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Stochastic Gradient Descent

“Stochastic gradient descent (SGD) is today one of
the main workhorses for solving large-scale

supervised learning and optimization problems.”
—Drori and Shamir [2019]
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Consensus Says. . .

. . . and also Agarwal et al. [2017], Assran and
Rabbat [2020], Assran et al. [2018], Bernstein et al.

[2018], Damaskinos et al. [2019], Geffner and
Domke [2019], Gower et al. [2019], Grosse and
Salakhudinov [2015], Hofmann et al. [2015],
Kawaguchi and Lu [2020], Li et al. [2019],

Patterson and Gibson [2017], Pillaud-Vivien et al.
[2018], Xu et al. [2017], Zhang et al. [2016]
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Challenges in Optimization for ML

Stochastic gradient methods are the most popular algorithms
for fitting ML models,

SGD: wk+1 = wk − ηk∇fi (wk).

But practitioners face major challenges with

• Speed: step-size/averaging controls convergence rate.

• Stability: hyper-parameters must be tuned carefully.

• Generalization: optimizers encode statistical tradeoffs.
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Better Optimization via Better Models

Idea: exploit “over-parameterization” for better optimization.

• Intuitively, gradient noise goes to 0 if all data are fit exactly.

• No need for decreasing step-sizes or averaging.
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Assumptions for Optimization

Goal: Minimize f : Rd → R, where

• f is lower-bounded: ∃w∗ ∈ Rd such that

f(w∗) ≤ f(w) ∀w ∈ Rd,

• f is L-smooth: w 7→ ∇f(w) is L-Lipschitz,

∥∇f(w)−∇f(u)∥2 ≤ L∥w − u∥2 ∀w, u ∈ Rd,

• (Sometimes) f is µ-strongly-convex: ∃µ > 0 such that,

f(u) ≥ f(w) + ⟨∇f(w), u− w⟩+ µ

2
∥u− w∥22 ∀w, u ∈ Rd.
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Interpolation and Growth Conditions
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Stochastic First-Order Oracles

Stochastic Oracles:

1. At each iteration k, query oracle O for stochastic estimates

f(wk, zk) and ∇f(wk, zk).

2. f(wk, ·) is a deterministic function of random variable zk.

3. O is unbiased, meaning

Ezk [f(wk, zk)] = f(wk) and Ezk [∇f(wk, zk)] = ∇f(wk).

4. O is individually-smooth, meaning f(·, zk) is Lmax-smooth,

∥∇f(w, zk)−∇f(u, zk)∥2 ≤ Lmax∥w − u∥2 ∀w, u ∈ Rd,

almost surely.
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Interpolation as a Property of Oracles

Interpolation is a local property of the oracle

Definition (Interpolation: Minimizers)

w′ ∈ argmin f =⇒ w′ ∈ argmin f(·, zk)
w∗

f (w)

f (w, z)

Definition (Interpolation: Stationary Points)

∇f(w′) = 0 =⇒ ∇f(w′, zk)
a.s.
= 0.

w∗

w′

w′

Definition (Interpolation: Mixed)

w′ ∈ argmin f =⇒ ∇f(w′, zk)
a.s.
= 0.

w∗
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Growth Conditions: Strong and Weak Growth

Growth conditions control global behavior of oracles.

Strong Growth+Noise : E
[
∥∇f(w, zk)∥2

]
≤ ρ ∥∇f(w)∥2 + σ2.

• Does not imply interpolation.

Strong Growth : E
[
∥∇f(w, zk)∥2

]
≤ ρ ∥∇f(w)∥2.

• Implies stationary-point interpolation.

• Originally proposed by Solodov [1998], Tseng [1998].

Weak Growth : E
[
∥∇f(w, zk)∥2

]
≤ α (f(w)− f(w∗)).

• Implies mixed interpolation.
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Growth Conditions: Interpolation + Smoothness

Smoothness relates local and global behavior.

Lemma (Interpolation and Weak Growth)

If minimizer interpolation holds, then weak growth
also holds with

α ≤ Lmax

L
.

Lemma (Interpolation and Strong Growth)

Assume f is µ strongly-convex. If minimizer
interpolation holds, then strong growth also holds with

ρ ≤ Lmax

µ
.
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Stochastic Gradient Descent
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Fixed Step-size SGD

Fixed Step-Size SGD

0. Choose an initial point w0 ∈ Rd.

1. For each iteration k ≥ 0:
1.1 Query O for ∇f(wk, zk).

1.2 Update input as

wk+1 = wk − η∇f(wk, zk).
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Fixed Step-size SGD

Prior work for SGD under growth conditions or interpolation:

• Convergence under strong growth [Cevher and Vu, 2019,
Schmidt and Le Roux, 2013, Solodov, 1998, Tseng, 1998].

