Painless Stochastic Gradient Descent:
Interpolation, Line-Search, and Convergence Rates.

MLSS 2020

Aaron Mishkin,

amishkin@cs.ubc.ca

Vo1



Stochastic Gradient Descent: Workhorse of ML?

“Stochastic gradient descent (SGD) is today one of
the main workhorses for solving large-scale
supervised learning and optimization problems.”
—Drori and Shamir [7]
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Consensus Says. ..

...and also Agarwal et al. [1], Assran and Rabbat
[2], Assran et al. [3], Bernstein et al.

[5], Damaskinos et al. [6], Geffner and Domke
[8], Gower et al. [9], Grosse and Salakhudinov
[10], Hofmann et al. [11], Kawaguchi and Lu [12], Li
et al. [13], Patterson and Gibson [15], Pillaud-Vivien
et al. [16], Xu et al. [19], Zhang et al. [20]
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Motivation: Challenges in Optimization for ML

Stochastic gradient methods are the most popular algorithms
for fitting ML models,

SGD:  wyi1 = wx — Vi (wg).

But practitioners face major challenges with

e Speed: step-size/averaging controls convergence rate.
e Stability: hyper-parameters must be tuned carefully.

e Generalization: optimizers encode statistical tradeoffs.
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Better Optimization via Better Models

[l

Idea: exploit over-parameterization for better optimization.
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Interpolation

Loss: f(w)= ’172”: fi(w).
i=1

Interpolation is satisfied for f if Vw,
f(w") <f(w) = fi(w") < fi(w).

Separable Not Separable
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Constant Step-size SGD

Interpolation and smoothness imply a noise bound,
E|VAW)IP < p(f (w) —f(w*)).

e SGD converges with a constant step-size [4, 17].
e SGD is (nearly) as fast as gradient descent.
e SGD converges to the

» minimum Ly-norm solution for linear regression [18].
» max-margin solution for logistic regression [14].
» 777 for deep neural networks.

Takeaway: optimization speed and (some) statistical trade-offs.
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Painless SGD

What about stability and
hyper-parameter tuning?

Is grid-search the best we can do?
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Painless SGD



Painless SGD: Tuning-free SGD via Line-Searches

Stochastic Armijo Condition : fi(wy1) < fi(wk)—cnk||VFi(wi)]?.
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Painless SGD: Stochastic Armijo in Theory

Theorem 1 (Strongly-Convex). Assuming (a) interpolation, (b) L;-smoothness, (c) convexity of f;’s,
and (d) i strong-convexity of f, SGD with Armijo line-search with ¢ = /2 in Eq. ] achieves the rate:

— T
E [Jwr - | s:m{(l—;‘ ),(1—;»%)} o —w* |

max

Theorem 2 (Convex). Assuming (a) interpolation, (b) L;-smoothness and (c) convexity of f;’s, SGD
with Armijo line-search for all ¢ > 1/2 in Equation 1 and iterate averaging achieves the rate:

. e Lpgy 1
S

w2
G =P

E[f(or) - flw)] <

Theorem 3 (Non-convex). Assuming (a) the SGC with constant p and (b) L;-smoothness of f;'s,
S(zD with Armijo line-search in Equation I withc =1 — %:‘E and setting Mg, = \/EQpL achieves the
rate:

_min_ E[VfGo)]* < 1L (flwo) — fiw).
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Painless SGD: Stochastic Armijo in Practice

Classification accuracy for ResNet-34 models trained on
MNIST, CIFAR-10, and CIFAR-100.
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Thanks for Listening!
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Bonus: Added Cost of Backtracking

Backtracking is low-cost and averages once per-iteration.
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Bonus: Sensitivity to Assumptions

SGD with line-search is robust, but can still fail catastrophically.

Distance to the optimum
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