Standard and Natural Policy Gradients for Discounted Rewards

Aaron Mishkin

August 8, 2020

UBC MLRG 2018W1

Motivating Example: Humanoid Robot Control

Consider learning a control model for a robotic arm that plays table tennis.

https://static.independent.co.uk/s3fs-public/thumbnails/image/2014/03/11/15/ping-pongv2.jpg?w968

Why Policy Gradients?

Policy gradients have several advantages:

- Policy gradients permit explicit policies with complex parameterizations.
- Such policies are easily defined for continuous state and action spaces.
- Policy gradient approaches are guaranteed to converge under standard assumptions while greedy methods (SARSA, Q-learning, etc) are not.

Roadmap

Background and Notation

The Policy Gradient Theorem

Natural Policy Gradients

Background and Notation

Markov Decision Processes (MDPs)

A discrete-time MDP is specified by the tuple $\{S, A, d_0, f, r\}$:

- States are $\mathbf{s} \in \mathcal{S}$; actions are $\mathbf{a} \in \mathcal{A}$.
- *f* is the transition distribution. It satisfies the Markov property:

$$f(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) = p(\mathbf{s}_{t+1}|\mathbf{s}_0, \mathbf{a}_0...\mathbf{s}_t, \mathbf{a}_t) = p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$$

- $d_0(\mathbf{s}_0)$ is the initial distribution over states.
- $r(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})$ is the reward function, which may be deterministic or stochastic.
- Trajectories are sequences of state-action pairs: $\tau_{0:t} = \{(\mathbf{s}_0, \mathbf{a}_0), ..., (\mathbf{s}_t, \mathbf{a}_t)\}$

We treat states \mathbf{s} as fully observable.

Continuous State and Action Spaces

We will consider MDPs with continuous state and action spaces. In the robot control example:

- $s \in S$ is a real vector describing the configuration of the robotic arm's movement system and the state of environment.
- ullet ullet ullet ullet real vector representing a motor command to the arm.
- Given action **a** in state **s**, the probability of being in a *region* of state space $S' \subseteq S$ is:

$$P(\mathbf{s}' \in \mathcal{S}' | \mathbf{s}, \mathbf{a}) = \int_{\mathcal{S}'} p(\mathbf{s}' | \mathbf{s}, \mathbf{a}) d\mathbf{s}'$$

Future states \mathbf{s}' are only known probabilistically because our control and physical models are approximations.

Policies

Policies defines how an agent acts in the MDP:

• A policy $\pi: \mathcal{S} \times \mathcal{A} \to [0, \infty)$ is the conditional density function:

 $\pi(\mathbf{a}|\mathbf{s}) := \text{probability of taking action } \mathbf{a} \text{ in state } \mathbf{s}$

- The policy is deterministic when $\pi(\mathbf{a}|\mathbf{s})$ is a Dirac-delta function.
- Actions are chosen by sampling from the policy $\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})$.
- The quality of a policy is given by an objective function $J(\pi)$.

7

Bellman Equations

We consider discounted returns with factor $\gamma \in [0,1]$. The Bellman equations describe the quality of a policy recursively:

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) := \int_{\mathcal{S}} f(\mathbf{s}'|\mathbf{s}, \mathbf{a}) \left(r(\mathbf{s}, \mathbf{a}, \mathbf{s}') + \int_{\mathcal{A}} \pi(\mathbf{a}'|\mathbf{s}') \gamma Q^{\pi}(\mathbf{s}', \mathbf{a}') d\mathbf{a}' \right) d\mathbf{s}'$$

$$\begin{split} V^{\pi}(\mathbf{s}) &:= \int_{\mathcal{A}} \pi(\mathbf{a}|\mathbf{s}) Q^{\pi}(\mathbf{s}, \mathbf{a}) d\mathbf{a} \\ &= \int_{\mathcal{A}} \pi(\mathbf{a}|\mathbf{s}) \int_{\mathcal{S}} f(\mathbf{s}'|\mathbf{s}, \mathbf{a}) \left(r(\mathbf{s}, \mathbf{a}, \mathbf{s}') + \gamma V^{\pi}(\mathbf{s}') \right) d\mathbf{s}' d\mathbf{a} \\ &= \int_{\mathcal{A}} \pi(\mathbf{a}|\mathbf{s}) \int_{\mathcal{S}} f(\mathbf{s}'|\mathbf{s}, \mathbf{a}) r(\mathbf{s}, \mathbf{a}, \mathbf{s}') d\mathbf{s}' d\mathbf{a} \\ &+ \int_{\mathcal{A}} \pi(\mathbf{a}|\mathbf{s}) \int_{\mathcal{S}} f(\mathbf{s}'|\mathbf{s}, \mathbf{a}) \gamma V^{\pi}(\mathbf{s}') d\mathbf{s}' d\mathbf{a} \end{split}$$

