline for
diffusion models, we compare against a pseudo-temperature
scaling of the diffusion model by reducing the noise vari-
ance. At each step of the reverse diffusion process, we
sample a noise vector from a Gaussian N (0, t), where the
pseudo-temperature t is controls the standard deviation of

Figure 2. Temperature scaling on diffusion models for CIFAR-10.
The black dots form the Pareto frontier of pseudo-temperature
scaling on DDPM (with pseudo-temperatures 0.99, 0.985, and
0.98), and the orange shows long horizon temperature scaling via
finetuning (with long horizon temperatures 0.999, 0.995, 0.99).
The x-axis plots log likelihood and y-axis plots negative FID score
using 50k samples. Towards the top right of the chart is better.

Figure 3. Generated image samples from temperature scaled
DDPM. Left: pseudo-temperature scaling, with worse FID score
3.94 and lower sample likelihood −3.09. Right: LHTS, with
better FID score 3.66 and higher sample likelihood −3.07.

the noise. By using a smaller noise variance, we hope to
push the Langevin sampling process to converge to images
with higher likelihood, though at the cost of distorting the
marginal distribution at each timestep.

To compare LHTS and pseudo-temperature, we plot the log-
likelihood of samples and the FID score of the temperature-
scaled models. Ideally, a temperature-scaled model should
output samples that evaluate as more likely under the pre-
trained model distribution, without sacrificing too much
diversity. In Figure 2, we see that the LHTS model is able to
beat the Pareto frontier of pseudo-temperature scaled mod-
els, where diversity is measured with the negative FID score.
We plot uncurated samples in Figure 3. Even though both
pseudo-temperature scaling and LHTS can push the model
into sampling images with higher likelihood (with respect
to the the pretrained model), LHTS is able to do so while
sacrificing less of generation quality and diversity.

6.2. Autoregressive Character Model

Next, we experiment with a transformer-based autoregres-
sive character model on the Text8 dataset (Mahoney, 2011).
Though character modeling is an easier task than language
modeling, it provides useful insights on the differences be-
tween LHTS and myopic temperature scaling. In particular,
it allows us to experiment with training a weight-tied model
for a continuous range of long horizon temperatures.
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Figure 4. Autoregressive character model with a tunable long hori-
zon temperature parameter. The heatmap shows log-likelihood of
samples over various settings of long horizon and myopic temper-
ature. Tuning both temperatures (orange) allows us to increase the
likelihood more than just tuning the myopic temperature (blue).
More importantly, we achieve a better trade-off between likelihood
and diversity. The orange setting gives a higher likelihood with
noticeably diverse chunks of text, whereas the blue setting gives
lower likelihood yet gives many repetitive generations.

Continuous Temperature LHTS Our goal is to train a
model that can be deployed with a “knob” for controlling
the long horizon temperature, similar to how existing au-
toregressive models in deployment (e.g. GPT) give users
control over the myopic temperature.

We first train a base 12-layer Transformer model from
scratch, and store this model p to use for computing LHTS
importance weights. Then, we finetune a copy qT of this
model with the LHTS objective on a continuous range of
long horizon temperatures. To do so, we place the long
horizon temperature (a scalar) as a special token at the be-
ginning of the transformer’s context window. We then learn
a linear embedding r to map this prefix temperature token
into the transformer’s embedding space. Finally, we place
the training data into the remaining context positions, and
train with the LHTS objective. In other words, the prefix to-
ken of the long horizon temperature informs the transformer
how “sharp” the predicted distribution should be.

Since choosing small temperatures can lead to large impor-
tance weights, we only vary the training temperature from
0.9 to 1.1. Nevertheless, at deployment time we can still
feed temperatures beyond the training range into the learned
linear embedding r, and push the model to extrapolate to
unseen long horizon temperatures. Surprisingly, we find
that the model extrapolates smoothly (Figure 4), with the
sample likelihood steadily improving when feeding in long
horizon temperatures much less than 0.9 (leftward on the
x-axis) into the prefix temperature token.

