Interpolation, Growth Conditions, and Stochastic Gradient Descent

Aaron Mishkin,
amishkin@cs.ubc.ca
Training neural networks is dangerous work!
Chapter 1: Introduction
Chapter 1: Goal

Premise: modern neural networks are extremely flexible and can exactly fit many training datasets.
 • e.g. ResNet-34 on CIFAR-10.

Question: what is the complexity of learning these models using stochastic gradient descent (SGD)?
Chapter 1: Model Fitting in ML

Data Management

Data Acquisition
Data Preparation

Experimentsation
Model Development
Training
Validation

Production Deployment
Prediction

Accuracy reached
Accuracy not reached

Data Drift Fix
Retrain
Monitoring / Alerting

Chapter 1: Stochastic Gradient Descent

“Stochastic gradient descent (SGD) is today one of the main workhorses for solving large-scale supervised learning and optimization problems.”

—Drori and Shamir [2019]
Chapter 1: Consensus Says...

...and also Agarwal et al. [2017], Assran and Rabbat [2020], Assran et al. [2018], Bernstein et al. [2018], Damaskinos et al. [2019], Geffner and Domke [2019], Gower et al. [2019], Grosse and Salakhudinov [2015], Hofmann et al. [2015], Kawaguchi and Lu [2020], Li et al. [2019], Patterson and Gibson [2017], Pillaud-Vivien et al. [2018], Xu et al. [2017], Zhang et al. [2016]
Stochastic gradient methods are the most popular algorithms for fitting ML models,

\[
\text{SGD: } w_{k+1} = w_k - \eta_k \nabla f_i (w_k).
\]

But practitioners face major challenges with

- **Speed**: step-size/averaging controls convergence rate.
- **Stability**: hyper-parameters must be tuned carefully.
- **Generalization**: optimizers encode statistical tradeoffs.
Stochastic gradient methods are the most popular algorithms for fitting ML models,

\[\text{SGD: } w_{k+1} = w_k - \eta_k \nabla f_i (w_k). \]

But practitioners face major challenges with

- **Speed**: step-size/averaging controls convergence rate.
- **Stability**: hyper-parameters must be tuned carefully.
- **Generalization**: optimizers encode statistical tradeoffs.
Chapter 1: Better Optimization via Better Models

Idea: exploit “over-parameterization” for better optimization.

- Intuitively, gradient noise goes to 0 if all data are fit exactly.
- No need for decreasing step-sizes, or averaging for convergence.
Chapter 2: Interpolation and Growth Conditions
Chapter 2: Assumptions

We need assumptions to analyze the complexity of SGD.

Goal: Minimize $f : \mathbb{R}^d \rightarrow \mathbb{R}$, where

- f is **lower-bounded**: $\exists w^* \in \mathbb{R}^d$ such that
 $$f(w^*) \leq f(w) \quad \forall w \in \mathbb{R}^d,$$

- f is **L-smooth**: $w \mapsto \nabla f(w)$ is L-Lipschitz,
 $$\| \nabla f(w) - \nabla f(u) \|_2 \leq L \| w - u \|_2 \quad \forall w, u \in \mathbb{R}^d,$$

- (Optional) f is **μ-strongly-convex**: $\exists \mu \geq 0$ such that,
 $$f(u) \geq f(w) + \langle \nabla f(w), u - w \rangle + \frac{\mu}{2} \| u - w \|_2^2 \quad \forall w, u \in \mathbb{R}^d.$$
Chapter 2: Stochastic First-Order Oracles

Stochastic Oracles:

1. At each iteration k, query oracle O for stochastic estimates

$$f(w_k, z_k) \text{ and } \nabla f(w_k, z_k).$$

2. $f(w_k, \cdot)$ is a deterministic function of random variable z_k.

3. O is unbiased, meaning

$$\mathbb{E}_{z_k}[f(w_k, z_k)] = f(w_k) \quad \text{and} \quad \mathbb{E}_{z_k}[\nabla f(w_k, z_k)] = \nabla f(w_k).$$

4. O is individually-smooth, meaning $f(\cdot, z_k)$ is L_{\max}-smooth,

$$\|\nabla f(w, z_k) - \nabla f(u, z_k)\|_2 \leq L_{\max}\|w - u\|_2 \quad \forall w, u \in \mathbb{R}^d,$$

almost surely.
Chapter 2: Defining Interpolation

Definition (Interpolation: Minimizers)

\((f, \mathcal{O})\) satisfies minimizer interpolation if

\[w' \in \arg \min f \implies w' \in \arg \min f(\cdot, z_k) \text{ a.s.} \]

Definition (Interpolation: Stationary Points)

\((f, \mathcal{O})\) satisfies stationary-point interpolation if

\[\nabla f(w') = 0 \implies \nabla f(w', z_k) = 0 \text{ a.s.} \]

Definition (Interpolation: Mixed)

\((f, \mathcal{O})\) satisfies mixed interpolation if

\[w' \in \arg \min f \implies \nabla f(w', z_k) = 0 \text{ a.s.} \]
Chapter 2: Interpolation Relationships

- All three definitions occur in the literature without distinction!
- We formally define them and characterize their relationships.
Chapter 2: Interpolation Relationships

- All three definitions occur in the literature without distinction!
- We formally define them and characterize their relationships.