Actor-Critic Methods

Three major flavors of reinforcement learning:

- 1. Critic-only methods: Learn an approximation of the state-action reward function: $R(\mathbf{s}, \mathbf{a}) \approx Q^{\pi}(\mathbf{s}, \mathbf{a})$.
- 2. Actor-only methods: Learn the policy π directly from observed rewards. A parametric policy π_{θ} can be optimized by descending the *policy gradient*:

$$\nabla_{\theta} J(\pi_{\theta}) = \frac{\partial J(\pi_{\theta})}{\partial \pi_{\theta}} \frac{\partial \pi_{\theta}}{\partial \theta}$$

3. Actor-Critic methods: Learn an approximation of the reward $R(\mathbf{s}, \mathbf{a})$ jointly with the policy $\pi(\mathbf{a}|\mathbf{s})$.

9

Value of a Policy

We can use the Bellman equations to write the overall quality of the policy:

$$\begin{split} &\frac{J(\pi)}{(1-\gamma)} = \int_{\mathcal{S}} d_0(\mathbf{s}_0) V^{\pi}(\mathbf{s}_0) d\mathbf{s}_0 \\ &= \sum_{k=0}^{\infty} \int_{\mathcal{S}} p(\mathbf{s}_k = \bar{\mathbf{s}}) \int_{\mathcal{A}} \pi(\mathbf{a}_k | \bar{\mathbf{s}}) \int_{\mathcal{S}} f(\mathbf{s}_{k+1} | \bar{\mathbf{s}} \mathbf{a}_k) \gamma^k r(\bar{\mathbf{s}}, \mathbf{a}_k, \mathbf{s}_{k+1}) d\mathbf{s}_{t+1} d\mathbf{a} d\bar{\mathbf{s}} \\ &= \int_{\mathcal{S}} \sum_{k=0}^{\infty} \gamma^k p(\mathbf{s}_k = \bar{\mathbf{s}}) \int_{\mathcal{A}} \pi(\mathbf{a}_k | \bar{\mathbf{s}}) \int_{\mathcal{S}} f(\mathbf{s}_{k+1} | \bar{\mathbf{s}} \mathbf{a}_k) r(\bar{\mathbf{s}}, \mathbf{a}_k, \mathbf{s}_{k+1}) d\mathbf{s}_{t+1} d\mathbf{a} d\bar{\mathbf{s}} \end{split}$$

Define the "discounted state" distribution:

$$d_{\gamma}^{\pi}(\mathbf{\bar{s}}) = (1-\gamma)\sum_{k=0}^{\infty} \gamma^{k} p(\mathbf{s}_{k} = \mathbf{\bar{s}})$$

Value of Policy: Discounted Return

The final expression for the overall quality of the policy is the *discounted return*:

$$J(\pi) = \int_{\mathcal{S}} d_{\gamma}^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi(\mathbf{a}|\bar{\mathbf{s}}) \int_{\mathcal{S}} f(\mathbf{s}'|\bar{\mathbf{s}}, \mathbf{a}) r(\bar{\mathbf{s}}, \mathbf{a}, \mathbf{s}') d\mathbf{s}' d\mathbf{a} d\bar{\mathbf{s}}$$

Assuming that the policy is parameterized by θ , how can we compute the policy gradient $\nabla_{\theta} J(\pi_{\theta})$?

