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1. Motivation: Convexity and Deep
Learning



Motivation: Thirteen Years Since AlexNet

13 Years Ago: AlexNet won ILSVRC 2012 and started the
modern “deep learning” era of machine learning.

https://image-net.org/challenges/LSVRC/2012/results.html#abstract
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Motivation: Thirteen Years Since AlexNet

13 Years Ago: AlexNet won ILSVRC 2012 and started the
modern “deep learning” era of machine learning.

AlexNet improved over the next best model by ~ 10% (top-5).

Key Techniques:
e “a large, deep convolutional neural network”
e "“a very efficient GPU implementation of convolutional nets”

e "“dropout’, a recently-developed regularization method that
proved to be very effective”

Not so different from today. ..

https://image-net.org/challenges/LSVRC/2012/results.html#abstract
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Motivation: ImageNet Today

AlexNet won with 84.69% top-five accuracy [KSH12].
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Motivation: ImageNet Today

AlexNet won with 84.69% top-five accuracy [KSH12].

Today, models get 99.02% top-5 accuracy [Yua+21]!

(Using all sorts of tricks like pre-training, transformers, etc.)
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Motivation: DALL-E 2

We've developed amazing deep learning tools since AlexNet.

Generated by DALL-E 2

A bowl of soup that is a portal to another dimension as digital art.

https://openai.com/dall-e-2/
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DALL-E 2 has 5.5 billion parameters and took billions of Adam
iterations to fit [Ram+22].

https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked /
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Motivation: Cost of Training DALL-E 2

DALL-E 2 has 5.5 billion parameters and took billions of Adam
iterations to fit [Ram+22].

But this is small compared to recent LLMs!

Consider OpenAl’'s GPT-4 model:

e GPT-4 has 1.8 trillion parameters;

e It was trained on =~ 13 trillion tokens;

e Training used 25,000 A100s for 90 to 100 days;

e At $1 per A100 hour, GPT-4 cost ~ $63 million dollars.

https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked /
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Takeaway: Modern deep learning models are huge and extremely
expensive to train, but they have tremendous impact.
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Motivation: Challenges of Non-Convexity

Takeaway: Modern deep learning models are huge and extremely
expensive to train, but they have tremendous impact.

< ChatGPT is the fastest-adopted piece of software in history!

Challenges of Non-Convexity:
e Optimization: saddle-points, local minima, slow convergence.

e Optimality Conditions: stationarity =~ optimality.

e Mathematical Tools: No subgradients, no separating
hyperplanes, (usually) non-zero duality gap.

www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app 7/55
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Motivation: Convexity and Deep Learning

Key Question: How can we overcome non-convexity to get
better optimization and fundamental theory for neural networks?

This Thesis: By creating and studying convex reformulations.

/C e~
Convex Gated D 2ne Convex RelLU
e ecomp. e
Sol. Map Sol. Map
Gated RelU ReLU Network

< This approach yields new algorithms and new insights!
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Motivation: Two Layer Models

We primarily study two-layer ReLU networks.

Two-layer ReLU models are foundational building blocks:
e They are the basic units of models like MLPs and CNNss. ..
e ...and layer-wise training is fast and generalizes well [BEO19].
e Two-layer networks can model self-attention [Sah+22]. ..
e ...and are basic components of standard transformer blocks.
e They were key to word-embeddings (Word2Vec) [Mik+13]...

e ...and are widely used in reinforcement learning [GAA23] and
for prediction on edge devices [TMK17].

More Importantly: What can we achieve with two-layers?
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Motivation: Tuning-Free Training Algorithms

Training neural networks involves many hyper-parameters.
e Step-Size: too small = very slow convergence.
e Step-Size: too big = catastrophic failure.
e Not to mention batch-size, momentum, decay schedules, ...
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Training neural networks involves many hyper-parameters.
e Step-Size: too small = very slow convergence.
e Step-Size: too big = catastrophic failure.
e Not to mention batch-size, momentum, decay schedules, ...
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Convex reformulations enable parameter-free global optimization!
10/55
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Motivation: Theory of Neural Networks

Going Beyond Optimization

e Better optimization is important for practitioners.
» Less babysitting means faster, cheaper, better training.
e But expensive hyper-parameter tuning hasn't prevented neural
networks from being deployed everywhere.
» They're in our cars (self-driving), phones (Face ID), classrooms
(ChatGPT), and even our research (ChatGPT again)!
e Understanding neural networks is important for everyone.

» Neural network theory is necessary for safety, reliability, and
future advances.

Let's look at some examples. . .
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Motivation: Global Optima and Generalization

e Suppose we could take 10,000 models from the set of globally
optimal neural networks given a fixed training set.
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Motivation: Global Optima and Generalization

e Suppose we could take 10,000 models from the set of globally

optimal neural networks given a fixed training set.

monks-1

0.01 - Q
0.001 @{

0.0001 I !

Regularization (A)

le-05 | !

0.65 0.70 0.75
Test Accuracy

T
0.80

Regularization (A)

0.014

0.001 A

0.0001 4

le-051

Q: Are they going to generalize differently?

planning

0.475 0.500 0.525 0.550 0.575 0.600
Test Accuracy

Conclusion: We need to distinguish between global optima!
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Motivation: Structure of Solution Sets

Q: What is the structure of the optimal set?
e Are the solutions discrete or highly connected?

e Are connected components disorganized or very structured?

Convex Non-Convex

[vilx [Wiily

Non-Convex solution set maps the

A: It's a convex polytope!
poytop polytope to a manifold.

< A connectivity hierarchy emerges with network width!
134



Overview: Big ldea
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Overview: Big ldea

Overall Problem: neural networks are hard to train and even
harder to analyze because of non-convexity.

Thesis Goal: leverage convex reformulations of neural
networks to break the barrier of non-convexity and obtain,

e faster, more reliable optimization algorithms for training
shallow neural networks;

e a variational theory for the optimal set, solution path, and
stability of shallow neural network optimization;

e extensions to deep, fully-connected ReLU networks.
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2. Background on Convex
Reformulations
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Convex Reformulations: Flavor of Results

Basic Idea: We start with a non-convex optimization problem and
derive an equivalent convex program.
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Convex Reformulations: Flavor of Results

Basic Idea: We start with a non-convex optimization problem and
derive an equivalent convex program.

Equivalent means:

e The global minima have the same values: p* = ¢*

e We can map every global minimum u* for one problem into a
global minimum v* of the other.
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Convex Reformulations: Two-Layer ReLU Networks

Non-Convex Problem (NC-ReLU)

min *HZ XWij)+wa; — y||2+AZ||W1J”2 + |wa %,

W
ne Jj=1 j=1

Squared Error Weight Decay

where (z), = max {z,0}, X € R"™, and y € R™.
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Convex Reformulations: Two-Layer ReLU Networks

Non-Convex Problem (NC-ReLU)

) 1 m m
[min 5| D (XWhy)wa; — ylls+ A (W[5 + [way |,
’ =1 =1

Squared Error Weight Decay

where (z), = max {z,0}, X € R"™, and y € R™.
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Aside: ReLU Activation Patterns

Each ReLU neuron is active on a half-space: (XWi;)
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Aside: ReLU Activation Patterns

Each ReLU neuron is active on a half-space: (XWi;)
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Activation patterns linearize the ReLU: (XW;) = D;XWy;.
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Convex Reformulations: Convex Problem

Convex Reformulation (C-ReLU) [PE20]

1 p p
min_ || 221 D; X (v —wy) —yll5 + AZI [vjll2 + [[w;ll2
J= J=

s.t. vj,w; € K = {w c(2D; - 1) Xw>0 },

= (Xw),=D;jXw

where p is the number of unique activation patterns.
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Convex Reformulations: Hardness

Key Result: if network width m satisfies m > m™* for some
m* < n, then C-ReLU and NC-ReLU are equivalent [PE20].
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Convex Reformulations: Hardness

Key Result: if network width m satisfies m > m™* for some
m* < n, then C-ReLU and NC-ReLU are equivalent [PE20].