With a knob for the long horizon temperature, we can tweak

both the long horizon and the myopic temperature in unison.
For example, in Figure 4 we consider two settings of tuning
the long horizon temperature to 0.1 and myopic temperature
to 0.3 (orange), versus tuning just the myopic temperature to
0.1 (blue). The orange setting gives an average sample like-
lihood of −0.97 w.r.t. p, which is better than −1.05 w.r.t. p
for the blue setting. On top of that, the orange setting gener-
ates much more diverse character chunks1, whereas the blue
setting repeatedly outputs the same few character chunks.
This aligns with the intuition that LHTS can “look ahead”
to find many diverse sequences of high likelihood, whereas
myopic temperature scaling can only greedily choose the
next token, leading to low diversity.

6.3. Autoregressive Language Model

Lastly, we demonstrate the scalability of LHTS on vari-
ous sizes of the GPT-2 (small, medium, large) language
model. As before, we take a pretrained model to compute
LHTS importance weights, and finetune a copy of it using
the LHTS objective. We use the standard GPT-2 architec-
ture and context window of 1024, with pretrained weights
from HuggingFace (Wolf et al., 2020), and finetune on the
OpenWebText (Gokaslan & Cohen, 2019) corpus.

We compare with two baselines: myopic temperature scal-
ing, and a partition-based controllable generation approach
(Quark) (Lu et al., 2022). Quark was introduced as a con-
ditional generation approach for controlling the level of
toxicity of the language model, but can be similarly applied
for controlling sample likelihood of the model.

When comparing different approaches for temperature scal-
ing, we consider both the likelihood and the quality of the
generated samples. We can measure the likelihood of the
generated samples by directly evaluating them on the pre-
trained model. For sample quality, and we rely on quantita-
tive evaluation using diversity metrics (Welleck et al., 2019;
Liang et al., 2022) and a multiple-choice task (Mikolov
et al., 2013), where temperature scaling is commonly used
to reduce the randomness of the model’s answers.

In Figure 5a, we plot the sample diversity (measured by
token-level repetition) and the log-likelihood over 1k se-
quences of context 1024 for each temperature scale. In each
of the three charts (for GPT2 small/medium/large), we see
the Pareto frontier of circles formed by the myopic temper-
ature scaling baseline with temperature ranging from 0.75
to 0.8. Using LHTS, plotted by triangles, we can achieve a
better trade-off between diversity and likelihood, especially
for GPT2-medium and GPT2-large. The parition (Quark)
baseline is not visible since the repetition values are worse
and do not reside within the bounds of the chart.

1The model is trained on randomly cropped chunks of character,
hence the samples appear to be cropped.
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(a) Plot of the Pareto frontier between repetitiveness of text and log-likelihood of text for GPT-2
models: small (pink), medium (red), large (maroon). Circles show myopic temperatures of 0.8,
0.775, 0.75. Triangles show LHTS temperature of 0.95. Towards the top right of the charts is better.

(b) Visualizing the best settings
from Table 1. Circle: myopic,
Cross: Quark, Triangle: LHTS

Figure 5. Likelihood and sample quality metrics for temperature-scaled GPT-2.

Table 1. Accuracy of temperature-scaled GPT-2 on a multiple choice analogy task. Turning the myopic temperature down decreases the
chance of irrelevant answers. At the lowest myopic temperature, LHTS generally improves upon the accuracy of the pretrained model.

model gpt2 small gpt2 medium gpt2 large
myopic T 1.0 0.5 0.0 1.0 0.5 0.0 1.0 0.5 0.0

distinct
LHTS T = 0.95 0.172 0.238 0.255 0.185 0.242 0.252 0.179 0.225 0.232

pretrained 0.143 0.231 0.254 0.156 0.220 0.233 0.142 0.218 0.228
partition (Quark) 0.111 0.201 0.233 0.155 0.219 0.232 0.158 0.229 0.250

duplicate
LHTS T = 0.95 0.177 0.224 0.230 0.225 0.270 0.275 0.249 0.310 0.317

pretrained 0.189 0.267 0.275 0.200 0.262 0.264 0.203 0.279 0.290
partition (Quark) 0.137 0.221 0.233 0.197 0.264 0.270 0.213 0.279 0.285

Analogy Multiple Choice We evaluate the generation
quality of LHTS on a downstream multiple-choice task
that tests the model’s ability to choose correct analogies.
We create a set of 1400 questions from a bank of analo-
gies (Mikolov et al., 2013) with relationships such as
country:capital, present-tense:past-tense, male:female. We
prompt GPT-2 using the following format, including three
similar examples in-context:
Question: Please choose the word pair that is most analogous to “Algeria dinar”.