The Policy Gradient Theorem

Policy Gradient Theorem: Statement

Theorem 1 - Policy Gradient: [5] The gradient of the discounted return is:

$$abla_{ heta} J(\pi_{ heta}) = \int_{\mathcal{S}} d_{\gamma}^{\pi}(\mathbf{ar{s}}) \int_{\mathcal{A}}
abla_{ heta} \pi_{ heta}(\mathbf{a}_{k}|\mathbf{ar{s}}) Q^{\pi}(\mathbf{s},\mathbf{a}) d\mathbf{a} d\mathbf{ar{s}}$$

Proof: The relationship between the discounted return and the state value function gives us our starting place:

$$egin{aligned}
abla_{ heta} J(\pi_{ heta}) &= (1 - \gamma)
abla_{ heta} \int_{\mathcal{S}} d_0(\mathbf{s}_0) V^{\pi}(\mathbf{s}_0) d\mathbf{s}_0 \\ &= (1 - \gamma) \int_{\mathcal{S}} d_0(\mathbf{s}_0)
abla_{ heta} V^{\pi}(\mathbf{s}_0) d\mathbf{s}_0 \end{aligned}$$

Policy Gradient Theorem: Proof

Consider the gradient of the state value function:

$$\begin{split} \nabla_{\theta} V^{\pi}(\mathbf{s}) &= \nabla_{\theta} \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\mathbf{s}) Q^{\pi}(\mathbf{s}, \mathbf{a}) d\mathbf{a} \\ &= \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\mathbf{s}) Q^{\pi}(\mathbf{s}, \mathbf{a}) + \pi_{\theta}(\mathbf{a}|\mathbf{s}) \nabla_{\theta} Q^{\pi}(\mathbf{s}, \mathbf{a}) d\mathbf{a} \\ &= \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\mathbf{s}) Q^{\pi}(\mathbf{s}, \mathbf{a}) + \pi_{\theta}(\mathbf{a}|\mathbf{s}) \nabla_{\theta} \int_{\mathcal{S}} f(\mathbf{s}'|\mathbf{s}, \mathbf{a}) \left(r(\mathbf{s}, \mathbf{a}, \mathbf{s}') + \gamma V^{\pi}(\mathbf{s}') \right) d\mathbf{s}' d\mathbf{a} \\ &= \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\mathbf{s}) Q^{\pi}(\mathbf{s}, \mathbf{a}) + \pi_{\theta}(\mathbf{a}|\mathbf{s}) \int_{\mathcal{S}} \gamma f(\mathbf{s}'|\mathbf{s}, \mathbf{a}) \nabla_{\theta} V^{\pi}(\mathbf{s}') d\mathbf{s}' d\mathbf{a} \end{split}$$

This is recursive expression for the gradient that we can unroll!

Policy Gradient Theorem: Proof Continued

Unrolling the expression from s_0 gives:

$$\begin{split} \nabla_{\theta} V^{\pi}(\mathbf{s}_{0}) &= \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}_{0}|\mathbf{s}_{0}) Q^{\pi}(\mathbf{s}_{0}, \mathbf{a}_{0}) d\mathbf{a}_{0} \\ &+ \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}_{0}|\mathbf{s}_{0}) \int_{\mathcal{S}} \gamma f(\mathbf{s}_{1}|\mathbf{s}_{0}, \mathbf{a}_{0}) \nabla_{\theta} V^{\pi}(\mathbf{s}_{1}) d\mathbf{s}_{1} d\mathbf{a}_{0} \\ &= \int_{\mathcal{S}} \sum_{k=0}^{\infty} \gamma^{k} p(\mathbf{s}_{k} = \overline{\mathbf{s}}|\mathbf{s}_{0}) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\overline{\mathbf{s}}) Q^{\pi}(\overline{\mathbf{s}}, \mathbf{a}) d\mathbf{a} d\overline{\mathbf{s}} \end{split}$$

So the policy gradient is given by:

$$egin{aligned} rac{
abla_{ heta}J(\pi_{ heta})}{(1-\gamma)} &= \int_{\mathcal{S}} d_0(s_0) \int_{\mathcal{S}} \sum_{k=0}^{\infty} \gamma^k p(\mathbf{s}_k = ar{\mathbf{s}}|\mathbf{s}_0) \int_{\mathcal{A}}
abla_{ heta} \pi_{ heta}(\mathbf{a}|ar{\mathbf{s}}) Q^{\pi}(ar{\mathbf{s}},\mathbf{a}) d\mathbf{a} dar{\mathbf{s}} \ &= \int_{\mathcal{S}} d^{\pi}(ar{\mathbf{s}}) \int_{\mathcal{A}}
abla_{ heta} \pi_{ heta}(\mathbf{a}|ar{\mathbf{s}}) Q^{\pi}(ar{\mathbf{s}},\mathbf{a}) d\mathbf{a} dar{\mathbf{s}} \end{aligned}$$