How hard is the convex program?

p=|{D, = dsgl1(xg, = 0)): g, < 7}

The convex program is:

e Exponential in general: p € O(r - (%)), where r = rank(X).
e Highly structured — it's a linear model!

Takeaway: We exchange one kind of hardness for another.
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3. Better Optimization via Convex
Reformulations
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Better Optimization via Convex Reformulations

[MSP22] Fast Convex Optimization for Two-Layer ReLU Networks.
A. Mishkin, A. Sahiner, M. Pilanci. ICML 2022.

Big Idea: Use convex reformulations as an optimization tool.

e We could solve C-ReLU using interior point methods, but
computing the Hessian is infeasible for large n and d.

e We could use projected GD, but projecting onto /C; is an
expensive quadratic program.

e Instead, we develop fast solvers based on the augmented
Lagrangian method and on a “gated ReLU" relaxation.
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Fast Training: Gated ReLU Networks

Recall the convex reformulation for a two-layer ReLU Network:

P p
C-ReLU : min|| Y D; X (vj —wy) —yl3 + A l[vjllz + llw]l2
j=1 j=1

s.t. vj,wj € Kj:={w: (2D; — I)Xw > 0},
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Fast Training: Gated ReLU Networks

Recall the convex reformulation for a two-layer ReLU Network:

p p
C-ReLU : min| > DX (5 —wi) = yl3 + A vz + lwll2
j=1 j=1
s.t. vj,w; € Kj:={w:(2D; —I)Xw > 0},

Relaxation: drop the cone constraints and simplify to obtain,

p p
C-GReLU : min| > DiXu; —yl3+ 2> |l
j=1 j=1

Questions:

1. Is this still a neural network?

2. When is it a good approximation for C-ReLU?
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Fast Training: Gated ReLU Networks

1. Is CG-ReLU equivalent to a neural network architecture?
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Fast Training: Gated ReLU Networks

1. Is CG-ReLU equivalent to a neural network architecture?

Theorem 2.2 [MSP22]: C-GReLU is equivalent to a neural
network with a “Gated ReLU"” [FMS19] activation function.

2. When does CG-RelLU give a good approximation for C-RelLU?

Theorem 3.7 [MSP22]: Let A > 0 and let p* be the optimal
value of the ReLU problem. There exists a C-GRelLU problem
with minimizer u* and optimal value d* satisfying,

& <p* <d +Dw(Xg) 3 [l
D,eb
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Fast Training: Solving the Convex Programs

We develop two algorithms for solving the convex reformulations:

e R-FISTA: a restarted FISTA variant for Gated RelU.

e AL: an augmented Lagrangian method for the (constrained)
RelLU Problem.

And we can use all the convex tricks!

e Fast: O(1/T?) convergence rate using acceleration.
e Tuning-free: line-search, restarts, data normalization, ...

e Certificates: termination based on min-norm subgradient.

255



Fast Training: Optimization Performance

We generate a performance profile using 438 training problems
from the UCI repo.
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Fast Training: Optimization Performance

We generate a performance profile using 438 training problems
from the UCI repo.

Gated RelLU Activations » RelLU Activations

Prop. of Problems Solved

=4
=3

1072 107! 10° 10! 10% 10° 107t 107 107 1070 10" 10! 10 10°

Time (Seconds) Time (Seconds)
=%= R-FISTA (Ours)  =#= Adam = SGD == MOSEK  =%= AL (Ours)

e R-FISTA/AL solve more, faster, than SGD and Adam.
28/



4. Convex Reformulations for Theory
of Neural Networks
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Optimal Sets: Summary

[MP23] Optimal Sets and Solution Paths of ReLU Networks. A.
Mishkin, M. Pilanci. ICML 2023
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Optimal Sets: Summary

[MP23] Optimal Sets and Solution Paths of ReLU Networks. A.
Mishkin, M. Pilanci. ICML 2023

Big ldea: use convex reformulations as an analytical tool to
understand the set of all minimizers for two-layer ReLU networks,

Non-Convex Solution Set (NC-ReLU):

m

. 1
O*(A) := argmin | D (XWiy)pwa; — yll3
W17w2 ]:1

m
+AY W3+ way,
j=1

3055



Optimal Set: Strong Duality

Convex Reformulation Solution Set (C-ReLU):
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W*(\) = arg min {H E DX (v; —w;),y
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Optimal Set: Strong Duality

Convex Reformulation Solution Set (C-ReLU):

1 2
W*(A) = arg min {H Z DX (v; —w;),y
vy, w; €4 2 ~ 2
D;eD
A Y il + .

Dieﬁ

Approach:
1. Convex objective + linear constraints = strong duality!
2. We compute the optimal set using the KKT conditions.

3. We then map back onto the non-convex parameterization.

» A little care is required to handle model symmetries.
3Vss
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e Optimal Fit: § := fp- (X) = > 0L, (XW7;) w3,

e Block Correlations: A collection of unique vectors ¢;, with
one per activation pattern D;.

Theorem 4.1 [MP23] Suppose m > m*. Then the optimal
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Optimal Set: Characterization

e Optimal Fit: § := fp- (X) = > 0L, (XW7;) w3,

e Block Correlations: A collection of unique vectors ¢;, with
one per activation pattern D;.

Theorem 4.1 [MP23] Suppose m > m*. Then the optimal
set for NC-ReLU up to permutation/split symmetries is
O*(N) = {(Wi,w2) : fwu(X) =7,
Vi e Sy, Wi = (a:/0)q;, wa; = (sA)/?, 05 > 0
Vi€ [2}7] \S)\,Wli =0, wo; = 0}.

o All optimal models have the same fit: fiy, ., (X) = 7.

N . Wy
e The neuron directions are unique: - = = qi/ N
14

3255



Optimal Set: Appearance of Solutions

Convex Non-Convex

[vil1 (Wil

The non-convex parameterization maps a convex polytope of
solutions into a curved manifold.
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Optimal Set: Exploration and Generalization

e Take 10,000 samples from the set of optimal neural networks.
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Optimal Set: Exploration and Generalization

e Take 10,000 samples from the set of optimal neural networks.

e All samples have (i) same training accuracy, (ii) same
model norm, but can generalize differently.