Lemma (Interpolation Relationships)

Let \((f, \mathcal{O})\) be arbitrary. Then only the following relationships hold:

Minimizer Interpolation \(\implies\) Mixed Interpolation

and

Stationary-Point Interpolation \(\implies\) Mixed Interpolation.

However, if \(f\) and \(f(\cdot, z_k)\) are invex (almost surely) for all \(k\), then the three definitions are equivalent.

Note: invexity is weaker than convexity and implied by it.
There are two obvious ways that we can leverage interpolation:

1. Relate interpolation to global behavior of O.
 - This was first done using the weak and strong growth conditions by Vaswani et al. [2019a].

2. Use interpolation in a direct analysis of SGD.
 - This was first done by Bassily et al. [2018], who analyzed SGD under a curvature condition.

We do both, starting with weak/strong growth.
Growth Conditions: Well-behaved Oracles

There are many possible regularity assumptions on O.

Bounded Gradients: \[\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \sigma^2, \]

- Proposed by Robbins and Monro in their analysis of SGD.

\[\text{• Satisfied when } O \text{ is individually-smooth and bounded below.} \]
Growth Conditions: Well-behaved Oracles

There are many possible regularity assumptions on O.

Bounded Gradients:
\[\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \sigma^2, \]
- Proposed by Robbins and Monro in their analysis of SGD.

Bounded Variance:
\[\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \| \nabla f(w) \|^2 + \sigma^2, \]
- Commonly used in the stochastic approximation setting.
Growth Conditions: Well-behaved Oracles

There are many possible regularity assumptions on O.

Bounded Gradients: $\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \sigma^2,$

- Proposed by Robbins and Monro in their analysis of SGD.

Bounded Variance: $\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \| \nabla f(w) \|^2 + \sigma^2,$

- Commonly used in the stochastic approximation setting.

Strong Growth+Noise: $\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \rho \| \nabla f(w) \|^2 + \sigma^2.$

- Satisfied when O is individually-smooth and bounded below.
Growth Conditions: Strong and Weak Growth

We obtain the strong and weak growth conditions as follows:

Strong Growth + Noise: \(\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \rho \| \nabla f(w) \|^2 + \sigma^2 \).

- Does not imply interpolation.

Strong Growth: \(\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \rho \| \nabla f(w) \|^2 \).

- Implies stationary-point interpolation.

Weak Growth: \(\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \alpha (f(w) - f(w^*)) \).

- Implies mixed interpolation.
Growth Conditions: Strong and Weak Growth

We obtain the strong and weak growth conditions as follows:

Strong Growth + Noise: $\mathbb{E} [\| \nabla f(w, z_k) \|^2] \leq \rho \| \nabla f(w) \|^2 + \sigma^2$.

- Does not imply interpolation.

Strong Growth: $\mathbb{E} [\| \nabla f(w, z_k) \|^2] \leq \rho \| \nabla f(w) \|^2$.

- Implies stationary-point interpolation.
Growth Conditions: Strong and Weak Growth

We obtain the strong and weak growth conditions as follows:

Strong Growth + Noise: \(\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \rho \| \nabla f(w) \|^2 + \sigma^2. \)

- Does not imply interpolation.

Strong Growth: \(\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \rho \| \nabla f(w) \|^2. \)

- Implies *stationary-point* interpolation.

Weak Growth: \(\mathbb{E} \left[\| \nabla f(w, z_k) \|^2 \right] \leq \alpha (f(w) - f(w^*)). \)

- Implies *mixed* interpolation.
Growth Conditions: Interpolation + Smoothness

Lemma (Interpolation and Weak Growth)

Assume f is L-smooth and O is L_{max} individually-smooth. If minimizer interpolation holds, then weak growth also holds with $\alpha \leq \frac{L_{\text{max}}}{L}$.

Lemma (Interpolation and Strong Growth)

Assume f is L-smooth and μ strongly-convex and O is L_{max} individually-smooth. If minimizer interpolation holds, then strong growth also holds with $\rho \leq \frac{L_{\text{max}}}{\mu}$.