Policy Gradient Theorem: Introducing Critics

- However, we generally don't know the state-action reward function $Q^{\pi}(\mathbf{s}, \mathbf{a})$.
- The Actor-Critic framework suggests learning an approximation $R_w(\mathbf{s}, \mathbf{a})$ with parameters w.
- Given a fixed policy π_{θ} , we want to minimize the expected least-squares error:

$$\mathbf{w} = \operatorname{argmin}_{w} \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \frac{1}{2} \left[Q^{\pi}(\bar{\mathbf{s}}, \mathbf{a}) - R_{w}(\bar{\mathbf{s}}, \mathbf{a}) \right]^{2} d\mathbf{a} d\bar{\mathbf{s}}$$

 Can we show that the policy gradient theorem holds for reward function learned this way?

Policy Gradient Theorem: The Way Forward

Let's rewrite the policy gradient theorem to use our approximate reward function:

$$\begin{split} \nabla_{\theta} J(\pi_{\theta}) &= \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \left[R_{w}(\bar{\mathbf{s}},\mathbf{a}) \right] d\mathbf{a} d\bar{\mathbf{s}} \\ &= \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \left[R_{w}(\bar{\mathbf{s}},\mathbf{a}) - Q^{\pi}(\bar{\mathbf{s}},\mathbf{a}) + Q^{\pi}(\bar{\mathbf{s}},\mathbf{a}) \right] d\mathbf{a} d\bar{\mathbf{s}} \\ &= \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) Q^{\pi}(\bar{\mathbf{s}},\mathbf{a}) d\mathbf{a} d\bar{\mathbf{s}} - \\ &\int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \left[Q^{\pi}(\bar{\mathbf{s}},\mathbf{a}) - R_{w}(\bar{\mathbf{s}},\mathbf{a}) \right] d\mathbf{a} d\bar{\mathbf{s}} \end{split}$$

Intuition: We can impose technical conditions on $R_w(\bar{\mathbf{s}}, \mathbf{a})$ to insure the second term is zero.

Policy Gradient Theorem: Restrictions on the Critic

The sufficient conditions on R_w are:

• R_w is compatible with the parameterization of the policy π_θ in the sense:

$$abla_{w}R_{w}(\mathbf{s}, \mathbf{a}) =
abla_{ heta}\log \pi_{ heta}(\mathbf{a}|\mathbf{s}) = rac{1}{\pi_{ heta}(\mathbf{a}|\mathbf{s})}
abla_{ heta}\pi_{ heta}(\mathbf{a}|\mathbf{s})$$

w has converged to a local minimum:

$$\begin{split} &\nabla_{w} \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \frac{1}{2} \left[Q^{\pi}(\bar{\mathbf{s}},\mathbf{a}) - R_{w}(\bar{\mathbf{s}},\mathbf{a}) \right]^{2} d\mathbf{a} d\bar{\mathbf{s}} = 0 \\ &\int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \nabla_{w} R_{w}(\bar{\mathbf{s}},\mathbf{a}) \left[Q^{\pi}(\bar{\mathbf{s}},\mathbf{a}) - R_{w}(\bar{\mathbf{s}},\mathbf{a}) \right] d\mathbf{a} d\bar{\mathbf{s}} = 0 \\ &\int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \left[Q^{\pi}(\bar{\mathbf{s}},\mathbf{a}) - R_{w}(\bar{\mathbf{s}},\mathbf{a}) \right] d\mathbf{a} d\bar{\mathbf{s}} = 0 \end{split}$$

Policy Gradient Theorem: Function Approximation Version

Theorem 2 - Policy Gradient with Function Approximation:

[5] If $R_w(\mathbf{s}, \mathbf{a})$ satisfies the conditions on the previous slide, the policy gradient using the learned reward function is:

$$abla_{ heta}J(\pi_{ heta}) = \int_{\mathcal{S}}d^{\pi}(\mathbf{\bar{s}})\int_{\mathcal{A}}
abla_{ heta}\pi_{ heta}(\mathbf{a}|\mathbf{\bar{s}})R_{w}(\mathbf{\bar{s}},\mathbf{a})d\mathbf{a}d\mathbf{\bar{s}}.$$