Regularization (A)

monks-1

0.01 4

0.001 4

0.0001 1

1le-05 A

T T
065 070 075
Test Accuracy

Regularization (A)

planning

0.014

0.001 4

0.0001 4

le-051

0.475 0.500 0.525 0.550 0.575 0.600
Test Accuracy
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Optimal Set: Exploration and Generalization

e Take 10,000 samples from the set of optimal neural networks.

e All samples have (i) same training accuracy, (ii) same
model norm, but can generalize differently.

monks-1

0.01 )<B

=

c

G 0.001 @{

k]

©

N

—

2 0.0001 1 [ |
> FVI
>

@

o

1e-051 | ! |

T
0.65 0.70

Test Accuracy

Regularization (A)

planning

0.014

0.001 4

0.0001 4

le-051

0.475 0.500 0.525 0.550 0.575 0.600
Test Accuracy

The solution you pick (implicit regularization) is crucial to good

test performance!
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Optimal Set: Comparison to SGD/Adam

Fix A = 107 and run SGD/Adam 1000 times with independent
initializations.
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Optimal Set: Comparison to SGD/Adam

Fix A = 107 and run SGD/Adam 1000 times with independent
initializations.

planning

Convex - }"

08 0.50 0.55 0.60 0.65
Test Accuracy

monks-1

Adam

==
S

Solver

Solver

Convex A
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Optimal Set: Comparison to SGD/Adam

Fix A = 107 and run SGD/Adam 1000 times with independent
initializations.

monks-1 planning

Adam 4 }'@ Adam A }-@-{

SGD A
[ [ |

Solver

SGD
! v

Convex @ Convex @

T T T T
0.50 0.55 0.60 0.65

0.5 0.6 0.7 0.8
Test Accuracy Test Accuracy

Solver

Note: SGD/Adam can converge to local minima which may

perform better in this low-regularization setting.
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Neuron Pruning: Minimal Models

Definition: An optimal model is minimal if there does not exist
another optimal model using a strict subset of active neurons.
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Neuron Pruning: Minimal Models

Definition: An optimal model is minimal if there does not exist
another optimal model using a strict subset of active neurons.

We prove:

e \ertices of the C-RelLU
Z l optimal set correspond
exactly to minimal models.

e There are at most n neurons
in a minimal model.

e The smallest minimal model
has exactly m* neurons.

» m* <= minimum width

for convex reformulation.

We also give a poly-time algorithm for computing minimal models.

< This is the first optimal pruning algorithm for neural nets!
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Neuron Pruning: Performance on UCI Datasets

We also show how optimal pruning can be adapted to prune past
m* using a simple correction step (details in bonus!).
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Neuron Pruning: Performance on UCI Datasets

We also show how optimal pruning can be adapted to prune past
m* using a simple correction step (details in bonus!).
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5. Extensions
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Extensions: Scalar Inputs
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SIMODS (In Review).

39%s



Extensions: Scalar Inputs

[Zeg+24] A Library of Mirrors: Deep Neural Nets in Low
Dimensions are Convex Lasso Models with Reflection Features. E.
Zeger, Y. Wang, A. Mishkin, T. Ergen, E. Candés, M. Pilanci.
SIMODS (In Review).

Big Idea: ReLU networks with one-dimensional inputs admit a
simpler convex reformulation as Lasso models.

39%s



Extensions: Scalar Inputs

[Zeg+24] A Library of Mirrors: Deep Neural Nets in Low
Dimensions are Convex Lasso Models with Reflection Features. E.
Zeger, Y. Wang, A. Mishkin, T. Ergen, E. Candés, M. Pilanci.
SIMODS (In Review).

Big Idea: ReLU networks with one-dimensional inputs admit a
simpler convex reformulation as Lasso models.

e The feature matrix for the Lasso model is determined by the
model architecture.

39%s



Extensions: Scalar Inputs

[Zeg+24] A Library of Mirrors: Deep Neural Nets in Low
Dimensions are Convex Lasso Models with Reflection Features. E.
Zeger, Y. Wang, A. Mishkin, T. Ergen, E. Candés, M. Pilanci.
SIMODS (In Review).

Big Idea: ReLU networks with one-dimensional inputs admit a
simpler convex reformulation as Lasso models.

e The feature matrix for the Lasso model is determined by the
model architecture.

e We extend our characterization of the set of optimal ReLU
neural networks to this setting.
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Extensions: Mode Connectivity

[KMP25] Exploring The Loss Landscape Of Regularized Neural
Networks Via Convex Duality. S. Kim, A. Mishkin, M. Pilanci.
ICLR 2025 (Oral).
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Extensions: Mode Connectivity

[KMP25] Exploring The Loss Landscape Of Regularized Neural
Networks Via Convex Duality. S. Kim, A. Mishkin, M. Pilanci.
ICLR 2025 (Oral).

Mode Connectivity: how and when are optimal ReLU networks
connected to each other in weight space?

e Our previous work assumed 1 > p: the width of the ReLU
network is at least the number of activation patterns.

e Now we study the optimal set as m ranges from m* to p,
creating a set of transitions in connectivity.
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Mode Connectivity: Staircase of Connectivity

Theorem 2 [KMP25]: The critical widths m* and M*
determine connectivity of the solution set:

1. m = m?*: the optimal set is a finite, fully disconnected set.

2. m > m* + 1: there exist at least two solutions which are
connected.

3. m = M™: there exists at least one disconnected solution.

4. m > M* + 1: permutations of each solution are connected.
There are no disconnected points.

5. m > min{n + 1,m* + M*}: the optimal set is fully
connected.

e Credit: this theorem is due to Sungyoon Kim, building off of
my optimal set work with Mert.
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Mode Connectivity: Staircase in Action

Staircase of Connectivity Visualized
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Mode Connectivity: Staircase in Action

Staircase of Connectivity Visualized

P e e ! :' ! : ' :
DL 00 : :
[ M [ ' ] M
S SR [
vomr+1 v M*+1 H
m . . . . .
m* M . min{m* + M*,n + 1}
PEEEITEETS cmmmbanay
e _e : H
! ‘ : ! ‘ ’ : m: number of neurons
e T

Takeaway: Connectivity increases in phases with network width.

— This definitively answers a long standing question in the
theory of neural networks!
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Extensions: Feature-Sparse Neural Networks

Convex LassoNet: Feature Sparse Convex Reformulations. A.
Mishkin, T. Ergen, F. Ruan, M. Pilanci, R. Tibshirani. (Ongoing)

Big Idea: combine feature-sparsity with global optimization to
improve generalization.

e Naive approaches to feature sparsity in ReLU networks using
group norms underperform [FS17].

e But sophistical approaches like LassoNet [LRT21] are hard to
train and can get trapped in local minima.

e We derive sparsity-inducing convex reformulations with global
optimization guarantees.
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Feature-Sparsity: Planted Neural Networks
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Feature-Sparsity: Real Data
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Extensions: Convexifying Deep Networks

Deep Convex Reformulations: Equivalences and Optimal Sets. A.
Mishkin, M. Pilanci. (Ongoing Work)

Big Idea: Extend convex reformulations to deep ReLU networks
without relying on restricted architectures.

e Three layer networks have non-linear combinations of
non-linear functions, which are challenging to analyze.

e But, once we understand three layer networks, we understand
k-layer networks for any k > 1.

e We prove that ReLU MLPs of arbitrary depth are convex
functions with non-convex tensor decomposition constraints.
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Let W e R%-1%d and consider the k-layer ReLU network

Jo(X) = (((xwm)+ w<2>>

W ) Wk
+ +

Question: how do we construct a convex reformulation?

