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Training neural networks is dangerous work!
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Chapter 1: Introduction
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Chapter 1: Goal

Premise: modern neural networks are extremely
flexible and can exactly fit many training datasets.

• e.g. ResNet-34 on CIFAR-10.

Question: what is the complexity of learning these
models using stochastic gradient descent (SGD)?

4⁄45



Chapter 1: Model Fitting in ML

https://towardsdatascience.com/challenges-deploying-machine-learning-models-to-production-ded3f9009cb3
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Chapter 1: Stochastic Gradient Descent

“Stochastic gradient descent (SGD) is today one of
the main workhorses for solving large-scale

supervised learning and optimization problems.”
—Drori and Shamir [2019]
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Chapter 1: Consensus Says. . .

. . . and also Agarwal et al. [2017], Assran and
Rabbat [2020], Assran et al. [2018], Bernstein et al.

[2018], Damaskinos et al. [2019], Geffner and
Domke [2019], Gower et al. [2019], Grosse and

Salakhudinov [2015], Hofmann et al. [2015],
Kawaguchi and Lu [2020], Li et al. [2019],

Patterson and Gibson [2017], Pillaud-Vivien et al.
[2018], Xu et al. [2017], Zhang et al. [2016]
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Chapter 1: Challenges in Optimization for ML

Stochastic gradient methods are the most popular algorithms
for fitting ML models,

SGD: wk+1 = wk − ηk∇fi (wk).

But practitioners face major challenges with

• Speed: step-size/averaging controls convergence rate.

• Stability: hyper-parameters must be tuned carefully.

• Generalization: optimizers encode statistical tradeoffs.
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Chapter 1: Better Optimization via Better Models

Idea: exploit “over-parameterization” for better optimization.

• Intuitively, gradient noise goes to 0 if all data are fit exactly.

• No need for decreasing step-sizes, or averaging for
convergence.
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Chapter 2: Interpolation and Growth
Conditions
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Chapter 2: Assumptions

We need assumptions to analyze the complexity of SGD.

Goal: Minimize f : Rd → R, where

• f is lower-bounded: ∃w∗ ∈ Rd such that

f(w∗) ≤ f(w) ∀w ∈ Rd,

• f is L-smooth: w 7→ ∇f(w) is L-Lipschitz,

‖∇f(w)−∇f(u)‖2 ≤ L‖w − u‖2 ∀w, u ∈ Rd,

• (Optional) f is µ-strongly-convex: ∃µ ≥ 0 such that,

f(u) ≥ f(w) + 〈∇f(w), u− w〉+
µ

2
‖u− w‖22 ∀w, u ∈ Rd.
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Chapter 2: Stochastic First-Order Oracles

Stochastic Oracles:

1. At each iteration k, query oracle O for stochastic estimates

f(wk, zk) and ∇f(wk, zk).

2. f(wk, ·) is a deterministic function of random variable zk.

3. O is unbiased, meaning

Ezk [f(wk, zk)] = f(wk) and Ezk [∇f(wk, zk)] = ∇f(wk).

4. O is individually-smooth, meaning f(·, zk) is Lmax-smooth,

‖∇f(w, zk)−∇f(u, zk)‖2 ≤ Lmax‖w − u‖2 ∀w, u ∈ Rd,

almost surely.
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Chapter 2: Defining Interpolation

Definition (Interpolation: Minimizers)

(f,O) satisfies minimizer interpolation if

w′ ∈ arg min f =⇒ w′ ∈ arg min f(·, zk) a.s.

Definition (Interpolation: Stationary Points)

(f,O) satisfies stationary-point interpolation if

∇f(w′) = 0 =⇒ ∇f(w′, zk)
a.s.
= 0.

Definition (Interpolation: Mixed)

(f,O) satisfies mixed interpolation if

w′ ∈ arg min f =⇒ ∇f(w′, zk)
a.s.
= 0.

w∗

f (w)

f (w, z)

w∗

w′

w′

w∗
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Chapter 2: Interpolation Relationships

• All three definitions occur in the literature without distinction!

• We formally define them and characterize their relationships.

Lemma (Interpolation Relationships)

Let (f,O) be arbitrary. Then only the following relationships hold:

Minimizer Interpolation =⇒ Mixed Interpolation

and

Stationary-Point Interpolation =⇒ Mixed Interpolation.

However, if f and f(·, zk) are invex (almost surely) for all k, then
the three definitions are equivalent.

Note: invexity is weaker than convexity and implied by it.

15⁄45



Chapter 2: Interpolation Relationships

• All three definitions occur in the literature without distinction!

• We formally define them and characterize their relationships.