Policy Gradient Theorem: Recap

- We've shown that the gradient of the policy quality w.r.t the policy parameters has a simple form.
- We've derived sufficient conditions for an actor-critic algorithm to use the policy gradient theorem.
- We've obtained a necessary functional form for $R_w(\mathbf{s}, \mathbf{a})$, since the compatibility condition requires

$$R_w(\mathbf{s}, \mathbf{a}) = \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s})^{\top} \mathbf{w}$$

Policy Gradient Theorem: Actually Computing the Gradient

 We can estimate the policy gradient in practice using the score function estimator (aka REINFORCE):

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \nabla_{\theta} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) R_{w}(\bar{\mathbf{s}}, \mathbf{a}) d\mathbf{a} d\bar{\mathbf{s}}$$

$$= \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) R_{w}(\bar{\mathbf{s}}, \mathbf{a}) d\mathbf{a} d\bar{\mathbf{s}}$$

$$= \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s})^{\top} \mathbf{w} \ d\mathbf{a} d\bar{\mathbf{s}}$$

• We can approximate the necessary integrals using multiple trajectories $\tau_{0:t}$ computed under the current policy π_{θ} .

An Algorithmic Template for Actor-Critic

- 1. Choose initial parameters \mathbf{w}_0 , $\boldsymbol{\theta}_0$.
- 2. For i = 0...:
 - 2.1 Update the Critic:

$$\mathbf{w}_{i+1} = \operatorname{argmin}_{w} \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \frac{1}{2} \left[Q^{\pi}(\bar{\mathbf{s}}, \mathbf{a}) - R_{w}(\bar{\mathbf{s}}, \mathbf{a}) \right]^{2} d\mathbf{a} d\bar{\mathbf{s}}$$

2.2 Take a policy gradient step:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha_t \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) R_w(\bar{\mathbf{s}}, \mathbf{a}) d\mathbf{a} d\bar{\mathbf{s}}$$

This algorithm is guaranteed to converge when gradients and rewards are bounded and the α_t are chosen appropriately.

Natural Policy Gradients

Background on Natural Gradients: Motivation

ullet Consider optimizing a function with respect to parameters $oldsymbol{ heta}$:

$$oldsymbol{ heta}^* = \operatorname{argmin}_{ heta} f(oldsymbol{ heta})$$

• "Standard" gradient descent:

$$\begin{split} \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \alpha_t \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) \\ &= \operatorname{argmin}_{\boldsymbol{\theta}} \{ f(\boldsymbol{\theta}_t) + \langle \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}_t), \boldsymbol{\theta} - \boldsymbol{\theta}_t \rangle + \frac{1}{2\alpha} ||\boldsymbol{\theta} - \boldsymbol{\theta}_t||^2 \} \end{split}$$

Issues:

- the gradient is dependent on the parameterization/coordinate system (i.e. the choice of θ);
- it implicitly assumes that the Eucledian distance reflects the true geometry of the problem.

Background on Natural Gradients: Definition

- What can we do when θ "lives" on a manifold (e.g. the unit sphere)?
- An alternative is Amari's "Natural" gradient descent [1]:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t+1} - \alpha_t \mathbf{G}(\boldsymbol{\theta})^{-1} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}),$$

where $\mathbf{G}(\theta)$ is the Riemannian metric tensor for the manifold of θ .

- In Eucledian space: $G(\theta) = I$.
- ullet When the step size lpha is arbitrarily small:
 - the natural gradient is invariant to smooth, invertible reparameterizations;
 - the natural gradient performs "steepest descent in the space of realizable [functions]" [3].

Background on Natural Gradients: Example

Consider an objective function defined in polar (r - radius, φ - angle) and Eucledian coordinates:

$$J(r,\varphi) = \frac{1}{2} \left[(r\cos\varphi - 1)^2 + r^2 \sin^2\varphi \right]$$

$$J(x,y) = (x-1)^2 + y^2$$

2 1.5 0.5 0 -0.5 -1 -1.5 -2 -1 -0.5 0 0.5 1 1.5 2 2.5 3

(a) Gradient Field

(b) Training Paths

Figures and example taken from [2].