Choices: “Macedonia dollar”, “Vietnam baht”, “Bulgaria lev”, “Armenia naira”

Answer:

To measure correctness, we check the next 8 generated to-
kens for a unique match with the correct choice, ignoring
double matches. We also create a variant of questions where
three of the choices share the first word, inspired by the
example in Figure 1. The three duplicates are chosen inde-
pendently from (and can include) the correct choice.
Question: Please choose the word pair that is most analogous to “Athens Greece”.

Choices: “Moscow Japan”, “Rome Italy”, “Moscow Pakistan”, “Moscow Australia”

Answer:

In Table 1 we present the accuracy of GPT-2 on this analogy
multiple-choice task. The row distinct refers to the first set
of questions, and the row duplicate refers to the second set
of questions with common first words. For each question we
sample the model 50 times. The accuracy improves across

the board as we scale down the myopic temperature from
1.0 to 0.0, since all models reduce the chance of outputting
irrelevant answers. At the best myopic temperature of 0.0,
LHTS gives the highest accuracy in 4/6 settings, with 10%
improvement to give 31% accuracy on the most competitive
setting with the duplicate question set and GPT2 large. We
also see that using Quark to condition on joint likelihood
is less effective on average, possibly because partitioning
full sequences based on joint likelihood is more crude than
a suffix-dependent rescaling (Section 4.2), and reinforcing
based on likelihood was noticeably unstable during training.

7. Conclusion
We present Long Horizon Temperature Scaling, a novel
and tractable approach to sampling from temperature-scaled
joint distributions. Compared to previous methods, LHTS is
non-myopic and compatible with all likelihood-based gener-
ative models. To reduce the variance of the LHTS objective,
we introduce important techniques such as fitting baselines
and limiting suffix horizon lengths. In some settings, LHTS
even shows smooth extrapolation to unseen temperatures,
enabling low-variance training on mild temperatures and
sampling on extreme temperatures. We demonstrate the ap-
plicability of LHTS on diffusion and autoregressive models
in image and language domains. LHTS shows improve-
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ments over pseudo and myopic temperature scaling in the
trade-off between likelihood and sample diversity, and in
the accuracy of a multiple-choice analogy task.

Limitations and Future Work Temperature scaling the
joint distribution is inherently intractable (scaling the tem-
perature to 0 gives the argmax of the joint distribution),
and LHTS only aims to learn an approximation to the so-
lution. In addition, LHTS involves finetuning the model,
as opposed to pure post-hoc alternatives such as myopic
or pseudo temperature scaling. Future work can look into
exploring multi-temperature finetuning further, or other di-
vergences besides forward-KL for the LHTS objective.
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A. Experimental Settings
Diffusion Model

• Architecture: DDPM

• Learning Rate: 2e-4

• Batch Size: 128

• EMA decay: 0.9999

• Grad Clip: 1

• Steps: 50000

• Warmup Steps: 5000

• LHTS Clip: 0.5

Character Model

• Architecture: 12-layer Transformer, embedding 768, hidden size 3072, num heads 12, num layers 12