Lemma (Interpolation Relationships)

Let (f,O) be arbitrary. Then only the following relationships hold:

Minimizer Interpolation =⇒ Mixed Interpolation

and

Stationary-Point Interpolation =⇒ Mixed Interpolation.

However, if f and f(·, zk) are invex (almost surely) for all k, then
the three definitions are equivalent.

Note: invexity is weaker than convexity and implied by it.

15⁄45



Chapter 2: Using Interpolation

There are two obvious ways that we can leverage interpolation:

1. Relate interpolation to global behavior of O.

I This was first done using the weak and strong growth
conditions by Vaswani et al. [2019a].

2. Use interpolation in a direct analysis of SGD.

I This was first done by Bassily et al. [2018], who analyzed SGD
under a curvature condition.

We do both, starting with weak/strong growth.
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Growth Conditions: Well-behaved Oracles

There are many possible regularity assumptions on O.

Bounded Gradients : E
[
‖∇f(w, zk)‖2

]
≤ σ2,

• Proposed by Robbins and Monro in their analysis of SGD.

Bounded Variance : E
[
‖∇f(w, zk)‖2

]
≤ ‖∇f(w)‖2 + σ2,

• Commonly used in the stochastic approximation setting.

Strong Growth+Noise : E
[
‖∇f(w, zk)‖2

]
≤ ρ ‖∇f(w)‖2 + σ2.

• Satisfied when O is individually-smooth and bounded below.
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Growth Conditions: Strong and Weak Growth

We obtain the strong and weak growth conditions as follows:

Strong Growth+Noise : E
[
‖∇f(w, zk)‖2

]
≤ ρ ‖∇f(w)‖2 + σ2.

• Does not imply interpolation.

Strong Growth : E
[
‖∇f(w, zk)‖2

]
≤ ρ ‖∇f(w)‖2.

• Implies stationary-point interpolation.

Weak Growth : E
[
‖∇f(w, zk)‖2

]
≤ α (f(w)− f(w∗)).

• Implies mixed interpolation.
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Growth Conditions: Interpolation + Smoothness

Lemma (Interpolation and Weak Growth)

Assume f is L-smooth and O is Lmax individually-
smooth. If minimizer interpolation holds, then weak
growth also holds with α ≤ Lmax

L .

Lemma (Interpolation and Strong Growth)

Assume f is L-smooth and µ strongly-convex and O
is Lmax individually-smooth. If minimizer interpolation
holds, then strong growth also holds with ρ ≤ Lmax

µ .

Comments:

• This improve on the original result by Vaswani et al. [2019a],
which required convexity.

• Oracle framework extends relationship beyond finite-sums.

• See thesis for additional results on weak/strong growth.
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Chapter 3: Stochastic Gradient
Descent
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Chapter 3: Fixed Step-size SGD

Fixed Step-Size SGD

0. Choose an initial point w0 ∈ Rd.

1. For each iteration k ≥ 0:
1.1 Query O for ∇f(wk, zk).

1.2 Update input as

wk+1 = wk − η∇f(wk, zk).
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Chapter 3: Fixed Step-size SGD

Prior work for SGD under growth conditions or interpolation:

• Convergence under strong growth [Cevher and Vu, 2019,
Schmidt and Le Roux, 2013].

• Convergence under weak growth [Vaswani et al., 2019a].

• Convergence under interpolation [Bassily et al., 2018].

We still provide many new and improved results!

• Bigger step-sizes and faster rates for convex and
strongly-convex objectives.

• Almost-sure convergence under weak/strong growth.

• Trade-offs between growth conditions and interpolation.
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Chapter 4: Line Search
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Chapter 4: Weakness of Fixed Step-size SGD

Problem: these convergence rates for fixed
step-size SGD rely on using the optimal step-size,

which depends on Lmax, α, or ρ.

Is grid-search really the best way to pick η?
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SGD: the Armijo Line-search

The Armijo line-search is a classic solution to step-size selection.

f(wk − ηk∇f(wk)︸ ︷︷ ︸
wk+1

) ≤ f(wk)− c · ηk‖∇f(wk)‖2.

wkfvk(η)

`vk(η)
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SGD with Armijo Line-search: Procedure

SGD with Armijo Line-Search

0. Choose an initial point w0 ∈ Rd.

1. For each iteration k:
1.1 Query O for f(wk, zk), ∇f(wk, zk).

1.2 Set ηk =∞, and

wk+1 ← wk − ηk∇f(wk, zk).

1.3 Exactly backtrack until

f(wk+1, zk) ≤ f(wk, zk)−c·ηk‖∇f(wk, zk)‖2.