1. The first two-layer block has a convex reformulation in terms
of the activation patterns D;,

p
fo(X) = (ZD,»XTP) ew® .| ww,
_l’_

=1 T

2. This creates another two-layer block, which has a convex
(2)
J

reformulation in terms of the activation patterns D
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Let T() € Rdo*--di he 3 tensor with low-rank decomposition,

K3 K3

TV € U ~ {T(” ATED e gl Vst TH =TV g W.(l),}

Proposition: Training a k-layer ReLU model,
min £ (fy(X), ).

is equivalent to solving the order k£ + 1 tensor program

min £ <X(k) ® T(k),y) st. TH e gk,
T(k)

e rank(T™®)) < dy Hle b;, where b; < d; is the number of
unique activation patterns occurring in layer [.

o If d; > 2p;d;, 1 for every [, then this becomes fully convex.
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Big-Picture Summary

Summary: We use convex reformulations for breakthroughs in
training and neural network theory.

e Fast Training: We develop two fast, tuning-free algorithms to
train (or approximate) two-layer ReLU networks.

e Optimal Sets: We characterize all global optima for training
two-layer ReLU networks.

e Deep Networks: We show that that deep ReLU networks are
tensor programs that convexify with increasing width.

e Additional Results: We provide many, many more results on
continuity, stability, optimization, and other areas.
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Overview: Publications and Ongoing Projects

Publications:

1. Fast Convex Optimization for Two-Layer ReLU Networks. A.
Mishkin, A. Sahiner, M. Pilanci. ICML 2022.

2. Optimal Sets and Solution Paths of ReLU Networks. A. Mishkin, M.
Pilanci. ICML 2023.

3. A Library of Mirrors: Deep Neural Nets in Low Dimensions are
Convex Lasso Models with Reflection Features. E. Zeger, Y. Wang,
A. Mishkin, T. Ergen, E. Candés, M. Pilanci. SIMODS (In Review).

4. Exploring The Loss Landscape Of Regularized Neural Networks Via
Convex Duality. S. Kim, A. Mishkin, M. Pilanci. ICLR 2025 (Oral).

Ongoing Projects:
1. Deep Convex Reformulations: Equivalences and Optimal Sets

2. Convex LassoNet: Feature-Sparse Convex Reformulations

5255



Overview: Additional Projects (Details in Bonus)

Additional Publications:

1. Directional Smoothness and Gradient Methods: Convergence and
Adaptivity. A. Mishkin*, A. Khaled*, Y. Wang, A. Defazio, R. M.
Gower. NeurlPS 2024.

2. Level Set Teleportation: An Optimization Perspective. A. Mishkin,
A. Bietti, R. M. Gower. AISTATS 2025.

3. Glocal Smoothness: Line Search can really help! C. Fox, A. Mishkin,
S. Vaswani, M. Schmidt. SIOPT (In Review).

Further Ongoing Projects:

1. Greedy 2-Coordinate Updates for Equality-Constrained Optimization
via Steepest Descent in the 1-Norm. A. V. Ramesh*, A. Mishkin*,
M. Schmidt, Y. Zhou, J. Lavington, J. She. (To Be Submitted)

2. Global Convergence of Gradient Flow on 1D Data with Sign Noise.
A. Mishkin, F. Bach.
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Main Contributions:

e Directional Smoothness: concrete functions M (z,y) that
measure the Lipschitz smoothness of f between x and .

e Path-Dependent Rates: Convergence bounds for gradient
descent that depend only on M (zj11,xg).

e Adaptive Methods: algorithms which are “strongly adaptive”
to the directional smoothness along the optimization path.
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Big ldea: rigorously analyze and experimentally evaluate
Newton-like “teleportation” methods [Zha+22].

Main Contributions:

e Sub-Level Set Teleportation: a co-routine to accelerate
optimization by maximizing the gradient over a sub-level set,

o = argmin {|VS (@) : /(@) < flan)}

e We give a novel analysis combining linear progress from
teleportation with sub-linear rates for non-strongly convex GD.

e We also develop parameter-free algorithms for solving general,
non-linear sub-level set teleportation problems in practice.

68/55
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Glocal Smoothness: Summary

[Fox+25] Glocal Smoothness: Line Search can really help! C. Fox,
A. Mishkin, S. Vaswani, M. Schmidt. SIOPT (In Review).

Big Question: Can we show provable speed-ups from line-search?
Main Contributions:

e Glocal smoothness: functions which are globally L-Lipschitz
smooth and locally L*-smooth (L* < L) around minimizers.

e Convergence rates showing GD with exact line-search and GD
with the Polyak step-size adapt to glocal smoothness.

e Extensions to Nesterov acceleration, with and without a
backtracking line-search.
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Greedy Block-Coordinate Descent: Summary

[Ram+23] Greedy 2-Coordinate Updates for Equality-Constrained
Optimization via Steepest Descent in the 1-Norm. A. V. Ramesh*,
A. Mishkin*, M. Schmidt, et al. (To Be Submitted)

Problem: greedy rules out-perform random selection for training
SVMs, but rates don't reflect this.

Main Contributions:

e New analyses of block-coordinate descent for separable
optimization problems with linear coupling constraints.

e Single Constraint: We prove that the GS-q rule [TY09] is
equivalent to steepest descent in the £1-norm, leading to fast
rates with p; dependence.

e Multiple Constraints: We extend the conformal vector
framework used by Tseng and Yun [TY09] to obtain rates

which improve with block-size.
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Gradient Flows: Summary

Global Convergence of Gradient Flow on 1D Data with Sign Noise.
A. Mishkin, F. Bach. (Ongoing)

Big Idea: understand how “neuron diversity” affects convergence
of the gradient flow for shallow RelLU networks.
Main Contributions:

e Diversity: model neurons have different activation patterns.

e We find diversity is preserved for simple anti-correlated noise
and the gradient flow is globally convergent.

e The gradient flow demonstrates saddle-to-saddle dynamics
[PF23], with saddles corresponding to model complexity.

Remaining Extensions:
1. Generalize the target noise to more interesting/realistic
regimes (e.g. fractional Brownian motion).
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Bonus: Convex Neural Networks

e Let X € R™*? be a training matrix and y € R™ the targets.
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Bonus: Convex Neural Networks

e Let X € R™*? be a training matrix and y € R™ the targets.
o Let fy: R™ — R be a neural network with parameters 6.
The standard ERM training problem is,
n
0" = al"gemiﬂz L(fo(zi), yi) +r(0),
i=1
where L is a loss function and r is a regularizer.
e fy is a convex neural network if this problem is convex in 6.

e This is distinct from input-convex neural networks, where
x — fg(z) is convex [AXK17].
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Bonus: Brief Literature Review

There are multiple flavours of convex neural networks:

e Bengio et al. [Ben+05] develop a gradient-boosting algorithm
where the problem of adding one neuron at a time is convex.
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Bonus: Brief Literature Review

There are multiple flavours of convex neural networks:

e Bengio et al. [Ben+05] develop a gradient-boosting algorithm
where the problem of adding one neuron at a time is convex.

e Bach [Bacl7] study the generalization performance of
infinite-width two-layer neural networks (which are convex).

e Pilanci and Ergen [PE20] develop finite-width convex
reformulations for two-layer ReLU networks using duality.

These approaches differ primarily in how they discretize the
underlying infinite-width neural network.
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Bonus: Function Space Viewpoint

Bengio et al. [Ben+05] and Bach [Bacl17] take a function space
approach:

e Let o be an activation function and define

H = {h cwe R h(x) = U(xTw)} .
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Bonus: Function Space Viewpoint

Bengio et al. [Ben+05] and Bach [Bacl17] take a function space
approach:

e Let o be an activation function and define

H = {h cwe R h(x) = U(xTw)} .

e Write problem as optimization over function space W':

min ZL sz'hi(xj),yj + R(w)
7=1 h;eH

e If R is sparsity inducing, then the final network may have
finite width.

/55



Bonus: Related Work Cont.

Bengio et al. [Ben+05]: algorithm-focused approach.
e Take R(w) = ||w|j1 and L(y,y) = max{0,1 — gy}.
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Bonus: Related Work Cont.

