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Motivating Example: Humanoid Robot Control

Consider learning a control model for a robotic arm that plays
table tennis.
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Why Policy Gradients?

Policy gradients have several advantages:

e Policy gradients permit explicit policies with complex
parameterizations.

e Such policies are easily defined for continuous state and action
spaces.

e Policy gradient approaches are guaranteed to converge under
standard assumptions while greedy methods (SARSA,
Q-learning, etc) are not.
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Background and Notation



Markov Decision Processes (MDPs)

A discrete-time MDP is specified by the tuple {S, A, do, f, r}:

e States are s € S; actions are a € A.

e f is the transition distribution. It satisfies the Markov
property:

f(Stvat, St+1) = P(5t+1’507 aO-‘-sfvat) = P(5t+1|5tvat)

e dy(so) is the initial distribution over states.

e r(st,ar,Se+1) is the reward function, which may be
deterministic or stochastic.

e Trajectories are sequences of state-action pairs:

To.t = {(s0,a0), ..., (St,a¢)}

We treat states s as fully observable.



Continuous State and Action Spaces

We will consider MDPs with continuous state and action spaces.
In the robot control example:

e s € S is a real vector describing the configuration of the

robotic arm's movement system and the state of environment.
e a € A real vector representing a motor command to the arm.

e Given action a in state s, the probability of being in a region
of state space S’ C S is:

P(s' € §'|s, a) :/ p(s'|s,a)ds’
S/

Future states s’ are only known probabilistically because our
control and physical models are approximations.



Policies

Policies defines how an agent acts in the MDP:

e A policy m: S x A— [0,00) is the conditional density
function:

m(als) := probability of taking action a in state s

e The policy is deterministic when 7(a|s) is a Dirac-delta
function.

e Actions are chosen by sampling from the policy a ~ w(als).

e The quality of a policy is given by an objective function J(7).



Bellman Equations

We consider discounted returns with factor v € [0, 1]. The Bellman

equations describe the quality of a policy recursively:

Q" (s, a) :—/Sf(s’]s,a) (r(s,a,s/) —I—/Aﬂ(a’]s’)ny”(s’,a')da’) ds’

V7 (s) ::/Aw(a]s)Q”(s,a)da
:/w(a|s)/f(s’|s,a) (r(s,a,s') +yV7(s')) ds'da
A S
:/7r(a|s)/f(s’|s,a)r(s,a,s’)ds'da
A S
+/A7r(a\s)/$f(s’|s7a)ny’T(s’)ds’da



Actor-Critic Methods

Three major flavors of reinforcement learning:

1. Critic-only methods: Learn an approximation of the
state-action reward function: R(s,a) ~ Q7(s,a).

2. Actor-only methods: Learn the policy 7 directly from observed
rewards. A parametric policy my can be optimized by
descending the policy gradient:

9J(mp) Omg
Oomg 00

Vod(mg) =

3. Actor-Critic methods: Learn an approximation of the reward
R(s,a) jointly with the policy m(als).



Value of a Policy

We can use the Bellman equations to write the overall quality of
the policy:

Define the "discounted state” distribution

dj(s) = Z’y p(sx =5§)
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Value of Policy: Discounted Return

The final expression for the overall quality of the policy is the
discounted return:

J(m) = /S d7(3) /,4 (afs) /S F(s'5, a)r(s, a,§')ds'dads

Assuming that the policy is parameterized by 6, how can we
compute the policy gradient VyJ(7y)?
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The Policy Gradient Theorem




Policy Gradient Theorem: Statement

Theorem 1 - Policy Gradient: [5] The gradient of the discounted

return is:
V() = / 47 (s) / Voms(axl8) Q" (s, a)dads
S A

Proof: The relationship between the discounted return and the
state value function gives us our starting place:

Vo(r9) = (1—7)Ve /S do(50) V™ (50)dso

=(1-7) /s do(so) Ve V™ (so)dso
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Policy Gradient Theorem: Proof

Consider the gradient of the state value function:
VoV (s) = Vo /A 70(als) Q" (s, a)da
= [ Vomlai9)@”(s.3) + mo(als) V0" (5.2)da
= AVgﬂg(a|s)Q”(s,a) + ma(als) Ve /s f(s’|s,a)(r(s,a,s’) +
'yV”(s’)) ds'da

:/ V97r9(a|s)Q’T(s,a)+7r9(a|s)/ yf(s's,a)Vy V7™ (s')ds da
A S

This is recursive expression for the gradient that we can unroll!
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Policy Gradient Theorem: Proof Continued

Unrolling the expression from sg gives:
VG Vﬂ—(So) :/ VQ’/Tg(ao‘So)QW(SQ,aQ)C/aO
A

+/ We(ao\so)/Vf(51|50,ao)VeV (s1)dsidag

/Z'y p(sk = §|so) /V(,m (als)Q™(s,a)dads

So the policy gradient is given by:

VoJ(mo) :/Sdo(so)/SZWkP(Sk =§|So)/AV97T9(a§)Qﬂ(§aa)dad§
k=0

(1-7)