Note: Evaluates Armijo condition on f(·, zk) instead of f and
needs direct access to f(·, zk) to backtrack.
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SGD with Armijo Line-search: Visualization

wk

wk+1

fvk(η)

fvk(η, z)

No Interpolation

w∗

wk

wk+1

`vk(η)

Interpolation
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SGD with Armijo Line-search: Key Lemma

Lemma (Step-size Bound)

Assume f is L-smooth and O is Lmax individually-
smooth. Assume minimizer interpolation holds.

Then the maximal step-size satisfying the stochastic
Armijo condition satisfies the following:

2(1− c)
Lmax

≤ ηmax ≤
f(wk, zk)− f(w∗, zk)

c‖∇f(wk, zk)‖2
.

Comments:

• Mirrors classic result in deterministic optimization.

• Easy to relax to a backtracking line-search.
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SGD with Armijo Line-Search: Lemma Geometry

2(1− c)
Lmax

≤ ηmax ≤
f(wk, zk)− f(w∗, zk)
c‖∇f(wk, zk)‖2

.

wkfvk(η)

`vk(η)
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SGD with Armijo Line-search: Convergence

Theorem (Convex + Interpolation)

Assume f is convex, L-smooth and O is Lmax

individually-smooth. Assume minimizer interpolation holds and
f(·, zk) is almost-surely convex for all k. Then SGD with the
Armijo line-search and c = 1

2 converges as

E [f(w̄K)]− f(w∗) ≤ Lmax

2K
‖w0 − w∗‖2.

Comments:

• Improves constants in original result [Vaswani et al., 2019b]
— line-search is just as fast as the best constant step-size!

• Using the Armijo line-search is (nearly) parameter-free and
recovers the deterministic rate when Lmax = L.

• See thesis for strongly-convex rate (improves µ̄ to µ).
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Chapter 5: Acceleration
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Chapters 5 and 6: Acceleration

SGD can be accelerated when minimizer interpolation holds:

• Liu and Belkin [2020] modify Nesterov’s method and analyze
convergence for strongly-convex functions.

• Vaswani et al. [2019a] analyze Nesterov’s method under
strong growth for strongly-convex and convex functions.

We follow Vaswani et al. [2019a], but provide tighter rates.

• Improves dependence on the strong-growth parameter from ρ
to
√
ρ — factor of

√
Lmax/µ in the worst case.

• Analysis proceeds via estimating sequences; details in thesis.
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Recap

Takeaways.

• Interpolation: the oracle model is extends interpolation to
general stochastic optimization problems.

• Growth Conditions: “smooth” oracles satisfying
interpolation are well-behaved globally.

• SGD: improved rates show SGD under interpolation is tight
with the deterministic case.

• Line-Search: the Armijo line-search yields fast,
parameter-free optimization under interpolation.

• Acceleration: stochastic acceleration is possible with a
penalty of only

√
ρ.
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Thanks for Listening!
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Bonus: SFOs and Least Squares

Least Squares : w∗ ∈ arg min
1

2n

n∑
i=1

(〈w, xi〉 − yi)2 .

The sub-sampling oracle sets zk ∼ Uniform(1, . . . , n) and returns

f(w, zk) =
1

2
(〈w, xi〉 − yi)2 and ∇f(wk, zk) = (〈w, xi〉 − yi)xi.

Observations:

• O is unbiased.

• O is Lmax = maxi ‖xi‖22 individually-smooth since

fi(w) =
1

2
(〈w, xi〉 − yi)2 ,

is ‖xi‖22-smooth for each i ∈ [n].
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Bonus: Convergence for Fixed Step-size SGD

Theorem (Convex + Weak Growth)

Assume f is convex, L-smooth and (f,O) satisfies weak growth.
Then SGD with η = 1

2αL converges as

E [f(w̄K)]− f(w∗) ≤ 2αL

K
‖w0 − w∗‖2.

Theorem (Convex + Interpolation)

Assume f is convex, L-smooth and O is Lmax

individually-smooth. Assume minimizer interpolation holds. Then
SGD with η = 1

Lmax
converges as

E [f(w̄K)]− f(w∗) ≤ Lmax

2K
‖w0 − w∗‖2.
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Bonus: Trade-offs

Weak Growth : E [f(w̄K)]− f(w∗) ≤ 2αL

K
‖w0 − w∗‖2.

v.s.

Interpolation : E [f(w̄K)]− f(w∗) ≤ Lmax

2K
‖w0 − w∗‖2.

Comments:

• By minimizer interpolation and individual-smoothness,

α ≤ Lmax

L
.

• So, the second rate is better than the first in the worst-case!

• If Lmax = L, then the second rate is tight deterministic GD!
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