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1. Motivation: Convexity and Deep
Learning
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Motivation: Thirteen Years Since AlexNet

13 Years Ago: AlexNet won ILSVRC 2012 and started the
modern “deep learning” era of machine learning.

AlexNet improved over the next best model by ≈ 10% (top-5).

Key Techniques:

• “a large, deep convolutional neural network”

• “a very efficient GPU implementation of convolutional nets”

• “’dropout’, a recently-developed regularization method that
proved to be very effective”

Not so different from today. . .

https://image-net.org/challenges/LSVRC/2012/results.html#abstract
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Motivation: ImageNet Today

AlexNet won with 84.69% top-five accuracy [KSH12].

Today, models get 99.02% top-5 accuracy [Yua+21]!

(Using all sorts of tricks like pre-training, transformers, etc.)
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Motivation: DALL·E 2

We’ve developed amazing deep learning tools since AlexNet.

Generated by DALL·E 2

A bowl of soup that is a portal to another dimension as digital art.

https://openai.com/dall-e-2/ 5⁄55
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Motivation: Cost of Training DALL·E 2

DALL·E 2 has 5.5 billion parameters and took billions of Adam
iterations to fit [Ram+22].

But this is small compared to recent LLMs!

Consider OpenAI’s GPT-4 model:

• GPT-4 has 1.8 trillion parameters;

• It was trained on ≈ 13 trillion tokens;

• Training used 25,000 A100s for 90 to 100 days;

• At $1 per A100 hour, GPT-4 cost ≈ $63 million dollars.

https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
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Motivation: Challenges of Non-Convexity

Takeaway: Modern deep learning models are huge and extremely
expensive to train, but they have tremendous impact.

↪→ ChatGPT is the fastest-adopted piece of software in history!

x∗

x̃

x̃ f(x)

Challenges of Non-Convexity:

• Optimization: saddle-points, local minima, slow convergence.

• Optimality Conditions: stationarity ≠⇒ optimality.

• Mathematical Tools: No subgradients, no separating
hyperplanes, (usually) non-zero duality gap.

www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app 7⁄55
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Motivation: Convexity and Deep Learning

Key Question: How can we overcome non-convexity to get
better optimization and fundamental theory for neural networks?

This Thesis: By creating and studying convex reformulations.

Gated ReLU ReLU Network

Convex Gated Convex ReLU

Sol. Map Sol. Map

Cone
Decomp.

↪→ This approach yields new algorithms and new insights!
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Motivation: Two Layer Models

We primarily study two-layer ReLU networks.

Two-layer ReLU models are foundational building blocks:

• They are the basic units of models like MLPs and CNNs. . .

• . . . and layer-wise training is fast and generalizes well [BEO19].

• Two-layer networks can model self-attention [Sah+22]. . .

• . . . and are basic components of standard transformer blocks.

• They were key to word-embeddings (Word2Vec) [Mik+13]. . .

• . . . and are widely used in reinforcement learning [GAA23] and
for prediction on edge devices [TMK17].

More Importantly: What can we achieve with two-layers?
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Motivation: Tuning-Free Training Algorithms

Training neural networks involves many hyper-parameters.

• Step-Size: too small =⇒ very slow convergence.

• Step-Size: too big =⇒ catastrophic failure.

• Not to mention batch-size, momentum, decay schedules, . . .

Convex reformulations enable parameter-free global optimization!
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Motivation: Theory of Neural Networks

Going Beyond Optimization

• Better optimization is important for practitioners.

▶ Less babysitting means faster, cheaper, better training.

• But expensive hyper-parameter tuning hasn’t prevented neural
networks from being deployed everywhere.

▶ They’re in our cars (self-driving), phones (Face ID), classrooms
(ChatGPT), and even our research (ChatGPT again)!

• Understanding neural networks is important for everyone.

▶ Neural network theory is necessary for safety, reliability, and
future advances.

Let’s look at some examples. . .
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Motivation: Global Optima and Generalization

• Suppose we could take 10,000 models from the set of globally
optimal neural networks given a fixed training set.

• Q: Are they going to generalize differently?
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Conclusion: We need to distinguish between global optima!
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Motivation: Structure of Solution Sets

Q: What is the structure of the optimal set?

• Are the solutions discrete or highly connected?

• Are connected components disorganized or very structured?

A: It’s a convex polytope!
Non-Convex solution set maps the
polytope to a manifold.

↪→ A connectivity hierarchy emerges with network width!
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Overview: Big Idea

Overall Problem: neural networks are hard to train and even
harder to analyze because of non-convexity.

Thesis Goal: leverage convex reformulations of neural
networks to break the barrier of non-convexity and obtain,

• faster, more reliable optimization algorithms for training
shallow neural networks;

• a variational theory for the optimal set, solution path, and
stability of shallow neural network optimization;

• extensions to deep, fully-connected ReLU networks.
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2. Background on Convex
Reformulations
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Convex Reformulations: Flavor of Results

Basic Idea: We start with a non-convex optimization problem and
derive an equivalent convex program.

Equivalent means:

• The global minima have the same values: p∗ = q∗

• We can map every global minimum u∗ for one problem into a
global minimum v∗ of the other.
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Convex Reformulations: Two-Layer ReLU Networks

Non-Convex Problem (NC-ReLU)

min
W1,w2

1

2
∥

m∑
j=1

(XW1j)+w2j − y∥22︸ ︷︷ ︸
Squared Error

+λ

m∑
j=1

∥W1j∥22 + |w2j |2︸ ︷︷ ︸
Weight Decay

,

where (z)+ = max {z, 0}, X ∈ Rn×d, and y ∈ Rn.

X

W1j

ŷ

w2j
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Aside: ReLU Activation Patterns

Each ReLU neuron is active on a half-space: (XW1j)+

x1

x4x2

x3

x5

W1j

18⁄55



Aside: ReLU Activation Patterns

Each ReLU neuron is active on a half-space: (XW1j)+

x1

x4x2

x3

x5

W1j

18⁄55



Aside: ReLU Activation Patterns

Each ReLU neuron is active on a half-space: (XW1j)+
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Dj =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0


W1j

Activation patterns linearize the ReLU: (XW1j)+ = DjXW1j .
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Convex Reformulations: Convex Problem

Convex Reformulation (C-ReLU) [PE20]

min
v,w

1

2
∥

p∑
j=1

DjX(vj − wj)− y∥22 + λ

p∑
j=1

∥vj∥2 + ∥wj∥2

s.t. vj , wj ∈ Kj :=
{
w : (2Dj − I)Xw ≥ 0︸ ︷︷ ︸

⇐⇒ (Xw)+=DjXw

}
,

where p is the number of unique activation patterns.

X

X

X

D3X

D2X

D1X

ŷ

uj
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Convex Reformulations: Hardness

Key Result: if network width m satisfies m ≥ m∗ for some
m∗ ≤ n, then C-ReLU and NC-ReLU are equivalent [PE20].