Comments:

- This improve on the original result by Vaswani et al. [2019a], which required convexity.
- Oracle framework extends relationship beyond finite-sums.
- See thesis for additional results on weak/strong growth.
Chapter 3: Stochastic Gradient Descent
Fixed Step-Size SGD

0. Choose an initial point $w_0 \in \mathbb{R}^d$.

1. For each iteration $k \geq 0$:
 1.1 Query \mathcal{O} for $\nabla f(w_k, z_k)$.
 1.2 Update input as
 $$w_{k+1} = w_k - \eta \nabla f(w_k, z_k).$$
Chapter 3: Fixed Step-size SGD

Prior work for SGD under growth conditions or interpolation:

- Convergence under strong growth [Cevher and Vu, 2019, Schmidt and Le Roux, 2013].
- Convergence under weak growth [Vaswani et al., 2019a].
- Convergence under interpolation [Bassily et al., 2018].
Prior work for SGD under growth conditions or interpolation:

- Convergence under strong growth [Cevher and Vu, 2019, Schmidt and Le Roux, 2013].
- Convergence under weak growth [Vaswani et al., 2019a].
- Convergence under interpolation [Bassily et al., 2018].

We still provide many new and improved results!

- **Bigger** step-sizes and **faster** rates for convex and strongly-convex objectives.
- **Almost-sure** convergence under weak/strong growth.
- **Trade-offs** between growth conditions and interpolation.
Chapter 4: Line Search
Chapter 4: Weakness of Fixed Step-size SGD

Problem: these convergence rates for fixed step-size SGD rely on using the optimal step-size, which depends on L_{max}, α, or ρ.

Is **grid-search** really the best way to pick η?

```python
for i, step_size in enumerate(np.logspace(-4,1,12)):
    opt_params['step_size'] = step_size
    results[i] = run_experiment(opt_params, exp_params, data_params, model_fn,
                                objective, error_fn, training_set, test_set)
```
SGD: the Armijo Line-search

The **Armijo line-search** is a classic solution to step-size selection.

\[
f(w_k - \eta_k \nabla f(w_k)) \leq f(w_k) - c \cdot \eta_k \| \nabla f(w_k) \|^2.\]
SGD with Armijo Line-search: Procedure

0. Choose an initial point \(w_0 \in \mathbb{R}^d \).

1. For each iteration \(k \):
 1.1 Query \(\Omega \) for \(f(w_k, z_k), \nabla f(w_k, z_k) \).
 1.2 Set \(\eta_k = \infty \), and
 \[
 w_{k+1} \leftarrow w_k - \eta_k \nabla f(w_k, z_k).
 \]
 1.3 Exactly backtrack until
 \[
 f(w_{k+1}, z_k) \leq f(w_k, z_k) - c \cdot \eta_k \| \nabla f(w_k, z_k) \|^2.
 \]

Note: Evaluates Armijo condition on \(f(\cdot, z_k) \) instead of \(f \) and needs direct access to \(f(\cdot, z_k) \) to backtrack.
SGD with Armijo Line-search: Visualization

\[f_{v_k}(\eta) \]

\[f_{v_k}(\eta, z) \]

No Interpolation

\[\ell_{v_k}(\eta) \]

\[\omega^* \]

Interpolation
Lemma (Step-size Bound)

Assume f is L-smooth and O is L_{max} individually-smooth. Assume minimizer interpolation holds.

Then the maximal step-size satisfying the stochastic Armijo condition satisfies the following:

$$\frac{2(1 - c)}{L_{\text{max}}} \leq \eta_{\text{max}} \leq \frac{f(w_k, z_k) - f(w^*, z_k)}{c\|\nabla f(w_k, z_k)\|^2}.$$

Comments:

- Mirrors classic result in deterministic optimization.
- Easy to relax to a backtracking line-search.
\[
\frac{2(1 - c)}{L_{\text{max}}} \leq \eta_{\text{max}} \leq \frac{f(w_k, z_k) - f(w^*, z_k)}{c\|\nabla f(w_k, z_k)\|^2}.
\]
Theorem (Convex + Interpolation)

Assume f is convex, L-smooth and \mathcal{O} is L_{max} individually-smooth. Assume minimizer interpolation holds and $f(\cdot, z_k)$ is almost-surely convex for all k. Then SGD with the Armijo line-search and $c = \frac{1}{2}$ converges as

$$E[f(\bar{w}_K)] - f(w^*) \leq \frac{L_{\text{max}}}{2K} \|w_0 - w^*\|^2.$$

Comments:

- Improves constants in original result [Vaswani et al., 2019b] — line-search is just as fast as the best constant step-size!
- Using the Armijo line-search is (nearly) parameter-free and recovers the deterministic rate when $L_{\text{max}} = L$.
- See thesis for strongly-convex rate (improves $\bar{\mu}$ to μ).
Chapter 5: Acceleration
Chapters 5 and 6: Acceleration

SGD can be accelerated when minimizer interpolation holds:

- **Liu and Belkin [2020]** modify Nesterov’s method and analyze convergence for strongly-convex functions.