Background on Natural Gradients: Fisher Information

• Consider the case where f is a probability distribution parameterized by θ : $(f(\theta) = p(\mathbf{x}|\theta))$. Then the correct metric tensor is the Fisher Information (FI) matrix:

$$\mathbf{F}(\theta) = \int p(\mathbf{x}|\theta) \nabla_{\theta} \log p(\mathbf{x}|\theta) \nabla_{\theta} \log p(\mathbf{x}|\theta)^{\top} d\mathbf{x}$$

- Interpretation: FI is the expected (centered) second moment of the score function $\nabla_{\theta} \log p(\mathbf{x}|\theta)$ and measures the information about parameters θ in the random variable \mathbf{x} .
- A useful identity for the FI:

$$\int p_{\theta}(\mathbf{x}) \nabla_{\theta} \log p_{\theta}(\mathbf{x}) \nabla_{\theta} \log p_{\theta}(\mathbf{x})^{\top} d\mathbf{x} = -\int p_{\theta}(\mathbf{x}) \nabla_{\theta}^{2} \log p_{\theta}(\mathbf{x}) d\mathbf{x}$$

FI and the Policy Gradient Theorem

Let's return to policy gradients:

$$egin{aligned}
abla_{ heta} J(\pi_{ heta}) &= \int_{\mathcal{S}} d^{\pi}(ar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{ heta}(\mathbf{a}|ar{\mathbf{s}})
abla_{ heta} \log \pi_{ heta}(\mathbf{a}|ar{\mathbf{s}})
abla_{ heta} \log \pi_{ heta}(\mathbf{a}|\mathbf{s})^{\top} \mathbf{w} \ d\mathbf{a} dar{\mathbf{s}} \ &= \int_{\mathcal{S}} d^{\pi}(ar{\mathbf{s}}) \mathbf{F}(oldsymbol{ heta}) \mathbf{w} \ dar{\mathbf{s}} \end{aligned}$$

The policy gradient clearly contains the FI of the policy conditioned for state **s**. Define the "average" FI:

$$ar{\mathsf{F}}(heta) := \int_{\mathcal{S}} d^\pi(ar{\mathsf{s}}) \mathsf{F}(heta) \; dar{\mathsf{s}}$$

If $\bar{\mathbf{F}}(\theta)$ is the FI of an "appropriate" distribution, the natural gradient is:

$$ar{\mathsf{F}}(heta)^{-1}
abla_{ heta}J(\pi_{ heta})=\mathsf{w}$$

Natural Policy Gradients: Trajectories

• The probability of a trajectory $\tau_{0:t}$ obtained when acting under the policy $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ is:

$$p^{\pi}(\boldsymbol{\tau}_{0:t}) = d_0(\mathbf{s}_0) \prod_{i=0}^t f(\mathbf{s}_{i+1}|\mathbf{s}_i, \mathbf{a}_i) \pi_{\theta}(\mathbf{a}_i|\mathbf{s}_i)$$

- Average reward: it is straightforwad to show that $\bar{\mathbf{F}}(\theta)$ is the FI of $\lim_{t\to\infty} p^{\pi}(\tau_{0:t})$.
- Discounted reward: Peters et al. [4] define a "discounted trajectory" distribution:

$$p_{\gamma}^{\pi}(\boldsymbol{\tau}_{0:t}) = p^{\pi}(\boldsymbol{\tau}_{0:t}) \left(\sum_{i=0}^{n} \gamma^{i} * \mathbb{1}_{s_{i},a_{i}} \right)$$

Natural Policy Gradients: Discounted Trajectory Distribution

Interpretations:

 Probably Incorrect: A single scaling factor on the distribution:

$$p^\pi_\gamma(oldsymbol{ au}_{0:t}) = p^\pi(oldsymbol{ au}_{0:t}) * \sum_{i=0}^t \gamma^i$$

 Closer: A set of equivalent probability distributions with different un-normalized density functions:

$$p_{\gamma}^{\pi}(oldsymbol{ au}_{0:t}) = p^{\pi}(oldsymbol{ au}_{0:t}) \sum_{i=0}^{t} \gamma^{i} \mathbb{1}_{s_{i},a_{i}}(oldsymbol{ au}_{0:t})$$

Peters et al. [4] prove that $\bar{\mathbf{F}}(\theta)$ is the FI of the discounted trajectory distribution. Lets look carefully at their argument.