How hard is the convex program?

p =
∣∣∣{Dj = diag[1(Xgj ≥ 0)] : gj ∈ Rd

}∣∣∣
The convex program is:

• Exponential in general: p ∈ O(r · (nr )
r), where r = rank(X).

• Highly structured — it’s a linear model!

Takeaway: We exchange one kind of hardness for another.
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3. Better Optimization via Convex
Reformulations
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Better Optimization via Convex Reformulations

[MSP22] Fast Convex Optimization for Two-Layer ReLU Networks.
A. Mishkin, A. Sahiner, M. Pilanci. ICML 2022.

Big Idea: Use convex reformulations as an optimization tool.

• We could solve C-ReLU using interior point methods, but
computing the Hessian is infeasible for large n and d.

• We could use projected GD, but projecting onto Ki is an
expensive quadratic program.

• Instead, we develop fast solvers based on the augmented
Lagrangian method and on a “gated ReLU” relaxation.

24⁄55



Better Optimization via Convex Reformulations

[MSP22] Fast Convex Optimization for Two-Layer ReLU Networks.
A. Mishkin, A. Sahiner, M. Pilanci. ICML 2022.

Big Idea: Use convex reformulations as an optimization tool.

• We could solve C-ReLU using interior point methods, but
computing the Hessian is infeasible for large n and d.

• We could use projected GD, but projecting onto Ki is an
expensive quadratic program.

• Instead, we develop fast solvers based on the augmented
Lagrangian method and on a “gated ReLU” relaxation.

24⁄55



Better Optimization via Convex Reformulations

[MSP22] Fast Convex Optimization for Two-Layer ReLU Networks.
A. Mishkin, A. Sahiner, M. Pilanci. ICML 2022.

Big Idea: Use convex reformulations as an optimization tool.

• We could solve C-ReLU using interior point methods, but
computing the Hessian is infeasible for large n and d.

• We could use projected GD, but projecting onto Ki is an
expensive quadratic program.

• Instead, we develop fast solvers based on the augmented
Lagrangian method and on a “gated ReLU” relaxation.

24⁄55



Better Optimization via Convex Reformulations

[MSP22] Fast Convex Optimization for Two-Layer ReLU Networks.
A. Mishkin, A. Sahiner, M. Pilanci. ICML 2022.

Big Idea: Use convex reformulations as an optimization tool.

• We could solve C-ReLU using interior point methods, but
computing the Hessian is infeasible for large n and d.

• We could use projected GD, but projecting onto Ki is an
expensive quadratic program.

• Instead, we develop fast solvers based on the augmented
Lagrangian method and on a “gated ReLU” relaxation.

24⁄55



Better Optimization via Convex Reformulations

[MSP22] Fast Convex Optimization for Two-Layer ReLU Networks.
A. Mishkin, A. Sahiner, M. Pilanci. ICML 2022.

Big Idea: Use convex reformulations as an optimization tool.

• We could solve C-ReLU using interior point methods, but
computing the Hessian is infeasible for large n and d.

• We could use projected GD, but projecting onto Ki is an
expensive quadratic program.

• Instead, we develop fast solvers based on the augmented
Lagrangian method and on a “gated ReLU” relaxation.

24⁄55



Fast Training: Gated ReLU Networks

Recall the convex reformulation for a two-layer ReLU Network:

C-ReLU : min
u
∥

p∑
j=1

DjX(vj − wj)− y∥22 + λ

p∑
j=1

∥vj∥2 + ∥wj∥2

s.t. vj , wj ∈ Kj := {w : (2Dj − I)Xw ≥ 0} ,

Relaxation: drop the cone constraints and simplify to obtain,

C-GReLU : min
u
∥

p∑
j=1

DjXuj − y∥22 + λ

p∑
j=1

∥uj∥2

Questions:

1. Is this still a neural network?

2. When is it a good approximation for C-ReLU?
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Fast Training: Gated ReLU Networks

1. Is CG-ReLU equivalent to a neural network architecture?

Theorem 2.2 [MSP22]: C-GReLU is equivalent to a neural
network with a “Gated ReLU” [FMS19] activation function.

2. When does CG-ReLU give a good approximation for C-ReLU?

Theorem 3.7 [MSP22]: Let λ ≥ 0 and let p∗ be the optimal
value of the ReLU problem. There exists a C-GReLU problem
with minimizer u∗ and optimal value d∗ satisfying,

d∗ ≤ p∗ ≤ d∗ + 2λκ(X̃J )
∑
Di∈D̃

∥u∗i ∥2.
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Fast Training: Solving the Convex Programs

We develop two algorithms for solving the convex reformulations:

• R-FISTA: a restarted FISTA variant for Gated ReLU.

• AL: an augmented Lagrangian method for the (constrained)
ReLU Problem.

And we can use all the convex tricks!

• Fast: O(1/T 2) convergence rate using acceleration.

• Tuning-free: line-search, restarts, data normalization, . . .

• Certificates: termination based on min-norm subgradient.
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Fast Training: Optimization Performance

We generate a performance profile using 438 training problems
from the UCI repo.
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• R-FISTA/AL solve more, faster, than SGD and Adam.
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Fast Training: Optimization Performance

We generate a performance profile using 438 training problems
from the UCI repo.
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4. Convex Reformulations for Theory
of Neural Networks
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Optimal Sets: Summary

[MP23] Optimal Sets and Solution Paths of ReLU Networks. A.
Mishkin, M. Pilanci. ICML 2023

Big Idea: use convex reformulations as an analytical tool to
understand the set of all minimizers for two-layer ReLU networks,

Non-Convex Solution Set (NC-ReLU):

O∗(λ) := argmin
W1,w2

1

2
∥

m∑
j=1

(XW1j)+w2j − y∥22

+ λ
m∑
j=1

∥W1j∥22 + |w2j |2,
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Optimal Set: Strong Duality

Convex Reformulation Solution Set (C-ReLU):

W∗(λ) = argmin
vi,wi∈Ki

{
1

2

∥∥∥∥ ∑
Di∈D̃

DiX(vi − wi), y

∥∥∥∥2
2

+ λ
∑
Di∈D̃

∥vi∥2 + ∥wi∥2
}
.

Approach:

1. Convex objective + linear constraints =⇒ strong duality!

2. We compute the optimal set using the KKT conditions.

3. We then map back onto the non-convex parameterization.

▶ A little care is required to handle model symmetries.
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Optimal Set: Characterization

• Optimal Fit: ŷ := fθ∗(X) =
∑m

j=1(XW ∗
1j)+w

∗
2j .

• Block Correlations: A collection of unique vectors qi, with
one per activation pattern Di.