• Learning Rate: 5e-4

• Batch Size: 512

• Weight Decay: 0.001

• Grad Clip: 0.25

• Epochs: 200

• LHTS Clip: 3

• LHTS Suffix Horizon: 25

Language Model

• Architecture: GPT-2 (small, medium, large), context 1024

• Learning Rate: 1e-4

• Batch Size: 512

• Weight Decay: 0.01

• Grad Clip: 0.25

• Steps: 1000

• LHTS KL beta: 0.05

• LHTS Clip: 3

• LHTS Suffix Horizon: 8
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B. Example Sample from GPT-2 Large with LHTS
It is always great when you get a chance to get the inside scoop as to why a franchise is so popular, and today I have
learned that one of the reasons is the players they play them against. When I joined the St Louis Cardinals, one of my first
observations of Albert Pujols was that he was a little tough to hit. Now, having played him a ton of baseball, there’s no
doubt in my mind that he’s just as tough, if not tougher, than anybody else on the field. Pujols, like most power hitters before
him, is known best for running his bat out all over the field. The one thing he has in his favor, though, is that when he does
come back to the field, he always finds his way to hitting lefties.

C. Additional Experiments
We evaluate the diffusion models and language models on additional metrics such as SSIM, MAUVE score, and HELM
benchmarks.

C.1. Diffusion Model

We use the same DDPM diffusion model from Figure 2, finetuned with LHTS, and report the Structural Similarity Index
(SSIM). Unlike FID, SSIM does not consider diversity, but rather closeness to a ground-truth image. Therefore, we see that
the SSIM scores in Table 2 align roughly with the log-likelihood scores of Figure 2.

Table 2. SSIM of diffusion model with pseudo-temperature scaling and long horizon temperature scaling on CIFAR-10.

PseudoTemp LHTS
Temperature 0.98 0.985 0.99 0.99 0.995 0.999

SSIM 0.915 0.913 0.913 0.913 0.913 0.911

C.2. Language Model

We examine the same GPT-2 language model from Figure 5a and Table 1, using the gpt2-large size. We compare the use
of standard myopic temperature scaling versus LHTS finetuning on MAUVE score (Pillutla et al., 2021) and a number of
metrics from HELM (Liang et al., 2022).

MAUVE score We evaluate MAUVE score on OpenWebText (Gokaslan & Cohen, 2019) using the setup in the MAUVE
paper (Pillutla et al., 2021), with 1000 generations and a prompt length of 30 tokens. We find that LHTS does not improve
MAUVE score, and that both forms of temperature scaling (myopic and LHTS) in general decrease MAUVE score.

Table 3. MAUVE score of GPT-2 (gpt2-large) with myopic temperature scaling and long horizon temperature scaling on OpenWebText.

No Scaling Myopic Only LHTS
Myopic Temperature 1.0 0.8 0.0 1.0 0.0

Long Horizon Temperature 1.0 1.0 1.0 0.9 0.9

MAUVE 0.76 0.57 0.00 0.41 0.00
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HELM We evaluate on some metrics from the HELM benchmark such as XSUM (Narayan et al., 2018), BoolQ (Clark
et al., 2019), and NaturalQA open book (Kwiatkowski et al., 2019), which respectively test for summarization, classification,
and reading comprehension with multiple choice.

Table 4. Evaluation of GPT-2 (gpt2-large) on various metrics from HELM.

Myopic Only LHTS
Myopic Temperature 0.8 0.0 1.0 0.0

Long Horizon Temperature 1.0 1.0 0.9 0.9

xsum test rouge2 0.016 0.019 0.013 0.02
xsum test perp (lower) 6.72 2.305 5.137 1.725

boolq exact match 0.383 0.583 0.417 0.603
boolq exact match fairness 0.167 0.483 0.173 0.507

boolq exact match robustness 0.087 0.35 0.113 0.43
boolq ece 10 bin (lower) 0.112 0.164 0.124 0.174

naturalqa open f1 score 0.157 0.257 0.146 0.248
naturalqa open f1 score fairness 0.058 0.153 0.041 0.164

naturalqa open f1 score robustness 0.026 0.074 0.031 0.055
naturalqa open ece 10 bin (lower) 0.109 0.134 0.086 0.14

In Table 4, we can see that LHTS shows some improvements in perplexity and accuracy, and less so for calibration and
F1-score. LHTS can also help with fairness or robustness perturbations on both accuracy and F1-score. However, we note
that these scores are generally low due to the relatively small size of GPT-2, so evaluations on larger models are needed for
more conclusive results.
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