Bengio et al. [Ben+05]: algorithm-focused approach.
e Take R(w) = ||w|j1 and L(y,y) = max{0,1 — gy}.
e Show that nnz(w*) < n+ 1, meaning the final model is finite.

e Propose a boosting-type algorithm for iteratively adding
neurons.

765
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Bonus: Related Work Cont.

Bach [Bacl7]: analysis-focused approach.
e Handle spaces/functions properly using measure theory.

> W is a space of signed measures, prediction is

fa) = /H h(x)dw(h)

> R is weighted total variation of measure w.

> Setup reduces to Bengio et al. [Ben+05] in finite spaces.

e Guarantee that m* < n using a representer theorem.

e Derive an incremental algorithm based on Frank-Wolfe, but
incremental steps are NP-Hard for ReLU activations.
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Bonus: Key Representer Theorem

Theorem (Rogosinski [Rogb8])

If (2, B) is a Borel space, i is a measure, g;, i € {1,...n} are
measurable and pi-integrable, then there exists measure [i with
finite support at most n such that

/Q gi(w)du(w) = /Q gi()di()

for allie{1,...,n}.
Prediction for dataset with n dimensions:
fa) = [ hadu(n) =3 hyaiulhy).
H h=1
where m < n and h;(z) = ((z,w;)),,.

78/55



Convex Reformulations
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Convex Reformulations: Breaking it Down

p p
min|| Y DX (v —wj) = yl3 + A [lvjllz + [lwjl2
=1 =1

s.t.vj,wj € Kj:={w: (2D; — I)Xw > 0},
where D; = diag[1(Xg; > 0)].

e D; is a RelLU activation pattern induced by “gate” g;.
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Convex Reformulations: Breaking it Down

P

p
min|| Y D5 X (v —wy) = yl3 + A D [lojll2 + w2
j=1 j=1

st vj,wj € Kj:={w: (2D; — ) Xw > 0}
where D; = diag[1(Xg; > 0)].

e Dj is a RelLU activation pattern induced by “gate” g;.
» [Djl;; = 1if (x;,9;) > 0 and 0 otherwise.

e Weight-decay regularization turns into “group ¢1"” penalty.
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Convex Reformulations: Breaking it Down

P P
min|| Y DX (v —wy) = yl3 + A [lvjllz + [lwjl2
j=1 j=1

s.t.vj,wj € Kj :={w: (2D; — I)Xw > 0},
where D; = diag[1(Xg; > 0)].

e Djis a RelLU activation pattern induced by “gate” g;.
» [Djlis = 1if (x4,9:) > 0 and 0 otherwise.
o Weight-decay regularization turns into “group /1" penalty.

e The constraint v; € K; implies
(X?}j)+ = DjX?Jj.

That is, v; has the activation encoded by D;.
825



Bonus: Explicit Solution Mapping

Given (v*,w*), an optimal non-convex RelLU network is given by

Wi = v /y/|lvF [l wai =/ ||vf]]
C to NC:

Wi = wi/y/Iwill,  waj = —/[[wf]l.

e Optimal solution balances weight between layers.

Given (W7, ws3;), an optimal convex ReLU model is

* * . *

NC to C: . . .
w; = W7 |wa| Otherwise.

e Optimal solution combines weight from both layers.

83/55



Gated ReLU Networks and Cone
Decompositions
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Bonus: Gated ReLU Networks

Theorem 2.2 (informal): C-GReLU is equivalent to solving

2
NC-GRelLU : $mfﬂz¢g] (X, wi)a—yl3+2 ZlejHQ‘HOé]‘
J

with the “Gated ReLU" [FMS19] activation function
¢g(X,u) = diag(1(Xg > 0)) Xu,
and gate vectors g; such that

Dj = dlag[]l(Xg] > O)
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Bonus: Gated ReLU Networks

Theorem 2.2 (informal): C-GReLU is equivalent to solving

NC-GReLU : %ln*HZ%] (X, wj)a— y”z"‘ ZleJHQ—Ha]‘z
J
with the “Gated ReLU" [FMS19] activation function
¢g(X,u) = diag(1(Xg > 0)) Xu,

and gate vectors g; such that

Dj = dlag[]l(Xg] > 0)

Interpretation: if u; & KC;, then the activation must be decoupled
from the linear mapping in the non-convex model.

8555



Bonus: Cone Decompositions

Question: when are Gated ReLU and ReLU networks equivalent?
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Bonus: Cone Decompositions

Question: when are Gated ReLU and ReLU networks equivalent?

Consider special case where A = 0.

p
C-GReLU : min | > DjXu; —yl3.
j=1

V.S.

p
C-ReLU : min|| > DX (05— w;) - yl3.
j=1
s.t. vj,wj € Kj :={w: (2D; — I)Xw > 0},

86/55



Bonus: Equivalent Statement

; fon- e — s s 2
Equiv. Question: when does u; = v; — w; for some vj,w; € K;
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Equiv. Question: when does u; = v; — w; for some v;, w; € K;?

Answer: when K; — K; = R? and a “cone decomposition” exists.
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Bonus: Basic Cone Decomposition

Recall: €; = {w: (2D; — I)Xw > 0}.
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Bonus: Basic Cone Decomposition

Recall: €; = {w: (2D; — I)Xw > 0}.
e This is a polyhedral cone which we rewrite as

/c_ﬂ{w Jii - (zi, w) > 0},

where S; = (2D; — I).

Proposition 3.1 (informal): If X is full row-rank, then
aff(lC]) = ]Rd and ICj - ,Cj = Rd.

Unfortunately, there is no extension to full-rank X.

88/55



Bonus: Not All Cones are Equal

Alternative Idea: show we don't need “singular” cones K;,

K;—K; ¢ R
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Bonus: Not All Cones are Equal

Alternative Idea: show we don't need “singular” cones K;,

K;—K; ¢ R

Proposition 3.2 (informal): Suppose K; — K; C R%. Then,
there exists K; for which K; — K; = R? and K; C K.

Interpretation: if optimal u} 7 0, then set
wp = uj +uj.

It is possible to show this causes no problems.

89%s



Bonus: Cone Decomposition Proof Sketch

Proof: Works by iteratively constructing KC; s.t. K; C K;.
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Bonus: Cone Decomposition Proof Sketch

Proof: Works by iteratively constructing KC; s.t. K; C K;.

We sketch a simpler statement:

Proposition 3.2 (informal): Suppose C; = {0}. Then, there
exists /C; for which K; — K; = R? and K; C K;.

90/%s



Bonus: Cone Decomposition Proof Sketch

K5 ={w: [Sjh1 - (21, w) > 0}
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Cone Decompositions: Proof Sketch

K5 = Kjn{w : [Sj]22 - (x2,w) > 0}
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Bonus: Cone Decomposition Proof Sketch

K = Kj n{w: [S)]ss - (3,w0) > 0}
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Bonus: Cone Decomposition Proof Sketch

]63” = ]C;.’ N{w : —[S;]33 - (x3,w) > 0}

945



Bonus: Main Cone Decomposition Result

e The real proof is more complex, but this is the core idea.
» Build K; by switching signs of [S;];;.
» Equivalent to turning on/off activations.

e Leads to our main approximation result.
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Bonus: Main Cone Decomposition Result

e The real proof is more complex, but this is the core idea.
» Build K; by switching signs of [S;];;.
> Equivalent to turning on/off activations.

e Leads to our main approximation result.