Theorem 4.1 [MP23] Suppose m ≥ m∗. Then the optimal
set for NC-ReLU up to permutation/split symmetries is

O∗(λ) =
{
(W1, w2) : fW1,w2(X) = ŷ,

∀ i ∈ Sλ,W1i = (αi/λ)
1/2qi, w2i = (αiλ)

1/2, αi ≥ 0

∀ i ∈ [2p] \ Sλ,W1i = 0, w2i = 0
}
.

• All optimal models have the same fit: fW1,w2(X) = ŷ.

• The neuron directions are unique:
W ∗

1i
∥W ∗

1i∥2
= qi/λi.
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Optimal Set: Appearance of Solutions

The non-convex parameterization maps a convex polytope of
solutions into a curved manifold.
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Optimal Set: Exploration and Generalization

• Take 10,000 samples from the set of optimal neural networks.

• All samples have (i) same training accuracy, (ii) same
model norm, but can generalize differently.
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The solution you pick (implicit regularization) is crucial to good
test performance!
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Optimal Set: Comparison to SGD/Adam

Fix λ = 10−5 and run SGD/Adam 1000 times with independent
initializations.

0.5 0.6 0.7 0.8
Test Accuracy

Convex

SGD

Adam

So
lv

er

monks-1

0.50 0.55 0.60 0.65
Test Accuracy

Convex

SGD

Adam

So
lv

er

planning

Note: SGD/Adam can converge to local minima which may
perform better in this low-regularization setting.
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Neuron Pruning: Minimal Models

Definition: An optimal model is minimal if there does not exist
another optimal model using a strict subset of active neurons.

We prove:

• Vertices of the C-ReLU
optimal set correspond
exactly to minimal models.

• There are at most n neurons
in a minimal model.

• The smallest minimal model
has exactly m∗ neurons.
▶ m∗ ⇐⇒ minimum width

for convex reformulation.

We also give a poly-time algorithm for computing minimal models.

↪→ This is the first optimal pruning algorithm for neural nets!
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Neuron Pruning: Performance on UCI Datasets

We also show how optimal pruning can be adapted to prune past
m∗ using a simple correction step (details in bonus!).
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5. Extensions
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Extensions: Scalar Inputs

[Zeg+24] A Library of Mirrors: Deep Neural Nets in Low
Dimensions are Convex Lasso Models with Reflection Features. E.
Zeger, Y. Wang, A. Mishkin, T. Ergen, E. Candès, M. Pilanci.

SIMODS (In Review).

Big Idea: ReLU networks with one-dimensional inputs admit a
simpler convex reformulation as Lasso models.

• The feature matrix for the Lasso model is determined by the
model architecture.

• We extend our characterization of the set of optimal ReLU
neural networks to this setting.
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Extensions: Mode Connectivity

[KMP25] Exploring The Loss Landscape Of Regularized Neural
Networks Via Convex Duality. S. Kim, A. Mishkin, M. Pilanci.

ICLR 2025 (Oral).

Mode Connectivity: how and when are optimal ReLU networks
connected to each other in weight space?

• Our previous work assumed m ≥ p: the width of the ReLU
network is at least the number of activation patterns.

• Now we study the optimal set as m ranges from m∗ to p,
creating a set of transitions in connectivity.
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Mode Connectivity: Staircase of Connectivity

Theorem 2 [KMP25]: The critical widths m∗ and M∗

determine connectivity of the solution set:

1. m = m∗: the optimal set is a finite, fully disconnected set.

2. m ≥ m∗ + 1: there exist at least two solutions which are
connected.

3. m = M∗: there exists at least one disconnected solution.

4. m ≥M∗ + 1: permutations of each solution are connected.
There are no disconnected points.

5. m ≥ min {n+ 1,m∗ +M∗}: the optimal set is fully
connected.

• Credit: this theorem is due to Sungyoon Kim, building off of
my optimal set work with Mert.
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There are no disconnected points.

5. m ≥ min {n+ 1,m∗ +M∗}: the optimal set is fully
connected.

• Credit: this theorem is due to Sungyoon Kim, building off of
my optimal set work with Mert.
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Mode Connectivity: Staircase in Action

Staircase of Connectivity Visualized

Takeaway: Connectivity increases in phases with network width.

↪→ This definitively answers a long standing question in the
theory of neural networks!
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Extensions: Feature-Sparse Neural Networks

Convex LassoNet: Feature Sparse Convex Reformulations. A.
Mishkin, T. Ergen, F. Ruan, M. Pilanci, R. Tibshirani. (Ongoing)

Big Idea: combine feature-sparsity with global optimization to
improve generalization.

• Naive approaches to feature sparsity in ReLU networks using
group norms underperform [FS17].

• But sophistical approaches like LassoNet [LRT21] are hard to
train and can get trapped in local minima.

• We derive sparsity-inducing convex reformulations with global
optimization guarantees.
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Feature-Sparsity: Planted Neural Networks
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Feature-Sparsity: Real Data
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Extensions: Convexifying Deep Networks

Deep Convex Reformulations: Equivalences and Optimal Sets. A.
Mishkin, M. Pilanci. (Ongoing Work)

Big Idea: Extend convex reformulations to deep ReLU networks
without relying on restricted architectures.

• Three layer networks have non-linear combinations of
non-linear functions, which are challenging to analyze.

• But, once we understand three layer networks, we understand
k-layer networks for any k ≥ 1.

• We prove that ReLU MLPs of arbitrary depth are convex
functions with non-convex tensor decomposition constraints.
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Deep Networks: Layer Elimination

Let W (l) ∈ Rdl−1×dl and consider the k-layer ReLU network

fθ(X) =

(((
XW (1)

)
+
W (2)

)
+

W (3) · · ·
)

+

W (k).

Question: how do we construct a convex reformulation?

1. The first two-layer block has a convex reformulation in terms
of the activation patterns Di,

fθ(X) =

( p∑
i=1

DiXT
(2)
i

)
+

⊗W
(3)
i · · ·


+

W (k).

2. This creates another two-layer block, which has a convex

reformulation in terms of the activation patterns D
(2)
j . . .
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Deep Networks: Tensor Programs

Let T (l) ∈ Rd0×...dl be a tensor with low-rank decomposition,

T (l) ∈ G(l) ≈
{
T (l) : ∃T (l−1) ∈ G(l−1) s.t. T l

i = T
(l−1)
i ⊗W

(l)
i .
}

Proposition: Training a k-layer ReLU model,

min
θ
L (fθ(X), y) ,

is equivalent to solving the order k + 1 tensor program

min
T (k)
L
(
X(k) ⊙ T (k), y

)
s.t. T (k) ∈ G(k).

• rank(T (k)) ≤ d0
∏k

l=1 bl, where bl ≤ dl is the number of
unique activation patterns occurring in layer l.

• If dl ≥ 2pldl+1 for every l, then this becomes fully convex.
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Deep Networks: Tensor Parameterization

Q: What does the tensor T represent?