• Convergence under weak growth [Vaswani et al., 2019a].

• Convergence under interpolation [Bassily et al., 2018].

We provide many improved results:

• Bigger step-sizes and faster rates for convex and
strongly-convex objectives.

• Almost-sure convergence under weak/strong growth.

• Trade-offs between growth conditions and interpolation.
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Convergence for Fixed Step-size SGD

Theorem (Convex + Interpolation)

Assume f is convex and minimizer interpolation holds. Then
SGD with η = 1

Lmax
converges as

E [f(w̄K)]− f(w∗) ≤ Lmax

2K
∥w0 − w∗∥2.

Comments:

• Improves over worst-case rate with weak growth.

• If Lmax = L, then guarantee is tight with deterministic GD!

• Otherwise, stochasticity worsens conditioning of problem.
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Weakness of Fixed Step-size SGD

Problem: these rates rely on using the optimal
step-size, which depends on Lmax, α, or ρ.

Is grid-search really the best way to pick η?
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SGD: the Armijo Line-search

The Armijo line-search is a classic solution to step-size selection.

f(wk − ηk∇f(wk)︸ ︷︷ ︸
wk+1

) ≤ f(wk)− c · ηk∥∇f(wk)∥2.

wk
fvk(η)

ℓvk(η)
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SGD with Armijo Line-search: Procedure

SGD with Armijo Line-Search

0. Choose an initial point w0 ∈ Rd.

1. For each iteration k:
1.1 Query O for f(wk, zk), ∇f(wk, zk).

1.2 Set wk+1 ← wk − ηk∇f(wk, zk).

1.3 Backtrack (decrease ηk) until

f(wk+1, zk) ≤ f(wk, zk)−c·ηk∥∇f(wk, zk)∥2.

Note: Evaluates Armijo condition on f(·, zk) instead of f and
needs direct access to f(·, zk) to backtrack.
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SGD with Armijo Line-search: Visualization

wk

wk+1

fvk(η)

fvk(η, z)

No Interpolation

w∗

wk

wk+1

ℓvk(η)

Interpolation
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SGD with Armijo Line-search: Key Lemma

Lemma (Step-size Bound)

Assume minimizer interpolation holds.

Then the maximal step-size satisfying the stochastic
Armijo condition satisfies the following:

2(1− c)

Lmax
≤ ηmax ≤

f(wk, zk)− f(w∗, zk)

c∥∇f(wk, zk)∥2
.

Comments:

• Mirrors classic result in deterministic optimization.

• Easy to relax to a backtracking line-search.
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SGD with Armijo Line-Search: Lemma Geometry

2(1− c)

Lmax
≤ ηmax ≤

f(wk, zk)− f(w∗, zk)

c∥∇f(wk, zk)∥2
.

wk
fvk(η)

ℓvk(η)
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SGD with Armijo Line-search: Convergence

Theorem (Convex + Interpolation)

Assume minimizer interpolation holds and f(·, z) is convex. Then
SGD with the Armijo line-search and c = 1/2 converges as

E [f(w̄K)]− f(w∗) ≤ Lmax

2K
∥w0 − w∗∥2.

Comments:

• Improves constants in original result [Vaswani et al., 2019b]
— line-search is just as fast as the best constant step-size!

• Using the Armijo line-search is (nearly) parameter-free and
recovers the deterministic rate when Lmax = L.

• Strongly-convex f : we improve rate from µ̄ to µ.
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Painless SGD: Stochastic Armijo in Practice

Classification accuracy for ResNet-34 models trained on
MNIST, CIFAR-10, and CIFAR-100.
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Painless SGD: Added Cost of Backtracking

Backtracking is low-cost and averages once per-iteration.
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Painless SGD: Sensitivity to Assumptions

SGD with line-search is robust, but can still fail catastrophically.
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Acceleration
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Stochastic Acceleration

SGD can be accelerated when minimizer interpolation holds:

• Liu and Belkin [2020] modify Nesterov’s method and analyze
convergence for strongly-convex functions.

▶ Requires an additional parameter for the fast rate.