Theorem 3.7 (informal): Let A > 0 and let p* be the optimal
value of the ReLU problem. There exists a C-GRelLU problem
with minimizer u* and optimal value d* satisfying,

& <p <d +2u(Xs) Y Il
]_),;E/D
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Details on Optimization Algorithms
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Bonus: ReLU by Cone Decomposition

1. Solve the gated RelLU problem:

P P
u* € argmin || E D Xuj —yll3+ A E [lwll2

u . .
Jj=1 j=1
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Bonus: ReLU by Cone Decomposition

1. Solve the gated RelLU problem:

p p
u* Eargmin” E DjXUj —y\|§+/\ E HUJHQ
u . .
Jj=1 j=1

2. Solve a cone decomposition:

vf,wj € argmin { L(vj, wy) : v; —wj = u}},
'Uj,’u)j

where L is a loss function.
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Jj=1 j=1

2. Solve a cone decomposition:

vf,wj € argmin { L(vj, wy) : v; —wj = u}},
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where L is a loss function.

3. Compute corresponding ReLU model.

Choosing:
o L(v,w) = ||v|j2 + ||w||2 gives an SOCP.
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Bonus: ReLU by Cone Decomposition

1. Solve the gated RelLU problem:

p p
u* Eargmin” E Dqu]' —y\|§+/\ E HUJHQ
u . .
Jj=1 j=1

2. Solve a cone decomposition:

* * : ey — an. — m¥
v, wj € argmin {L(vj,w;) : v; — wj = u]} ,
’Uj,’LUj
where L is a loss function.

3. Compute corresponding ReLU model.

Choosing:
o L(v,w) = ||v|j2 + ||w||2 gives an SOCP.
e L(v,w) =0 yields a linear feasibility problem.

9755



Bonus: R-FISTA

Consider “composite” optimization problem:

min (z) + g(x),
where f is L-smooth and g is convex. Smoothness implies

f(y) < ka,l/L(y)

= For)HV For), y—a) + oyl
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Bonus: R-FISTA

Consider “composite” optimization problem:

min f(2) + g(x),

where f is L-smooth and g is convex. Smoothness implies

f(y) < ka,l/L(y)
= For)HV For), y—a) + oyl

The FISTA algorithm minimizes @, », and handles g exactly:

Tpy1 = argmin Qy, . (y) + g(y)
Yy

ty — 1

lkt1

where ¢ = (1 + /14 4t2)/2.

Yk+1 = Tha1 + (Trg1 — i)

98/55



Bonus: R-FISTA Continued

We combine this with line-search and restarts:

99%s



Bonus: R-FISTA Continued

We combine this with line-search and restarts:

e Line-search: backtrack on 7 until:

f(@rr1(me)) < Quyenye (@rt1 (1)),

as proposed by [BTO09].

99%s



Bonus: R-FISTA Continued

We combine this with line-search and restarts:
e Line-search: backtrack on 7 until:
F@rr1(ne)) < Quymi (Tr41 ()
as proposed by [BTO09].
e Restarts: reset to y, = xy, if
(Tht1 — Ths Th1 — Y) > 0,

that is, ;41 is not a descent step with respect to
proximal-gradient mapping [OC15].
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Bonus: R-FISTA Continued

We combine this with line-search and restarts:

e Line-search: backtrack on 7 until:

f@rp1(me) < Quyne (a1 (k)
as proposed by [BTO09].
e Restarts: reset to y, = xy, if
(Tht1 — Ths Th1 — Y) > 0,

that is, ;41 is not a descent step with respect to
proximal-gradient mapping [OC15].

e And lots of other convex tricks...
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Bonus: AL Method
Let X; = (2D; — I)X so that v; € K; <= X,v; > 0 and define

F(v,w) —HZDX - wj) —y||2+AZvaH2+HwJHz
7j=1

Now we can form the augmented Lagrangian:

L5(0w,7.¢):=(8/2) Y [I(3i/6—Xivi) + 13

+11(Gi/6 — Xiwi)+ 3] + F (v, w).
We use the multiplier method to update the dual parameters:
(Uk-i-lv wk+1) = arg min [’5(7}7 W, Yk, Ck)v

v,Ww

YVes1 = (V6 — 6Xivi) 4, Cra1 = (G — 0 Xiw;) .
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Bonus: AL Method
Let X; = (2D; — I)X so that v; € K; <= X,v; > 0 and define

P P
F(v,w) = | > DX (v; — wy) —ylls + A Y [lvjll2 + wla-
j=1 j=1

Now we can form the augmented Lagrangian:

Ls(ww,7,€):=(5/2) Y [Il(i/0—Xivi)+[I3

D;eD (1)
+11(Gi/0 = Xiwi) 1 [13] + F (v, w).

We use the multiplier method to update the dual parameters:

(Uk-i-lv wk-‘rl) = arg min [’5(7)7 w, Vi, Ck)v
VW
Yer1 = (e — 6Xivi)+,  Coa1 = (G — O Xw;)+.

We use warm starts and propose a heuristic for 6.
10%5



Additional Optimization Experiments
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Bonus: Sub-sampling Patterns

Test Accuracy Active Neurons

e
5

102

Gated RelU

o
w

10% 4

103 4

107 10=° 10* 107 10

0.55 1
4 ]
0.50 Lo ]
D 0.451 103 4
o]
& 0404 102 ]
0.35 {
101 4
0.30

106 105 10 10-3 1076 105 10* 10°°

Regularization

Regularization

=9p= 10 Patterns == 100 Patterns == 1000 Patterns

e Variance induced by resampling D is minimal.

e Standard bias-variance trade-off.
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Bonus: Generalization Performance

Generalization performance is equivalent to non-convex solvers.

Dataset Convex Adam SGD

magic 85.9 86.9 86.4
statlog-heart 83.3 833 796
vertebral-col. 90.3 90.3 887
cardiotocogt. 89.9 36.5 88.9

abalone 66.2 65.3 66.1
annealing 90.6 93.7 887
car 87.8 94.8 90.1
bank 89.8 90.8 90.5

breast-cancer 68.4 64.9 68.4
page-blocks 94.0 97.1 96.9

contrac 55.1 54.4 53.7
congressional 63.2 62.1 67.8
spambase 93.3 93.5 03.2
synthetic 98.3 96.7 96.7
hill-valley 65.3 62.8 55.4
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Bonus: Comparison to Standard Baselines

Dataset C-GReLU C-ReLU RF Linear RBF
blood 79.9 80.5 75.8 745 779
chess-krvkp 99.2 98.6 989 97.2 98.4
conn-bench 90.2 854 732 683 854
cylinder-bands 76.5 784 775 716 716
fertility 80.0 80.0 750 750 750
heart-hung. 86.2 86.2 845 845 86.2
hill-valley 76.0 68.6 579 620 70.2
ilpd-liver 72.4 74.1 664 716 716
mammographic 77.6 78.6 80.7 80.7 80.2
monks-1 100 100 958 79.2 833
musk-1 94.7 95.8 926 86.3 958
ozone 97.6 97.6 974 972 974
pima 74.5 745 76.5 752 732
planning 69.4 63.9 66.7 667 69.4
spambase 93.5 93.6 94.1 0922 936
spectf 87.5 75.0 68.8 68.8 68.8
statlog-german 74.0 77.5 735 750 755

tic-tac-toe 99.0 99.0 995 984 100

10%5




Bonus:

Acceleration Ablation

1.0

=
o0

Prop. of Problems Solved

<
o

0.0

v

Effect of Acceleration on Convergence

<
=

N
N

0 500 1000 1500 2000
Number of Data Passes
R-FISTA == FISTA == PGD-LS + PGD
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Example: Discontinuous
Regularization Paths
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Example: Discontinuous Paths

Consider training a toy neural network: given (z1,y1), (22, y2),
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Example: Discontinuous Paths

Consider training a toy neural network: given (z1,y1), (22, y2),
1

f{lﬂiln 5((w1$1)+ —y1)* + 5((w1x2)+ —y2)? + Alwy].
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Example: Discontinuous Paths

Consider training a toy neural network: given (z1,y1), (22, y2),

1
min o ((wi21)+ — v)® + 5 ((wi1z2)+ = y2)® + Awi|.
T e (an 92)
i (1151, ?/1)
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Example: Discontinuous Paths

Consider training a toy ReLU network:
.1 9 1 9
min o ((wiz1)+ —y1)" + 5 (Wiz2)+ = y2)” + Ajwa]-

Ax~0 o (22, 92)

o (1, 1) | w}
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Example: Discontinuous Paths

Consider training a toy neural network:

1 1
min o ((wiz1)+ — y)? + 5 ((wiz2)4 — y2)? + Alwi.