:/d”(§)/ Voro(a5)Q"(5,a)dads O
S A
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Policy Gradient Theorem: Introducing Critics

e However, we generally don't know the state-action reward
function Q™ (s, a).

e The Actor-Critic framework suggests learning an
approximation R, (s,a) with parameters w.

e Given a fixed policy 7y, we want to minimize the expected
least-squares error:

w:argminWLd”(§)[4we(a|§);[Q“(§,a)— R, (8,a)]* dads

e Can we show that the policy gradient theorem holds for
reward function learned this way?

ii5)



Policy Gradient Theorem: The Way Forward

Let's rewrite the policy gradient theorem to use our approximate
reward function:

Vo J(rg) = /S ™ (5) /,4 Vo (a[s) [Ru (5, a)] dads
- / J" () / Vomo(als) [Ru(5,3) — Q7 (5,a) + Q" (5, a)] dads
S A
:/d”(§)/ Vgﬂg(a]§)Q”(§,a)dad§—
S A
/ () / Vomo(als) [Q7(5, a) — Ru(s, )] dads
S A

Intuition: We can impose technical conditions on R, (§,a) to
insure the second term is zero.
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Policy Gradient Theorem: Restrictions on the Critic

The sufficient conditions on R,, are:

e R, is compatible with the parameterization of the policy my in
the sense:

1

VwRuw(s,a) = Vg logmp(als) = (@)

Vomg(als)
e w has converged to a local minimum:
\ / / (as HQW(S a) — Ry(5,a)]> dads = 0
/d“(§)/ 70(als)Vw Ry (5,a) [Q7(5,a) — Rw(5,a)] dads = 0
S A
/d’r(§)/ Vomo(als) [Q7(5, a) — Ru(3, a)] dads = 0
S A
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Policy Gradient Theorem: Function Approximation Version

Theorem 2 - Policy Gradient with Function Approximation:
[5] If Rw(s,a) satisfies the conditions on the previous slide, the
policy gradient using the learned reward function is:

Vo(rg) = /S d(s) /A Voms(a[s)Ru (8, a)dads.
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Policy Gradient Theorem: Recap

e We've shown that the gradient of the policy quality w.r.t the
policy parameters has a simple form.

e We've derived sufficient conditions for an actor-critic
algorithm to use the policy gradient theorem.

e We've obtained a necessary functional form for R, (s,a), since
the compatibility condition requires

Rw(sa a) = Vylog 779(3|S)TW
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Policy Gradient Theorem: Actually Computing the Gradient

e We can estimate the policy gradient in practice using the
score function estimator (aka REINFORCE):

Vod(mg) = / /V@W@ Rw (5, a)dads
:/d”(§)/ 0(al8) Vi log o (al5) Ru (5, a)dads
S A
:/dﬂ(g)/ 7r9(a\§)V9 |Og7T9(a‘§)Vg Iogmg(a\s)Tw dads
S A

e We can approximate the necessary integrals using multiple
trajectories T¢.; computed under the current policy 7g.
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An Algorithmic Template for Actor-Critic

1. Choose initial parameters wg, 6g.
2. For i =0...:
2.1 Update the Critic:

1
e p—— / d(s) / 7o(als); [Q7(5,2) — Ru(5, a) dads
S A
2.2 Take a policy gradient step:

011 =0, +Oét/

d"(s) / mo(als)Vy logmp(als)Ry (5,a)dads
s A

This algorithm is guaranteed to converge when gradients and
rewards are bounded and the «; are chosen appropriately.
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Natural Policy Gradients




Background on Natural Gradients: Motivation

e Consider optimizing a function with respect to parameters 6:
0* = argmin,f(6)
e "Standard” gradient descent:
O:r1 =60 — a:Vyf(0)

. 1
= argming{f(0:) + (Vyf(0:),0 — 0;) + Z”O — 6./}

o lIssues:
e the gradient is dependent on the parameterization/coordinate
system (i.e. the choice of 6);
e it implicitly assumes that the Eucledian distance reflects the
true geometry of the problem.
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Background on Natural Gradients: Definition

e What can we do when 8 "lives” on a manifold (e.g. the unit
sphere)?

e An alternative is Amari's " Natural” gradient descent [1]:
011 = 0111 — :G(0)1V,f(0),

where G(0) is the Riemannian metric tensor for the manifold
of 6.

e In Eucledian space: G(0) = I.
e When the step size « is arbitrarily small:
e the natural gradient is invariant to smooth, invertible
reparameterizations;
e the natural gradient performs "steepest descent in the space of
realizable [functions]” [3].
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Background on Natural Gradients: Example

Consider an objective function defined in polar (r - radius, ¢ -
angle) and Eucledian coordinates:

J(r,p) = % [(fC05<,0 = 1)2 + r2sin2<p]
J(x,y)

-2

’ -1 —05 0 05 1 L5 2 2.5 3
(a) Standard (b) Natural =
(a) Gradient Field (b) Training Paths