A: Each entry Ti0,i1,...,ik is a path through the network DAG.

x3

x2

x1

ŷ

Ti0,i1,...,ik
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Big-Picture Summary
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Big-Picture Summary

Summary: We use convex reformulations for breakthroughs in
training and neural network theory.

• Fast Training: We develop two fast, tuning-free algorithms to
train (or approximate) two-layer ReLU networks.

• Optimal Sets: We characterize all global optima for training
two-layer ReLU networks.

• Deep Networks: We show that that deep ReLU networks are
tensor programs that convexify with increasing width.

• Additional Results: We provide many, many more results on
continuity, stability, optimization, and other areas.
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Overview: Publications and Ongoing Projects

Publications:

1. Fast Convex Optimization for Two-Layer ReLU Networks. A.
Mishkin, A. Sahiner, M. Pilanci. ICML 2022.

2. Optimal Sets and Solution Paths of ReLU Networks. A. Mishkin, M.
Pilanci. ICML 2023.

3. A Library of Mirrors: Deep Neural Nets in Low Dimensions are
Convex Lasso Models with Reflection Features. E. Zeger, Y. Wang,
A. Mishkin, T. Ergen, E. Candès, M. Pilanci. SIMODS (In Review).

4. Exploring The Loss Landscape Of Regularized Neural Networks Via
Convex Duality. S. Kim, A. Mishkin, M. Pilanci. ICLR 2025 (Oral).

Ongoing Projects:

1. Deep Convex Reformulations: Equivalences and Optimal Sets

2. Convex LassoNet: Feature-Sparse Convex Reformulations
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Overview: Additional Projects (Details in Bonus)

Additional Publications:

1. Directional Smoothness and Gradient Methods: Convergence and
Adaptivity. A. Mishkin*, A. Khaled*, Y. Wang, A. Defazio, R. M.
Gower. NeurIPS 2024.

2. Level Set Teleportation: An Optimization Perspective. A. Mishkin,
A. Bietti, R. M. Gower. AISTATS 2025.

3. Glocal Smoothness: Line Search can really help! C. Fox, A. Mishkin,
S. Vaswani, M. Schmidt. SIOPT (In Review).

Further Ongoing Projects:

1. Greedy 2-Coordinate Updates for Equality-Constrained Optimization
via Steepest Descent in the 1-Norm. A. V. Ramesh*, A. Mishkin*,
M. Schmidt, Y. Zhou, J. Lavington, J. She. (To Be Submitted)

2. Global Convergence of Gradient Flow on 1D Data with Sign Noise.
A. Mishkin, F. Bach.
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Directional Smoothness: Summary

[Mis+24] Directional Smoothness and Gradient Methods:
Convergence and Adaptivity. A. Mishkin*, A. Khaled*, Y. Wang,
A. Defazio, R. M. Gower. NeurIPS 2024.

Big Idea: GD is a local algorithm, so the analysis should be local.

Main Contributions:

• Directional Smoothness: concrete functions M(x, y) that
measure the Lipschitz smoothness of f between x and y.

• Path-Dependent Rates: Convergence bounds for gradient
descent that depend only on M(xk+1, xk).

• Adaptive Methods: algorithms which are “strongly adaptive”
to the directional smoothness along the optimization path.

67⁄55



Directional Smoothness: Summary

[Mis+24] Directional Smoothness and Gradient Methods:
Convergence and Adaptivity. A. Mishkin*, A. Khaled*, Y. Wang,
A. Defazio, R. M. Gower. NeurIPS 2024.

Big Idea: GD is a local algorithm, so the analysis should be local.

Main Contributions:

• Directional Smoothness: concrete functions M(x, y) that
measure the Lipschitz smoothness of f between x and y.

• Path-Dependent Rates: Convergence bounds for gradient
descent that depend only on M(xk+1, xk).

• Adaptive Methods: algorithms which are “strongly adaptive”
to the directional smoothness along the optimization path.

67⁄55



Directional Smoothness: Summary

[Mis+24] Directional Smoothness and Gradient Methods:
Convergence and Adaptivity. A. Mishkin*, A. Khaled*, Y. Wang,
A. Defazio, R. M. Gower. NeurIPS 2024.

Big Idea: GD is a local algorithm, so the analysis should be local.

Main Contributions:

• Directional Smoothness: concrete functions M(x, y) that
measure the Lipschitz smoothness of f between x and y.

• Path-Dependent Rates: Convergence bounds for gradient
descent that depend only on M(xk+1, xk).

• Adaptive Methods: algorithms which are “strongly adaptive”
to the directional smoothness along the optimization path.

67⁄55



Directional Smoothness: Summary

[Mis+24] Directional Smoothness and Gradient Methods:
Convergence and Adaptivity. A. Mishkin*, A. Khaled*, Y. Wang,
A. Defazio, R. M. Gower. NeurIPS 2024.

Big Idea: GD is a local algorithm, so the analysis should be local.

Main Contributions:

• Directional Smoothness: concrete functions M(x, y) that
measure the Lipschitz smoothness of f between x and y.

• Path-Dependent Rates: Convergence bounds for gradient
descent that depend only on M(xk+1, xk).

• Adaptive Methods: algorithms which are “strongly adaptive”
to the directional smoothness along the optimization path.

67⁄55



Directional Smoothness: Summary

[Mis+24] Directional Smoothness and Gradient Methods:
Convergence and Adaptivity. A. Mishkin*, A. Khaled*, Y. Wang,
A. Defazio, R. M. Gower. NeurIPS 2024.

Big Idea: GD is a local algorithm, so the analysis should be local.

Main Contributions:

• Directional Smoothness: concrete functions M(x, y) that
measure the Lipschitz smoothness of f between x and y.

• Path-Dependent Rates: Convergence bounds for gradient
descent that depend only on M(xk+1, xk).

• Adaptive Methods: algorithms which are “strongly adaptive”
to the directional smoothness along the optimization path.

67⁄55



Directional Smoothness: Summary

[Mis+24] Directional Smoothness and Gradient Methods:
Convergence and Adaptivity. A. Mishkin*, A. Khaled*, Y. Wang,
A. Defazio, R. M. Gower. NeurIPS 2024.

Big Idea: GD is a local algorithm, so the analysis should be local.

Main Contributions:

• Directional Smoothness: concrete functions M(x, y) that
measure the Lipschitz smoothness of f between x and y.

• Path-Dependent Rates: Convergence bounds for gradient
descent that depend only on M(xk+1, xk).

• Adaptive Methods: algorithms which are “strongly adaptive”
to the directional smoothness along the optimization path.

67⁄55



Level Set Teleportation: Summary

[MBG25] Level Set Teleportation: An Optimization Perspective. A.
Mishkin, A. Bietti, R. M. Gower. AISTATS 2025.

Big Idea: rigorously analyze and experimentally evaluate
Newton-like “teleportation” methods [Zha+22].

