
Parallel Sampling of 
Diffusion Models

with Suneel, Stefano, Dorsa, Nima



adding 
noise



adding 
noise

like an SDE!



[Song 2021]

f and g are
design choices



[Song 2021]

[Anderson 1982]

can reverse
in general,
still an SDE



DDPM
[Ho 2020]

Sample
Method

SDE
(euler 

maruyama)

Speed Slow
1000 steps

Quality Best



[Song 2021]

[Maoutsa 2020]

can also write
as ODE!

if we only care 
about marginals
(the white lines)



DDPM
[Ho 2020]

DDIM
[Song 2021]

DPMSolver
[Lu 2022]

Sample
Method

SDE
(euler 

maruyama)

ODE
(euler)

ODE
(heun)

Speed Slow
1000 steps

Slow
1000 steps

Slow
1000 steps

Quality Best



riemann : trapezoidal :: euler : heun 



higher-order integration rule 
(heun’s method)

wikipedia



DDPM
[Ho 2020]

DDIM
[Song 2021]

DPMSolver
[Lu 2022]

Sample
Method

SDE
(euler 

maruyama)

ODE
(euler)

ODE
(heun)

Speed Slow
1000 steps

Slow
1000 steps

Slow
1000 steps

Quality Best



trade quality 
for speed

trade quality 
for speed

DDPM
[Ho 2020]

DDIM
[Song 2021]

DPMSolver
[Lu 2022]

Sample
Method

SDE
(euler 

maruyama)

ODE
(euler)

ODE
(heun)

Speed Slow
1000 steps

Fast
50 steps

Fast
50 steps

Quality Best Good Good



DDPM
[Ho 2020]

DDIM
[Song 2021]

DPMSolver
[Lu 2022]

ParaDiGMS
[our method!]

Sample
Method

SDE
(euler 

maruyama)

ODE
(euler)

ODE
(heun)

ODE
(picard+

euler/heun)

Speed Slow
1000 steps

Fast
50 steps

Fast
50 steps

Fast
1000 steps

Quality Best Good Good Best

trade compute 
for speed

trade quality 
for speed

trade quality 
for speed





Preview of results
No drop in 

sample quality!!



we want to solve this (white lines) fast!



solve this ODE (only pointwise gradient information)



solve this ODE (only pointwise gradient information)
discretize, take one small step at a time



Picard–Lindelöf

Solve (analytically) an ODE by iterating until convergence



Picard + Euler

Solve discretized ODE by iterating until convergence



solve this ODE (only pointwise gradient information)



solve this ODE (only pointwise gradient information)
discretize, make a guess everywhere, iterate



solve this ODE (only pointwise gradient information)
discretize, make a guess everywhere, iterate…until convergence



Practical Issues

• Isn’t that (number of iterations) * (number of steps)? 
Seems even slower!
• Parallel computation! (GPUs, multi-GPUs)

•Out of memory? (1000x memory)
• batching!

• Approximate method?
• Yes, but in practice no quality degradation (w.r.t. standard metrics)!



Practical Issues

• Isn’t that (number of iterations) * (number of steps)? 
Seems even slower!
• Parallel computation! (GPUs, multi-GPUs)

•Out of memory? (1000x memory)
• batching!

• Approximate method?
• Yes, but in practice no quality degradation (w.r.t. standard metrics)!



Practical Issues

• Isn’t that (number of iterations) * (number of steps)? 
Seems even slower!
• Parallel computation! (GPUs, multi-GPUs)

•Out of memory? (1000x memory)
• batching!

• Approximate method?
• Yes, but in practice no quality degradation (w.r.t. standard metrics)!



Batching

• Best explained with a GIF



Batching

• Window size
• Can make small to fit on GPU
• Even if no memory issues, still a good idea to batch!

• Initial guesses at tail end of ODE is poor anyways, don’t bother with them



Batching

• Tolerance (when to slide forward)
• too low = not much speedup, too high = risk of degradation
• 0.1 * noise gives 2-4x speedup with no measurable degradation



Batching

• Tolerance (when to slide forward)
• too low = not much speedup, too high = risk of degradation
• 0.1 * noise gives 2-4x speedup with no measurable degradation

If

Then

So chance of faithful sample is this is worst-case,
too conservative in practice



DDPM = ParaDDPM Picard + SDE 

ParaDiGMS + DDIM = ParaDDIM Picard + Euler

DPMSolver = ParaDPMSolver Picard + Heun



DDPM = ParaDDPM Picard + SDE 

ParaDiGMS + DDIM = ParaDDIM Picard + Euler

DPMSolver = ParaDPMSolver Picard + Heun



DDPM = ParaDDPM Picard + ODE 

ParaDiGMS + DDIM = ParaDDIM Picard + Euler

DPMSolver = ParaDPMSolver Picard + Heun

just pre-sample 
variance to remove 

stochasticity









DDPM
[Ho 2020]

DDIM
[Song 2021]

DPMSolver
[Lu 2022]

ParaDiGMS
[our method!]

Sample
Method

SDE
(euler 

maruyama)

ODE
(euler)

ODE
(heun)

ODE
(picard+

euler/heun)

Speed Slow
1000 steps

Fast
50 steps

Fast
50 steps

Fast
1000 steps

Quality Best Good Good Best

trade compute 
for speed

trade quality 
for speed

trade quality 
for speed



Experiments

square push t kitchen stable 
diffusion v2

LSUN
church



Square



Square

No drop in 
sample quality!

Faster! 🏎 🏎



Push T

No drop in 
sample quality!

Faster! 🏎 🏎



Stable Diffusion v2

• 768 x 768 images
• Diffusion in latent space 4 x 96 x 96 

ß cost of 
iterating

ß efficiency
of GPUs

ß wallclock
speedup



Stable Diffusion v2

• 768 x 768 images
• Diffusion in latent space 4 x 96 x 96 

ß wallclock
speedup



LSUN Church/Bedroom

• 256 x 256 images
• Diffusion in pixel space 3 x 256 x 256



LSUN Church/Bedroom

• 256 x 256 images
• Diffusion in pixel space 3 x 256 x 256



DDPM
[Ho 2020]

DDIM
[Song 2021]

DPMSolver
[Lu 2022]

ParaDiGMS
[our method!]

Sample
Method

SDE
(euler 

maruyama)

ODE
(euler)

ODE
(heun)

ODE
(picard+

euler/heun)

Speed Slow
1000 steps

Fast
50 steps

Fast
50 steps

Fast
1000 steps

Quality Best Good Good Best

trade compute 
for speed

trade quality 
for speed

trade quality 
for speed



ParaDiGMS
Parallel Diffusion Generative Model Sampler
 instead of trading quality for speed
 we enable trading compute for speed 

Can be combined with other sampling methods for 2-4x speedup
 (ParaDDPM, ParaDDIM, ParaDPMSolver)
 
 single GPU for diffusion-policy!
 multi GPU for image diffusion models



ParaDiGMS
Parallel Diffusion Generative Model Sampler
 instead of trading quality for speed
 we enable trading compute for speed 

Can be combined with other sampling methods for 2-4x speedup
 (ParaDDPM, ParaDDIM, ParaDPMSolver)
 
 single GPU for diffusion-policy!
 multi GPU for image diffusion models