At o (22, 12)

wy

© (xlayl) | fwi‘
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Example: Discontinuous Paths

Consider training a toy neural network:

1 1
min o ((wiz1)+ — y)? + 5 ((wiz2)4 — y2)? + Alwi.

AT o (72, 2) \\/\/
i w

1

Solution path is
discontinuous!
* (z1,1) w}
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Example: Discontinuous Paths

Consider training a toy neural network:

1 1
min o ((wiz1)+ — y)? + 5 ((wiz2)4 — y2)? + Alwi.

AT o (22, 12) \\/\/
i w

1

Solution path is
discontinuous!
* (z1,1) w}

Goal: Overcome these problems via convexification.
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Optimal Sets
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Bonus: C-ReLU Optimality Conditions

We form the Lagrangian for the convex reformulation:

_ 1
L(v,w,p",p7) = 5| > DX (vi—wi) —ylla+ A Y vl + [lwill2
DiE'ﬁ DiEﬁ

-5 () - ()]

where X; = (2D; — I).
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The KKT conditions are necessary and sufficient for optimality:
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Bonus: C-ReLU Optimality Conditions

We form the Lagrangian for the convex reformulation:

_ 1
L(v,w,p",p7) = 5| > DX (vi—wi) —ylla+ A Y vl + [lwill2
Die'ﬁ DiEﬁ

-5 () - ()]

where X; = (2D; — I).

The KKT conditions are necessary and sufficient for optimality:
e Stationary Lagrangian:
. =T
X'Di(g—y) - Xi pi € ON||vil2.

WV
af
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Bonus: C-ReLU Optimality Conditions

We form the Lagrangian for the convex reformulation:

_ 1
L(v,w,p",p7) = 5| > DX (vi—wi) —ylla+ A Y vl + [lwill2
Die'ﬁ DiEﬁ

-5 () - ()]

where X; = (2D; — I).

The KKT conditions are necessary and sufficient for optimality:
e Stationary Lagrangian:
. =T
X'Di(g—y) - Xi pi € ON||vil2.

WV
af

» It turns out each q;r is unique WLOG!
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Bonus: Characterizing the Optimal Set

Facts: let (0, p) be primal dual optimal.
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Facts: let (0, p) be primal dual optimal.
e Model fit ¢ is constant over optimal set W*(\).
e Implies correlation X " D;(y — ) is constant over W*(\).

e We may assume p is unique (e.g. min-norm dual solution).

Non-zero Blocks:
e Suppose 0; # 0.
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e Rearranging stationarity implies Ja; > 0:

0; = o [XTDi(y — ) — X’ipz} :

qi
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Bonus: Characterizing the Optimal Set

Facts: let (0, p) be primal dual optimal.
e Model fit ¢ is constant over optimal set W*(\).
e Implies correlation X " D;(y — ) is constant over W*(\).

e We may assume p is unique (e.g. min-norm dual solution).

Non-zero Blocks:
e Suppose 0; # 0.
e Then V||6;|]2 = s; = A6;/||0i]|2.

e Rearranging stationarity implies Ja; > 0:

0; = o [XTDi(y — ) — X’ipz} :

qi

e Every solution is a non-negative multiple of these ¢; vectors.

113/55



Bonus: Explicit Optimal Set

We gave a characterization of WW*(\) that depends on
Sy={ie2p]:30 € W*(N), 6, #0}.

Alternative expression involves additional linear constraints.
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Bonus: Explicit Optimal Set

We gave a characterization of W*(\) that depends on
Sy={ie2p]:30 € W*(N), 6, #0}.

Alternative expression involves additional linear constraints.

W*()\) = {9 Vi €&y, 0, = a;q;, 5 > 0,
2p

VJ S [2])] \5,\,9]‘ = 0, ZDzXez = ﬁ,
i=1

Vi€ [2p], X:0; > 0, <p, Xi0i> —0.}
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Bonus: Explicit Optimal Set

We gave a characterization of W*(\) that depends on
Sy={ie2p]:30 € W*(N), 6, #0}.

Alternative expression involves additional linear constraints.

W*()\) = {9 Vi €&y, 0, = a;q;, 5 > 0,
2p

VJ S [2])] \5,\,9]‘ = 0, ZDzXez = ﬁ,
i=1

Vi€ [2p], X:0; > 0, <p, Xi0i> —0.}

More complex, but also explicit.
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Bonus: Solution Mapping for C-RelLU

Given (v*,w*), an optimal non-convex RelLU network is given by

Wi = v /\/lvill, w2 = /o7l
C to NC:

Wij = wi/\[llwill,  wz; = —/llw.
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Given (v*,w*), an optimal non-convex RelLU network is given by
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e Optimal convex weights satisfy v} = a;g; so that

07 [l2 = aillqill2 = au.
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Bonus: Solution Mapping for C-RelLU

Given (v*,w*), an optimal non-convex RelLU network is given by

Wi = v /\/lvill, w2 = /o7l
C to NC:
Wi =wi/\/Ilwfll,  wo; = —/[lwf].

e Optimal convex weights satisfy v} = a;g; so that

07 [l2 = aillqill2 = au.

Recall structure of non-convex optima:

Oy = {(W1,w2) = fw,w,(X) =17,
Vie Sy, Wi = (a/3) i, wa; = (a;N)'?,a; > 0
Vie [2])] \S)\,Wli =0, wy; = 0}.
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Optimal Pruning
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Optimal Pruning: the Polytope of Solutions

2p
WA\ ={0:)_ D;X0; =3,
=1

Vi€ Sy, 0; = a;q;, a0 > 0,

Vj € [2p]\ Sy, 0; =0}
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Optimal Pruning: the Polytope of Solutions

2p
WA\ ={0:)_ D;X0; =3,
=1

Vi€ Sy, 0; = a;q;, a0 > 0,

Vj € [2p]\ Sy, 0; =0}

The C-ReLU optimal set is a
convex polytope!l
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Optimal Pruning: the Polytope of Solutions

2p
WA\ ={0:)_ D;X0; =3,
=1

Vi€ Sy, 0; = a;q;, a0 > 0,

Vj € [2p]\ Sy, 0; =0}

The C-ReLU optimal set is a
convex polytope!l
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Optimal Pruning: Vertices

1. Stack the g; vectors into a matrix Q@ = {q1 -+ q2p
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Optimal Pruning: Vertices

1. Stack the g; vectors into a matrix Q@ = {q1 -+ q2p

2. The C-ReLU Optimal Set in « space is then,
W*(A) = Qs,{a=0: Z(DiXC]i)ai =9, }
SN (2)
= Qs,Ps,-
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Optimal Pruning: Vertices

1. Stack the g; vectors into a matrix Q@ = {q1 -+ q2p

2. The C-ReLU Optimal Set in « space is then,

WA = Qs {a=0: > (DiXg)oy =7, }
i€S) (2)

= Qs,Ps, -

3. & € Ps, is a vertex iff {DiXQi}aﬁéo are linearly independent.
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Optimal Pruning: Vertices

1. Stack the g; vectors into a matrix Q@ = {q1 -+ q2p

2. The C-ReLU Optimal Set in « space is then,

WA = Qs {a=0: > (DiXg)oy =7, }
i€S) (2)

= Qs,Ps, -

3. & € Ps, is a vertex iff {DiXQi}aﬁéo are linearly independent.