Main Contributions:

• Sub-Level Set Teleportation: a co-routine to accelerate
optimization by maximizing the gradient over a sub-level set,

x+k = argmin
x

{∥∇f(x)∥2 : f(x) ≤ f(xk)} .

• We give a novel analysis combining linear progress from
teleportation with sub-linear rates for non-strongly convex GD.

• We also develop parameter-free algorithms for solving general,
non-linear sub-level set teleportation problems in practice.
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Glocal Smoothness: Summary

[Fox+25] Glocal Smoothness: Line Search can really help! C. Fox,
A. Mishkin, S. Vaswani, M. Schmidt. SIOPT (In Review).

Big Question: Can we show provable speed-ups from line-search?

Main Contributions:

• Glocal smoothness: functions which are globally L-Lipschitz
smooth and locally L∗-smooth (L∗ ≪ L) around minimizers.

• Convergence rates showing GD with exact line-search and GD
with the Polyak step-size adapt to glocal smoothness.

• Extensions to Nesterov acceleration, with and without a
backtracking line-search.
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Greedy Block-Coordinate Descent: Summary

[Ram+23] Greedy 2-Coordinate Updates for Equality-Constrained
Optimization via Steepest Descent in the 1-Norm. A. V. Ramesh*,
A. Mishkin*, M. Schmidt, et al. (To Be Submitted)

Problem: greedy rules out-perform random selection for training
SVMs, but rates don’t reflect this.

Main Contributions:

• New analyses of block-coordinate descent for separable
optimization problems with linear coupling constraints.

• Single Constraint: We prove that the GS-q rule [TY09] is
equivalent to steepest descent in the ℓ1-norm, leading to fast
rates with µ1 dependence.

• Multiple Constraints: We extend the conformal vector
framework used by Tseng and Yun [TY09] to obtain rates
which improve with block-size.
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Gradient Flows: Summary

Global Convergence of Gradient Flow on 1D Data with Sign Noise.
A. Mishkin, F. Bach. (Ongoing)

Big Idea: understand how “neuron diversity” affects convergence
of the gradient flow for shallow ReLU networks.

Main Contributions:

• Diversity: model neurons have different activation patterns.

• We find diversity is preserved for simple anti-correlated noise
and the gradient flow is globally convergent.

• The gradient flow demonstrates saddle-to-saddle dynamics
[PF23], with saddles corresponding to model complexity.

Remaining Extensions:

1. Generalize the target noise to more interesting/realistic
regimes (e.g. fractional Brownian motion).
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Background on Convex Neural
Networks
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Bonus: Convex Neural Networks

• Let X ∈ Rn×d be a training matrix and y ∈ Rn the targets.

• Let fθ : Rn → R be a neural network with parameters θ.

The standard ERM training problem is,

Θ∗ = argmin
θ

n∑
i=1

L(fθ(xi), yi) + r(θ),

where L is a loss function and r is a regularizer.

• fθ is a convex neural network if this problem is convex in θ.

• This is distinct from input-convex neural networks, where
x 7→ fθ(x) is convex [AXK17].
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Bonus: Brief Literature Review

There are multiple flavours of convex neural networks:

• Bengio et al. [Ben+05] develop a gradient-boosting algorithm
where the problem of adding one neuron at a time is convex.

• Bach [Bac17] study the generalization performance of
infinite-width two-layer neural networks (which are convex).

• Pilanci and Ergen [PE20] develop finite-width convex
reformulations for two-layer ReLU networks using duality.

These approaches differ primarily in how they discretize the
underlying infinite-width neural network.
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Bonus: Function Space Viewpoint

Bengio et al. [Ben+05] and Bach [Bac17] take a function space
approach:

• Let σ be an activation function and define

H =
{
h : w ∈ Rd, h(x) = σ(x⊤w)

}
.

• Write problem as optimization over function space W :

min
w∈W


n∑

j=1

L

∑
hi∈H

wihi(xj), yj

+R(w)

 .

• If R is sparsity inducing, then the final network may have
finite width.
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Bonus: Related Work Cont.

Bengio et al. [Ben+05]: algorithm-focused approach.

• Take R(w) = ∥w∥1 and L(ŷ, y) = max {0, 1− ŷy}.

• Show that nnz(w∗) ≤ n+1, meaning the final model is finite.

• Propose a boosting-type algorithm for iteratively adding
neurons.
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• Show that nnz(w∗) ≤ n+1, meaning the final model is finite.

• Propose a boosting-type algorithm for iteratively adding
neurons.

76⁄55



Bonus: Related Work Cont.

Bach [Bac17]: analysis-focused approach.

• Handle spaces/functions properly using measure theory.

▶ W is a space of signed measures, prediction is

f(x) =

∫
H
h(x)dw(h)

▶ R is weighted total variation of measure w.

▶ Setup reduces to Bengio et al. [Ben+05] in finite spaces.

• Guarantee that m∗ ≤ n using a representer theorem.

• Derive an incremental algorithm based on Frank-Wolfe, but
incremental steps are NP-Hard for ReLU activations.
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Bonus: Key Representer Theorem

Theorem (Rogosinski [Rog58])

If (Ω,B) is a Borel space, µ is a measure, gi, i ∈ {1, . . . n} are
measurable and µ-integrable, then there exists measure µ̂ with
finite support at most n such that∫

Ω
gi(ω)dµ(ω) =

∫
Ω
gi(ω)dµ̂(ω)

for all i ∈ {1, . . . , n}.

Prediction for dataset with n dimensions:

f(xi) =

∫
H
h(xi)dw(h) =

m∑
h=1

hj(xi)w(hj),

where m ≤ n and hj(x) = (⟨x,wj⟩)+.
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Convex Reformulations
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Convex Reformulations: Breaking it Down

min
u
∥

p∑
j=1

DjX(vj − wj)− y∥22 + λ

p∑
j=1

∥vj∥2 + ∥wj∥2

s.t. vj , wj ∈ Kj := {w : (2Dj − I)Xw ≥ 0} ,

where Dj = diag[1(Xgj ≥ 0)].

• Dj is a ReLU activation pattern induced by “gate” gj .

▶ [Dj ]ii = 1 if ⟨xi, gi⟩ ≥ 0 and 0 otherwise.
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∥vj∥2 + ∥wj∥2

s.t. vj , wj ∈ Kj := {w : (2Dj − I)Xw ≥ 0} ,

where Dj = diag[1(Xgj ≥ 0)].

• Dj is a ReLU activation pattern induced by “gate” gj .
▶ [Dj ]ii = 1 if ⟨xi, gi⟩ ≥ 0 and 0 otherwise.

• Weight-decay regularization turns into “group ℓ1” penalty.

• The constraint vj ∈ Kj implies

(Xvj)+ = DjXvj .