Natural Policy Gradients: Statement

Theorem 3 - Natural Policy Gradient: [4] The average Fl information

$$ar{f F}(heta) = \int_{\mathcal S} d^\pi(ar{f s}) {f F}(m heta) \,\, dar{f s}$$

is the FI of the discounted trajectory distribution $p^\pi_\gamma(oldsymbol{ au}_{0:t}).$

Proof:

Recall the defintion of the trace distribution:

$$p^{\pi}(\boldsymbol{\tau}_{0:t}) = d_0(\mathbf{s}_0) \prod_{i=0}^t f(\mathbf{s}_{i+1}|\mathbf{s}_i, \mathbf{a}_i) \pi_{\theta}(\mathbf{a}_i|\mathbf{s}_i)$$

The Hessian of the log probability is

$$abla_{ heta}^2 \log
ho_{\gamma}^{\pi}(oldsymbol{ au}_{0:t}) = \sum_{i=0}^t
abla_{ heta}^2 \log \pi_{ heta}(\mathbf{a}_i|\mathbf{s}_i)$$

Natural Policy Gradients: Starting the Derivation

Approach: transform the expression for the FI of $p_{\gamma}^{\pi}(\tau_{0:t})$ to match that for $\bar{\mathbf{F}}(\theta)$:

$$\begin{aligned} \mathbf{F}(\theta) &= \lim_{t \to \infty} \int p_{\gamma}^{\pi}(\boldsymbol{\tau}_{0:t}) \nabla_{\theta} \log p_{\gamma}^{\pi}(\boldsymbol{\tau}_{0:t}) \nabla_{\theta} p_{\gamma}^{\pi}(\boldsymbol{\tau}_{0:t})^{\top} d\boldsymbol{\tau}_{0:t} \\ &= -\lim_{t \to \infty} \int p_{\gamma}^{\pi}(\boldsymbol{\tau}_{0:t}) \nabla_{\theta}^{2} \log p_{\gamma}^{\pi}(\boldsymbol{\tau}_{0:t}) d\boldsymbol{\tau}_{0:t} \\ &= -\lim_{t \to \infty} \int p_{\gamma}^{\pi}(\boldsymbol{\tau}_{0:t}) \sum_{i=0}^{t} \nabla_{\theta}^{2} \log \pi(\mathbf{a}_{i}|\mathbf{s}_{i}) d\boldsymbol{\tau}_{0:t} \\ &= -\lim_{t \to \infty} \int \sum_{i=0}^{t} p_{\gamma}^{\pi}(\boldsymbol{\tau}_{0:t}) \nabla_{\theta}^{2} \log \pi(\mathbf{a}_{i}|\mathbf{s}_{i}) d\boldsymbol{\tau}_{0:t} \end{aligned}$$

Natural Policy Gradients: Following Peters et al.

They appear to evaluate the indicator functions and then normalize the **sum** of density functions:

$$\begin{split} \mathbf{F}(\theta) &= -\lim_{t \to \infty} \int (1 - \gamma) \sum_{i=0}^t \gamma^i p^{\pi}(\boldsymbol{\tau}_{0:t}) \nabla_{\theta}^2 \log \pi(\mathbf{a}_i | \mathbf{s}_i) d\boldsymbol{\tau}_{0:t} \\ &= -\lim_{t \to \infty} \int (1 - \gamma) \sum_{i=0}^t \gamma^i p^{\pi}(\boldsymbol{\tau}_{0:i}) \nabla_{\theta}^2 \log \pi(\mathbf{a}_i | \mathbf{s}_i) d\boldsymbol{\tau}_{0:i} \\ &= -\lim_{t \to \infty} \int_{\mathcal{S}} (1 - \gamma) \sum_{i=0}^t \gamma^i p^{\pi}(\mathbf{s}_i = \bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}_i | \bar{\mathbf{s}}) \nabla_{\theta}^2 \log \pi(\mathbf{a}_i | \bar{\mathbf{s}}) d\mathbf{a}_i d\bar{\mathbf{s}} \\ &= -\int_{\mathcal{S}} \gamma^i d^{\pi}(\mathbf{s} = \bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a} | \bar{\mathbf{s}}) \nabla_{\theta}^2 \log \pi(\mathbf{a} | \mathbf{s}) d\mathbf{a} d\bar{\mathbf{s}} \\ &= \int_{\mathcal{S}} \gamma^i d^{\pi}(\mathbf{s} = \bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a} | \bar{\mathbf{s}}) \nabla_{\theta} \log \pi(\mathbf{a} | \mathbf{s}) \nabla_{\theta} \log \pi(\mathbf{a} | \mathbf{s})^{\top} d\mathbf{a} d\bar{\mathbf{s}} \end{split}$$