Are these vertices special in some way?
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Optimal Pruning: Minimal Models

Definition: An optimal C-ReLU model 6* is minimal if there does
not exist another optimal model &’ with strictly smaller support.
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Optimal Pruning: Minimal Models

Definition: An optimal C-ReLU model 6* is minimal if there does
not exist another optimal model &’ with strictly smaller support.

e NC-RelLU: minimal <= sparsest (neuron-wise) model.

Proposition 3.2 (informal): For A > 0, 6 € W*(X) is minimal
iff the vectors {D; X¢;},,. o are linearly independent.

e NC-RelLU: minimal if (XW7;)4 are linearly independent.

Our Results:
1. We prove vertices of W*(\) are minimal models.
2. There are at most n neurons in a minimal model.

3. We give a poly-time algorithm for computing minimal models
starting from any model 6.
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Bonus: Optimal Pruning Pseudo-code

Algorithm Pruning solutions

Input: data matrix X, solution 6.
k < 0.
0k — 6.
while 35 # 0 s.t. ZieA)\(Gk) BZ-DZ-XHZ’? =0do
i* « argmax; {|8;| : i € A\(6)}
£ 1/|84]
9k+1 — gk(l _ tkﬂz)
k< k+1
end while
Output: final weights ¥
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Bonus: Optimal Pruning Pseudo-code

Algorithm Pruning solutions

Input: data matrix X, solution 6.
k < 0.
0k — 6.
while 35 # 0 s.t. ZieA)\(Gk) BZ-DZ-XHZ’? =0do
i* « argmax; {|8;| : i € A\(6)}
£ 1/|84]
9k+1 — gk(l _ tkﬂz)
k< k+1
end while
Output: final weights ¥

Let » = rank(X). Complexity to compute a minimal model:

0 (d3r3(§)3r +(n®+ nd)r(;)r) .
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Bonus: Complexity of Pruning

Algorithm Pruning solutions

Input: data matrix X, solution 6.
k<0, 60F 4.
while 38 # 0 s.t. 35,0 4, (o) 5:DiX 0} = 0 do

end while
Output: final weights 6%

e Computing a; = D; X 69 for every neuron: O(ndp)
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Bonus: Complexity of Pruning

Algorithm Pruning solutions

Input: data matrix X, solution 6.
k<« 0, 6% 6.

end while
Output: final weights 6%

e Computing a; = D; X 69 for every neuron: O(ndp)
e Checking for linear dependence: at most 2p times, do

» check (at most) n + 1 a; vectors for linearly dependence.
> Form matrix A and take SVD to compute null space: O(n?).
» Prune neuron: update at most n weights.

Total complexity: O(ndp + n3p).
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Bonus: Sub-Optimal Pruning

Algorithm Pruning solutions

Input: data matrix X, solution 6.
k+ 0.
0F < 0.
while 35 # 0 st. >, () 1D, X0 =0 do
i* « argmax; {|B;| : i € A\(0)}
t* « 1/|6;x|
9k+1 — 9k(1 _ tkﬂz)
k—k+1
end while
Output: final weights 6%
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Bonus: Sub-Optimal Pruning

Algorithm Pruning solutions

Input: data matrix X, solution 6.
k+ 0.
0F < 0.
while 35 # 0 st. >, () 1D, X0 =0 do
i* « argmax; {|B;| : i € A\(0)}
t* « 1/|6;x|
9k+1 — 9k(1 _ tkﬂz)
k—k+1
end while
Output: final weights 6%

Approximate with least-squares fit:

N 1
B e argminiH Z BiDiX0F — D; X053
? i€ AN (OF)\j
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Bonus: Sub-optimal Pruning

Approximate with least-squares fit:

~ 1
B € argmin _ | > BiDiX6F — D; X053
p i€ AN (OF)\j

e Algorithm is just structured pruning with a correction step!
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Bonus: Sub-optimal Pruning

Approximate with least-squares fit:

~ . 1
B e E’ﬂ”gml]ﬂ§|| Z BiDi X0} — D; X063
A i€AN (O]

e Algorithm is just structured pruning with a correction step!

e We use existing literature for structured pruning to select j.
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Bonus: Sub-optimal Pruning

Approximate with least-squares fit:

o 1
B € argmin 5” Z ﬂleXef — DJXHJH%
? i€ AN (05)\]

e Algorithm is just structured pruning with a correction step!
e We use existing literature for structured pruning to select j.

e Brute-force search works best:

1
arg min { min §|| Z B D; X0F — D; X053
j SRR
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Neuron Pruning: Performance on CIFAR-10

Train Accuracy Test Accuracy
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Convex Reformulations of Deep RelL U
Networks



Deep Reformulations: Setup

o Let X and T be tensors of order [ + 1 indexed by
10, .+, 1.

e We assume R(Z) . e R™*do apd T.(l) . ¢ Rdoxds

11552 —1 11552 —1

We equip these tensors with the reduction product

A @)
ROVoT® = 3 RY T,

Tyeeny¥l—1"
11581

e This sums over the product of all the matrix slices RE?... i1

and 7"

Tyeensbl—1"

12%5



Deep Reformulations: Recursive Patterns

Let Dgg) be the set of achievable ReLU patterns in the first
layer.
o Let X() = X ¢ Rnxo,

Define XZ(ZH) = D( )X(l) . 5o that we have,

cll—1

x® = pMx® = px

i1 i1 i1
X6 _ p@y@ _ p@pmy
ll,ZQ 12 11 12 11 :

e Here, Dfll) € Dg? is the set of ReLU patterns achievable by
our tensor product in the It layer,

DY = {1 (X001 2 0) : 70 € RAx-x}
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Deep Reformulations: Tensor Decomposition

Each tensor Ti(ll) is contained in at least one activation cone,
K = {1 e Rixdo—n 200 — 1) XD 0 1] 2 0}
7 i =
Now, let G(1) = R90*d1 and define

U+ ::{T(m) c RAoXP1xprxdis

ATO ¢ GO where I](-ll) = {il : Ti(ll) = K§»f)} ’
WD) ¢ R&> it

(I+1) 1) (I+1)
s.t. TJ1, I Z le,---,jl—hil ®Wil ’
iZEIJ('l”
y4i (l)
and Z ‘ij ‘ < dl}.
Ji=1
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Deep Reformulations: Layer-Merging Lemma

Lemma (Rank-Controlled Layer Elimination)

Let TW € GO, Then the activations at layer | + 2 are given by

d
Z(42) _ Z (X(l) o Ti(ll)>+ W | (3)

U

=1 N

if and only if the activations are also equal to

Z(+2) _ (X(H-l) @T(l+1)> :
+

for some T+ ¢ gU+1),
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