That is, vj has the activation encoded by Dj .
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Bonus: Explicit Solution Mapping

Given (v∗, w∗), an optimal non-convex ReLU network is given by

C to NC:
W1i = v∗i /

√
∥v∗i ∥, w2i =

√
∥v∗i ∥

W1j = w∗
i /
√
∥w∗

i ∥, w2j = −
√
∥w∗

i ∥.

• Optimal solution balances weight between layers.

Given (W ∗
1i, w

∗
2i), an optimal convex ReLU model is

NC to C:
vi = W ∗

1i |w2i|∗ if w∗
2i ≥ 0

wi = W ∗
1i |w2i|∗ Otherwise.

• Optimal solution combines weight from both layers.
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Gated ReLU Networks and Cone
Decompositions
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Bonus: Gated ReLU Networks

Theorem 2.2 (informal): C-GReLU is equivalent to solving

NC-GReLU : min
W1,α

1

2
∥

p∑
j=1

ϕgj (X,wj)α−y∥22+
λ

2

p∑
j=1

∥wj∥22+ |αj |2,

with the “Gated ReLU” [FMS19] activation function

ϕg(X,u) = diag(1(Xg ≥ 0))Xu,

and gate vectors gj such that

Dj = diag[1(Xgj ≥ 0).

Interpretation: if uj ̸∈ Kj , then the activation must be decoupled
from the linear mapping in the non-convex model.
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Bonus: Cone Decompositions

Question: when are Gated ReLU and ReLU networks equivalent?

Consider special case where λ = 0.

C-GReLU : min
u
∥

p∑
j=1

DjXuj − y∥22.

V.S.

C-ReLU : min
u
∥

p∑
j=1

DjX(vj − wj)− y∥22.

s.t. vj , wj ∈ Kj := {w : (2Dj − I)Xw ≥ 0} ,
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Bonus: Equivalent Statement

Equiv. Question: when does uj = vj − wj for some vj , wj ∈ Kj?

Answer: when Kj −Kj = Rd and a “cone decomposition” exists.

uj

vj

wj

Kj

−Kj
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Bonus: Basic Cone Decomposition

Recall: Kj = {w : (2Dj − I)Xw ≥ 0}.

• This is a polyhedral cone which we rewrite as

Kj =
n⋂

i=1

{w : [Sj ]ii · ⟨xi, w⟩ ≥ 0} ,

where Sj = (2Dj − I).

Proposition 3.1 (informal): If X is full row-rank, then
aff(Kj) = Rd and Kj −Kj = Rd.

Unfortunately, there is no extension to full-rank X.
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Bonus: Not All Cones are Equal

Alternative Idea: show we don’t need “singular” cones Kj ,

Kj −Kj ⊊ Rd.

Proposition 3.2 (informal): Suppose Kj −Kj ⊂ Rd. Then,
there exists Ki for which Ki −Ki = Rd and Kj ⊂ Ki.

Interpretation: if optimal u∗j ̸= 0, then set

u′i = u∗j + u∗i .

It is possible to show this causes no problems.
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Bonus: Cone Decomposition Proof Sketch

Proof: Works by iteratively constructing Ki s.t. Kj ⊂ Ki.

We sketch a simpler statement:

Proposition 3.2 (informal): Suppose Kj = {0}. Then, there
exists Ki for which Ki −Ki = Rd and Kj ⊂ Ki.
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Bonus: Cone Decomposition Proof Sketch

K′
j = {w : [Sj ]11 · ⟨x1, w⟩ ≥ 0}

Kj

S11 · x1
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Cone Decompositions: Proof Sketch

K′′
j = K′

j ∩ {w : [Sj ]22 · ⟨x2, w⟩ ≥ 0}

Kj

S11 · x1

S22 · x2
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Bonus: Cone Decomposition Proof Sketch

K′′′
j = K′′

j ∩ {w : [Sj ]33 · ⟨x3, w⟩ ≥ 0}

Kj

S11 · x1

S22 · x2

S33 · x3
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Bonus: Cone Decomposition Proof Sketch

K̃′′′
j = K′′

j ∩ {w : −[Sj ]33 · ⟨x3, w⟩ ≥ 0}

Kj

S11 · x1

S22 · x2
−S33 · x3

94⁄55



Bonus: Main Cone Decomposition Result

• The real proof is more complex, but this is the core idea.

▶ Build Ki by switching signs of [Sj ]ii.
▶ Equivalent to turning on/off activations.

• Leads to our main approximation result.

Theorem 3.7 (informal): Let λ ≥ 0 and let p∗ be the optimal
value of the ReLU problem. There exists a C-GReLU problem
with minimizer u∗ and optimal value d∗ satisfying,

d∗ ≤ p∗ ≤ d∗ + 2λκ(X̃J )
∑
Di∈D̃

∥u∗i ∥2.
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Details on Optimization Algorithms
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Bonus: ReLU by Cone Decomposition

1. Solve the gated ReLU problem:

u∗ ∈ argmin
u

∥
p∑

j=1

DjXuj − y∥22 + λ

p∑
j=1

∥uj∥2

2. Solve a cone decomposition:

v∗j , w
∗
j ∈ argmin

vj ,wj

{
L(vj , wj) : vj − wj = u∗j

}
,

where L is a loss function.

3. Compute corresponding ReLU model.

Choosing:

• L(v, w) = ∥v∥2 + ∥w∥2 gives an SOCP.

• L(v, w) = 0 yields a linear feasibility problem.
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Bonus: R-FISTA

Consider “composite” optimization problem:

min
x

f(x) + g(x),

where f is L-smooth and g is convex. Smoothness implies

f(y) ≤ Qxk,1/L(y)

= f(xk)+⟨∇f(xk), y−xk⟩+
L

2
∥y−xk∥22.

The FISTA algorithm minimizes Qyk,ηk and handles g exactly:

xk+1 = argmin
y

Qyk,ηk(y) + g(y)

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk)

where tk+1 = (1 +
√

1 + 4t2k)/2.

98⁄55



Bonus: R-FISTA

Consider “composite” optimization problem:

min
x

f(x) + g(x),

where f is L-smooth and g is convex. Smoothness implies

f(y) ≤ Qxk,1/L(y)

= f(xk)+⟨∇f(xk), y−xk⟩+
L

2
∥y−xk∥22.

The FISTA algorithm minimizes Qyk,ηk and handles g exactly:

xk+1 = argmin
y

Qyk,ηk(y) + g(y)

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk)

where tk+1 = (1 +
√

1 + 4t2k)/2.

98⁄55



Bonus: R-FISTA Continued

We combine this with line-search and restarts:

• Line-search: backtrack on ηk until:

f(xk+1(ηk)) ≤ Qyk,ηk(xk+1(ηk)),

as proposed by [BT09].

• Restarts: reset to yk = xk if

⟨xk+1 − xk, xk+1 − yk⟩ > 0,

that is, xk+1 is not a descent step with respect to
proximal-gradient mapping [OC15].