- **Vaswani et al. [2019a]** analyze Nesterov’s method under strong growth for strongly-convex and convex functions.

We follow **Vaswani et al. [2019a]**, but provide tighter rates.

- Improves dependence on the strong-growth parameter from ρ to $\sqrt{\rho}$ — factor of $\sqrt{L_{\max}/\mu}$ in the worst case.

- Analysis proceeds via estimating sequences; details in thesis.
Recap

Takeaways.

- **Interpolation**: the oracle model is extends interpolation to general stochastic optimization problems.

- **Growth Conditions**: “smooth” oracles satisfying interpolation are well-behaved globally.

- **SGD**: improved rates show SGD under interpolation is tight with the deterministic case.

- **Line-Search**: the Armijo line-search yields fast, parameter-free optimization under interpolation.

- **Acceleration**: stochastic acceleration is possible with a penalty of only $\sqrt{\rho}$.
Thanks for Listening!
Acknowledgements

Left to right: Sharan Vaswani, Issam Laradji, Gauthier Gidel, Mark Schmidt, Simon Lacoste-Julien, Frederik Kunstner, Si Yi Meng, Jonathan Lavington, Yihan Zhou, and Betty Shea.
Least Squares: \(w^* \in \arg \min \frac{1}{2n} \sum_{i=1}^{n} (\langle w, x_i \rangle - y_i)^2 \).

The sub-sampling oracle sets \(z_k \sim \text{Uniform}(1, \ldots, n) \) and returns

\[
f(w, z_k) = \frac{1}{2} (\langle w, x_i \rangle - y_i)^2 \quad \text{and} \quad \nabla f(w_k, z_k) = (\langle w, x_i \rangle - y_i) x_i.
\]
Least Squares: \(w^* \in \arg \min \frac{1}{2n} \sum_{i=1}^{n} (\langle w, x_i \rangle - y_i)^2 \).

The **sub-sampling** oracle sets \(z_k \sim \text{Uniform}(1, \ldots, n) \) and returns

\[
f(w, z_k) = \frac{1}{2} (\langle w, x_i \rangle - y_i)^2 \quad \text{and} \quad \nabla f(w_k, z_k) = (\langle w, x_i \rangle - y_i) x_i.
\]

Observations:

- \(\mathcal{O} \) is **unbiased**.
- \(\mathcal{O} \) is \(L_{\max} = \max_i \| x_i \|_2^2 \) **individually-smooth** since

\[
f_i(w) = \frac{1}{2} (\langle w, x_i \rangle - y_i)^2,
\]

is \(\| x_i \|_2^2 \)-smooth for each \(i \in [n] \).
Theorem (Convex + Weak Growth)

Assume f is convex, L-smooth and (f, \mathcal{O}) satisfies weak growth. Then SGD with $\eta = \frac{1}{2\alpha L}$ converges as

$$\mathbb{E} [f(\bar{w}_K)] - f(w^*) \leq \frac{2\alpha L}{K} \|w_0 - w^*\|^2.$$

Theorem (Convex + Interpolation)

Assume f is convex, L-smooth and \mathcal{O} is L_{max} individually-smooth. Assume minimizer interpolation holds. Then SGD with $\eta = \frac{1}{L_{\text{max}}}$ converges as

$$\mathbb{E} [f(\bar{w}_K)] - f(w^*) \leq \frac{L_{\text{max}}}{2K} \|w_0 - w^*\|^2.$$
Bonus: Trade-offs

Weak Growth: \[\mathbb{E} [f(\bar{w}_K)] - f(w^*) \leq \frac{2\alpha L}{K} \| w_0 - w^* \|^2. \]

V.S.

Interpolation: \[\mathbb{E} [f(\bar{w}_K)] - f(w^*) \leq \frac{L_{\text{max}}}{2K} \| w_0 - w^* \|^2. \]

Comments:

- By minimizer interpolation and individual-smoothness,
 \[\alpha \leq \frac{L_{\text{max}}}{L}. \]
- So, the second rate is better than the first in the **worst-case**!
- If \(L_{\text{max}} = L \), then the second rate is tight deterministic GD!

References