Figures and example taken from [2]. 24



Background on Natural Gradients: Fisher Information

e Consider the case where f is a probability distribution
parameterized by 0: (f(0) = p(x|@)). Then the correct metric
tensor is the Fisher Information (FI) matrix:

F(0) = / p(x10)Vs log p(x|0) Vs log p(x|6) " dx

e Interpretation: Fl is the expected (centered) second moment
of the score function Vg log p(x|@) and measures the
information about parameters @ in the random variable x.

e A useful identity for the FI:

/pa(X)Ve log py(x) Vg log py(x) " dx = —/pe(X)V3 log pg(x)dx
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Fl and the Policy Gradient Theorem

Let's return to policy gradients:
VoJ(mp) /d / (al5)Vy log my(als) Vg log my(als) 'w dads
= / d"(s)F(0)w ds
S

The policy gradient clearly contains the Fl of the policy
conditioned for state s. Define the "average” Fl:

F(0) = /5 d"(5)F(8) ds

If F(6) is the Fl of an "appropriate” distribution, the natural
gradient is:

?(9)_1VQJ(TF9) =w
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Natural Policy Gradients: Trajectories

e The probability of a trajectory 7¢.; obtained when acting
under the policy mg(als) is:

t

p"(To:t) = do(so) | [ F(sivalsi,ai)mo(ailsi)
i=0

e Average reward: it is straightforwad to show that F(6) is the
Fl of lim¢—oo p™(T0:t)-
e Discounted reward: Peters et al. [4] define a " discounted

trajectory” distribution:

P;r(TOt) TO t (Z ’7 * ]]‘51731>
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Natural Policy Gradients: Discounted Trajectory Distribution

Interpretations:

e Probably Incorrect: A single scaling factor on the
distribution:

P;r(To:t) = p"(To:t) Z’Y

e Closer: A set of equivalent probability distributions with
different un-normalized density functions:

t

pzyr(TO:t) = PW(TO:t) Z 'Yiﬂs,-,a,'(TO:t)

i=0

Peters et al. [4] prove that F(f) is the Fl of the discounted
trajectory distribution. Lets look carefully at their argument.
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Natural Policy Gradients: Statement

Theorem 3 - Natural Policy Gradient: [4] The average Fl
information

F0) = / J"(5)F(0) d
S
is the FI of the discounted trajectory distribution pZ(7o:t).

Proof:

Recall the defintion of the trace distribution:

t
p"(To:t) = do(so) [ [ F(sitalsi,ai)ma(ailsi)
i=0
The Hessian of the log probability is

V5 log pJ (T0:t) ZV9|Og7r9 (ailsi)
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Natural Policy Gradients: Starting the Derivation

Approach: transform the expression for the Fl of p;r(To:t) to

match that for F(0):

F(O) = lim / P (70:¢) Vg log P (70:1) Vo (7o) droue

t—00

—— Jim [ 5(70:) V3 10g b5 (rox)dros

t—00

t
= — lim /p’;(ro;t)ng log 7(ai|si)dTo:t

t—o0 =
i=0

t—00

t
~ _ im / S b7 (7o) V3 log w(aylsi) dTo-
i=0
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Natural Policy Gradients: Following Peters et al.

They appear to evaluate the indicator functions and then normalize
the sum of density functions:

F(6) = - Jim (1 Zv (ro+)V3 log n(als:)dros

t—o0

= — |im / Z’y To, Ve |Og’/T( ,'|S,')d7'0;,‘

t—o0

_ L o I T (e, — = s 2 = e
= m@[g(l 7);’yp (si _S)Awe(a,s)vg log 7(a;[3)da;ds
:—/yidﬂ(szg)/ 7r9(a|§)V§ Iogw(a|s)dad§
S A
B / 7d"(s = 5)/ m0(a[8) Ve log (als) Vg log m(als) " dads
S A

Is this still defined w.r.t the correct distribution?
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Natural Policy Gradients: Getting Stuck

Normalizing the sum of density functions reweights the terms in the
sum. Consider the same expression with pre-normalized densities:

— lim /Z " (To:t Ve log 7w(aj|s;)dTo.t

t—o0
=— lim / Z zip (To;,’)Ve |0g 71'(3,“5,‘)(17’0;,‘
= — tlrgo /8 Z pﬂ—(S,' = §) /-/4 m)(a,-|§)V§ log 7r(a,-|§)dad§
= — |lim / Zp”(s,- = 5)/ 7T9(3,‘|§)V9 |Og 7r(a,-|§)V9 |Og 77(a,-\§)Tdad§
5 A
Crux of the Issue: the discounted trajectory distribution

pzyr(TO:t)-
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An Algorithmic Template for Natural Actor-Critic

1. Choose initial parameters wg, 6g.
2. For i =0...:
2.1 Update the Critic:

1
e argminw/ d”(s) / 7r9(a\§)§ [Q™(5,a) — R, (§,a)]’ dads
5 JA
2.2 Take a policy gradient step:
0111 =0+ Wiy

Convergence results for natural actor-critic algorithms depend on
how the critic is updated. Convergence with probability 1 is
guaranteed for some schemes.
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