• And lots of other convex tricks...
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Bonus: AL Method

Let X̃i = (2Di − I)X so that vj ∈ Kj ⇐⇒ Xjvj ≥ 0 and define

F (v, w) = ∥
p∑

j=1

DjX(vj − wj)− y∥22 + λ

p∑
j=1

∥vj∥2 + ∥wj∥2.

Now we can form the augmented Lagrangian:

Lδ(v,w,γ,ζ) :=(δ/2)
∑
Di∈D̃

[
∥(γi/δ−X̃ivi)+∥22

+ ∥(ζi/δ − X̃iwi)+∥22
]
+ F (v, w).

(1)

We use the multiplier method to update the dual parameters:

(vk+1, wk+1) = argmin
v,w

Lδ(v, w, γk, ζk),

γk+1 = (γk − δX̃ivi)+, ζk+1 = (ζk − δX̃iwi)+.

We use warm starts and propose a heuristic for δ.
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Additional Optimization Experiments
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Bonus: Sub-sampling Patterns

• Variance induced by resampling D̃ is minimal.

• Standard bias-variance trade-off.
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Bonus: Generalization Performance

Generalization performance is equivalent to non-convex solvers.

Dataset Convex Adam SGD

magic 85.9 86.9 86.4
statlog-heart 83.3 83.3 79.6
vertebral-col. 90.3 90.3 88.7
cardiotocogr. 89.9 36.5 88.9
abalone 66.2 65.3 66.1
annealing 90.6 93.7 88.7
car 87.8 94.8 90.1
bank 89.8 90.8 90.5
breast-cancer 68.4 64.9 68.4
page-blocks 94.0 97.1 96.9
contrac 55.1 54.4 53.7
congressional 63.2 62.1 67.8
spambase 93.3 93.5 93.2
synthetic 98.3 96.7 96.7
hill-valley 65.3 62.8 55.4
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Bonus: Comparison to Standard Baselines

Dataset C-GReLU C-ReLU RF Linear RBF

blood 79.9 80.5 75.8 74.5 77.9
chess-krvkp 99.2 98.6 98.9 97.2 98.4
conn-bench 90.2 85.4 73.2 68.3 85.4
cylinder-bands 76.5 78.4 77.5 71.6 71.6
fertility 80.0 80.0 75.0 75.0 75.0
heart-hung. 86.2 86.2 84.5 84.5 86.2
hill-valley 76.0 68.6 57.9 62.0 70.2
ilpd-liver 72.4 74.1 66.4 71.6 71.6
mammographic 77.6 78.6 80.7 80.7 80.2
monks-1 100 100 95.8 79.2 83.3
musk-1 94.7 95.8 92.6 86.3 95.8
ozone 97.6 97.6 97.4 97.2 97.4
pima 74.5 74.5 76.5 75.2 73.2
planning 69.4 63.9 66.7 66.7 69.4
spambase 93.5 93.6 94.1 92.2 93.6
spectf 87.5 75.0 68.8 68.8 68.8
statlog-german 74.0 77.5 73.5 75.0 75.5
tic-tac-toe 99.0 99.0 99.5 98.4 100 104⁄55



Bonus: Acceleration Ablation
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Example: Discontinuous
Regularization Paths

106⁄55



Example: Discontinuous Paths

Consider training a toy neural network: given (x1, y1), (x2, y2),

min
w1

1

2
((w1x1)+ − y1)

2 +
1

2
((w1x2)+ − y2)

2 + λ|w1|.

(x1 , y1)

(x2 , y2)

Goal: Overcome these problems via convexification..
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Example: Discontinuous Paths

Consider training a toy ReLU network:

min
w1

1

2
((w1x1)+ − y1)

2 +
1

2
((w1x2)+ − y2)

2 + λ|w1|.

w∗
1

(x1 , y1)

(x2 , y2)

w∗
1

λ ≈ 0

Goal: Overcome these problems via convexification..
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Optimal Sets
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Bonus: C-ReLU Optimality Conditions

We form the Lagrangian for the convex reformulation:

L(v, w, ρ+, ρ−) = 1

2
∥
∑
Di∈D̃

DiX(vi − wi)− y∥22 + λ
∑
Di∈D̃

∥vi∥2 + ∥wi∥2

−
∑
DiD̃

[〈
X̃i

⊤
ρ−, w

〉
−
〈
X̃i

⊤
ρ+, v

〉]
,

where X̃i = (2Di − I).

The KKT conditions are necessary and sufficient for optimality:

• Stationary Lagrangian:

X⊤Di(ŷ − y)− X̃i
⊤
ρ+i︸ ︷︷ ︸

q+i

∈ ∂λ∥vi∥2.

▶ It turns out each q+i is unique WLOG!
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Bonus: Characterizing the Optimal Set

Facts: let (θ, ρ) be primal dual optimal.

• Model fit ŷ is constant over optimal set W∗(λ).

• Implies correlation X⊤Di(y − ŷ) is constant over W∗(λ).

• We may assume ρ is unique (e.g. min-norm dual solution).

Non-zero Blocks:

• Suppose θi ̸= 0.

• Then ∇∥θi∥2 = si = λθi/∥θi∥2.
• Rearranging stationarity implies ∃αi > 0:

θi = αi

[
X⊤Di(y − ŷ)− X̃iρi

]
︸ ︷︷ ︸

qi

.

• Every solution is a non-negative multiple of these qi vectors.
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Bonus: Explicit Optimal Set

We gave a characterization of W∗(λ) that depends on

Sλ = {i ∈ [2p] : ∃θ ∈ W∗(λ), θi ̸= 0} .

Alternative expression involves additional linear constraints.

W∗(λ) =
{
θ : ∀ i ∈ Eλ, θi = αiqi, αi ≥ 0,

∀ j ∈ [2p] \ Eλ, θj = 0,

2p∑
i=1

DiXθi = ŷ,

∀ i ∈ [2p], X̃iθi ≥ 0,
〈
ρ, X̃iθi

〉
= 0.

}
More complex, but also explicit.
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Bonus: Solution Mapping for C-ReLU

Given (v∗, w∗), an optimal non-convex ReLU network is given by

C to NC:
W1i = v∗i /

√
∥v∗i ∥, w2i =

√
∥v∗i ∥

W1j = w∗
i /
√
∥w∗

i ∥, w2j = −
√
∥w∗

i ∥.

• Optimal convex weights satisfy v∗i = αiqi so that

∥v∗i ∥2 = αi∥qi∥2 = αiλ.