Is this still defined w.r.t the correct distribution?

Natural Policy Gradients: Getting Stuck

Normalizing the sum of density functions reweights the terms in the sum. Consider the same expression with pre-normalized densities:

$$\begin{split} \mathbf{F}(\theta) &= -\lim_{t \to \infty} \int \sum_{i=0}^{t} \frac{\gamma^{i}}{\gamma^{i}} p^{\pi}(\boldsymbol{\tau}_{0:t}) \nabla_{\theta}^{2} \log \pi(\mathbf{a}_{i}|\mathbf{s}_{i}) d\boldsymbol{\tau}_{0:t} \\ &= -\lim_{t \to \infty} \int \sum_{i=0}^{t} \frac{\gamma^{i}}{\gamma^{i}} p^{\pi}(\boldsymbol{\tau}_{0:i}) \nabla_{\theta}^{2} \log \pi(\mathbf{a}_{i}|\mathbf{s}_{i}) d\boldsymbol{\tau}_{0:i} \\ &= -\lim_{t \to \infty} \int_{\mathcal{S}} \sum_{i=0}^{t} p^{\pi}(\mathbf{s}_{i} = \bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}_{i}|\bar{\mathbf{s}}) \nabla_{\theta}^{2} \log \pi(\mathbf{a}_{i}|\bar{\mathbf{s}}) d\mathbf{a} d\bar{\mathbf{s}} \\ &= -\lim_{t \to \infty} \int_{\mathcal{S}} \sum_{i=0}^{t} p^{\pi}(\mathbf{s}_{i} = \bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}_{i}|\bar{\mathbf{s}}) \nabla_{\theta} \log \pi(\mathbf{a}_{i}|\bar{\mathbf{s}}) \nabla_{\theta} \log \pi(\mathbf{a}_{i}|\bar{\mathbf{s}})^{\top} d\mathbf{a} d\bar{\mathbf{s}} \end{split}$$

Crux of the Issue: the discounted trajectory distribution $p_{\gamma}^{\pi}(\tau_{0:t})$.

An Algorithmic Template for Natural Actor-Critic

- 1. Choose initial parameters \mathbf{w}_0 , θ_0 .
- 2. For i = 0...:
 - 2.1 Update the Critic:

$$\mathbf{w}_{i+1} = \operatorname{argmin}_{w} \int_{\mathcal{S}} d^{\pi}(\bar{\mathbf{s}}) \int_{\mathcal{A}} \pi_{\theta}(\mathbf{a}|\bar{\mathbf{s}}) \frac{1}{2} \left[Q^{\pi}(\bar{\mathbf{s}}, \mathbf{a}) - R_{w}(\bar{\mathbf{s}}, \mathbf{a}) \right]^{2} d\mathbf{a} d\bar{\mathbf{s}}$$

2.2 Take a policy gradient step:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha_t \mathbf{w}_{i+1}$$

Convergence results for natural actor-critic algorithms depend on how the critic is updated. Convergence with probability 1 is guaranteed for some schemes.

References i

Shun-Ichi Amari.

Natural gradient works efficiently in learning.

Neural computation, 10(2):251-276, 1998.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska.

A survey of actor-critic reinforcement learning: Standard and natural policy gradients.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1291–1307, 2012.

James Martens.

New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193, 2014.

References ii

Jan Peters, Sethu Vijayakumar, and Stefan Schaal.

Reinforcement learning for humanoid robotics.

In Proceedings of the third IEEE-RAS international conference on humanoid robots, pages 1–20, 2003.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approximation.

In Advances in neural information processing systems, pages 1057–1063, 2000.