• Vaswani et al. [2019a] analyze Nesterov’s method under
strong growth.

▶ Shrinks the step-size and proves a slower rate.

We follow Vaswani et al. [2019a] and close the convergence gap.
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Stochastic Acceleration: Main Result

Strong growth implies a modified descent lemma,

Ezk [f(wk+1)]− f(wk) ≤ η

(
1− ρLη

2

)
∥∇f(wk)∥22.

Analysis proceeds via estimating sequences [Nesterov et al., 2018]!

Theorem (Acceleration)

Assume f is strongly convex and strong growth holds. Then
stochastic acceleration with step-size η = 1/ρL converges as

E [f(wK)]− f(w∗) ≤
(
1−

√
µ

ρL

)K (
f(w0)− f(w∗) +

µ

2
δ0

)
.

• Improves dependence from ρ to
√
ρ

▶ Recall:
√
ρ =
√
κmax =

√
Lmax/µ in the worst case.

29⁄38



Stochastic Acceleration: Main Result

Strong growth implies a modified descent lemma,

Ezk [f(wk+1)]− f(wk) ≤ η

(
1− ρLη

2

)
∥∇f(wk)∥22.

Analysis proceeds via estimating sequences [Nesterov et al., 2018]!

Theorem (Acceleration)

Assume f is strongly convex and strong growth holds. Then
stochastic acceleration with step-size η = 1/ρL converges as

E [f(wK)]− f(w∗) ≤
(
1−

√
µ

ρL

)K (
f(w0)− f(w∗) +

µ

2
δ0

)
.

• Improves dependence from ρ to
√
ρ

▶ Recall:
√
ρ =
√
κmax =

√
Lmax/µ in the worst case.

29⁄38



Stochastic Acceleration: Main Result

Strong growth implies a modified descent lemma,

Ezk [f(wk+1)]− f(wk) ≤ η

(
1− ρLη

2

)
∥∇f(wk)∥22.

Analysis proceeds via estimating sequences [Nesterov et al., 2018]!

Theorem (Acceleration)

Assume f is strongly convex and strong growth holds. Then
stochastic acceleration with step-size η = 1/ρL converges as

E [f(wK)]− f(w∗) ≤
(
1−

√
µ

ρL

)K (
f(w0)− f(w∗) +

µ

2
δ0

)
.

• Improves dependence from ρ to
√
ρ

▶ Recall:
√
ρ =
√
κmax =

√
Lmax/µ in the worst case.

29⁄38



Stochastic Acceleration: Main Result

Strong growth implies a modified descent lemma,

Ezk [f(wk+1)]− f(wk) ≤ η

(
1− ρLη

2

)
∥∇f(wk)∥22.

Analysis proceeds via estimating sequences [Nesterov et al., 2018]!

Theorem (Acceleration)

Assume f is strongly convex and strong growth holds. Then
stochastic acceleration with step-size η = 1/ρL converges as

E [f(wK)]− f(w∗) ≤
(
1−

√
µ

ρL

)K (
f(w0)− f(w∗) +

µ

2
δ0

)
.

• Improves dependence from ρ to
√
ρ

▶ Recall:
√
ρ =
√
κmax =

√
Lmax/µ in the worst case.

29⁄38



Stochastic Acceleration: Main Result

Strong growth implies a modified descent lemma,

Ezk [f(wk+1)]− f(wk) ≤ η

(
1− ρLη

2

)
∥∇f(wk)∥22.

Analysis proceeds via estimating sequences [Nesterov et al., 2018]!

Theorem (Acceleration)

Assume f is strongly convex and strong growth holds. Then
stochastic acceleration with step-size η = 1/ρL converges as

E [f(wK)]− f(w∗) ≤
(
1−

√
µ

ρL

)K (
f(w0)− f(w∗) +

µ

2
δ0

)
.

• Improves dependence from ρ to
√
ρ

▶ Recall:
√
ρ =
√
κmax =

√
Lmax/µ in the worst case.

29⁄38



Recap

Takeaways

• Interpolation: the oracle model extends interpolation to
general stochastic optimization problems.

• Growth Conditions: “smooth” oracles satisfying
interpolation are well-behaved globally.

• SGD: improved rates show SGD under interpolation is tight
with the deterministic setting.

• Line-Search: the Armijo line-search yields fast,
parameter-free optimization under interpolation.

• Acceleration: stochastic acceleration is possible with a
penalty of only

√
ρ.
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Thanks for Listening!
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