Recall structure of non-convex optima:

Oλ =
{
(W1, w2) : fW1,w2(X) = ŷ,

∀ i ∈ Sλ,W1i = (αi/λ)
1/2qi, w2i = (αiλ)

1/2, αi ≥ 0

∀ i ∈ [2p] \ Sλ,W1i = 0, w2i = 0
}
.
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Optimal Pruning

116⁄55



Optimal Pruning: the Polytope of Solutions

W∗(λ) =
{
θ :

2p∑
i=1

DiXθi = ŷ,

∀ i ∈ Sλ, θi = αiqi, αi ≥ 0,

∀ j ∈ [2p] \ Sλ, θj = 0
}

The C-ReLU optimal set is a
convex polytope!
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Optimal Pruning: Vertices

1. Stack the qi vectors into a matrix Q =

 | |
q1 · · · q2p
| |

 .

2. The C-ReLU Optimal Set in α space is then,

W∗(λ) = QSλ

{
α ⪰ 0 :

∑
i∈Sλ

(DiXqi)αi = ŷ,
}

= QSλ
PSλ

.

(2)

3. ᾱ ∈ PSλ
is a vertex iff {DiXqi}ᾱi ̸=0 are linearly independent.

Are these vertices special in some way?
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Optimal Pruning: Minimal Models

Definition: An optimal C-ReLU model θ∗ is minimal if there does
not exist another optimal model θ′ with strictly smaller support.

• NC-ReLU: minimal ⇐⇒ sparsest (neuron-wise) model.

Proposition 3.2 (informal): For λ > 0, θ ∈ W∗(λ) is minimal
iff the vectors {DiXqi}αi ̸=0 are linearly independent.

• NC-ReLU: minimal if (XW1i)+ are linearly independent.

Our Results:

1. We prove vertices of W∗(λ) are minimal models.

2. There are at most n neurons in a minimal model.

3. We give a poly-time algorithm for computing minimal models
starting from any model θ.
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Bonus: Optimal Pruning Pseudo-code

Algorithm Pruning solutions

Input: data matrix X, solution θ.
k ← 0.
θk ← θ.
while ∃β ̸= 0 s.t.

∑
i∈Aλ(θk)

βiDiXθki = 0 do

ik ← argmaxi
{
|βi| : i ∈ Aλ(θ

k)
}

tk ← 1/|βik |
θk+1 ← θk(1− tkβi)
k ← k + 1

end while
Output: final weights θk

Let r = rank(X). Complexity to compute a minimal model:

O
(
d3r3(

n

r
)3r + (n3 + nd)r(

n

r
)r
)
.
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Bonus: Complexity of Pruning

Algorithm Pruning solutions

Input: data matrix X, solution θ.
k ← 0, θk ← θ.
while ∃β ̸= 0 s.t.

∑
i∈Aλ(θk)

βiDiXθki = 0 do
...

end while
Output: final weights θk

• Computing ai = DiXθ0i for every neuron: O(ndp)

• Checking for linear dependence: at most 2p times, do

▶ check (at most) n+ 1 ai vectors for linearly dependence.
▶ Form matrix A and take SVD to compute null space: O(n3).
▶ Prune neuron: update at most n weights.

Total complexity: O(ndp+ n3p).
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Bonus: Sub-Optimal Pruning

Algorithm Pruning solutions

Input: data matrix X, solution θ.
k ← 0.
θk ← θ.
while ∃β ̸= 0 s.t.

∑
i∈Aλ(θk)

βiDiXθki = 0 do

ik ← argmaxi
{
|βi| : i ∈ Aλ(θ

k)
}

tk ← 1/|βik |
θk+1 ← θk(1− tkβi)
k ← k + 1

end while
Output: final weights θk

Approximate with least-squares fit:

β̂ ∈ argmin
β

1

2
∥

∑
i∈Aλ(θk)\j

βiDiXθki −DjXθj∥22
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Bonus: Sub-optimal Pruning

Approximate with least-squares fit:

β̂ ∈ argmin
β

1

2
∥

∑
i∈Aλ(θk)\j

βiDiXθki −DjXθj∥22

• Algorithm is just structured pruning with a correction step!

• We use existing literature for structured pruning to select j.

• Brute-force search works best:

argmin
j

min
β

1

2
∥

∑
i∈Aλ(θk)\j

βiDiXθki −DjXθj∥22


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Neuron Pruning: Performance on CIFAR-10
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Convex Reformulations of Deep ReLU
Networks
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Deep Reformulations: Setup

• Let X(l) and T (l) be tensors of order l + 1 indexed by
i0, . . . , il.

• We assume R
(l)
i1,...,il−1

∈ Rn×d0 and T
(l)
i1,...,il−1

∈ Rd0×dl .

We equip these tensors with the reduction product

R(l) ⊙ T (l) =
∑

i1,...,il−1

R
(l)
i1,...,il−1

T
(l)
i1,...,il−1

,

• This sums over the product of all the matrix slices R
(l)
i1,...,il−1

and T
(l)
i1,...,il−1

.
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Deep Reformulations: Recursive Patterns

• Let D(1)
X be the set of achievable ReLU patterns in the first

layer.

• Let X(1) = X ∈ Rn×d0 .

• Define X
(l+1)
i1,...,il

= D
(l)
il
X

(l)
i1,...,il−1

so that we have,

X
(2)
i1

= D
(1)
i1

X(1) = D
(1)
i1

X

X
(3)
i1,i2

= D
(2)
i2

X
(2)
i1

= D
(2)
i2

D
(1)
i1

X.

• Here, D
(l)
il
∈ D(l)

X is the set of ReLU patterns achievable by

our tensor product in the lth layer,

D(l)
X =

{
1
(
X(l) ⊙ T (l) ≥ 0

)
: T (l) ∈ Rd0×···×dl

}
.
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Deep Reformulations: Tensor Decomposition

Each tensor T
(l)
il

is contained in at least one activation cone,

K(l)
il

=
{
T
(l)
il
∈ Rd0×···×d(l−1) : (2D

(l)
il
− I)

[
X(l) ⊙ T

(l)
il

]
≥ 0
}
.

Now, let G(1) = Rd0×d1 and define

G(l+1) :=

{
T (l+1) ∈ Rd0×p1...×pl×dl+1

:∃T (l) ∈ G(l) where I(l)jl
=
{
il : T

(l)
il
∈ K(l)

jl

}
,

∃W (l+1) ∈ Rdl×dl+1 ,

s.t. T
(l+1)
j1,...,jl

=
∑

il∈I
(l)
jl

T
(l)
j1,...,jl−1,il

⊗W
(l+1)
il

,

and

pl∑
jl=1

∣∣∣I(l)jl

∣∣∣ ≤ dl

}
.
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Deep Reformulations: Layer-Merging Lemma

Lemma (Rank-Controlled Layer Elimination)

Let T (l) ∈ G(l). Then the activations at layer l + 2 are given by

Z(l+2) =

 dl∑
il=1

(
X(l) ⊙ T

(l)
il

)
+
W

(l+1)
il


+

, (3)

if and only if the activations are also equal to

Z(l+2) =
(
X(l+1) ⊙ T (l+1)

)
+
,

for some T (l+1) ∈ G(l+1).
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