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The Problem

Problem: We don’t understand the solution space of neural
networks nearly as well as that of GLMs.

Consider the Lasso:

1. Optimal Sets: we have an exact polyhedral characterization
and simple criteria for uniqueness (general position) [Tib13].

2. Regularization Paths: we know the (min-norm) solution
path is continuous and piece-wise linear [OPT00].

3. Algorithms: we have efficient algorithms for homotopy
[Efr+04] and computing minimal solutions [Tib13].
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Challenges from Non-Convexity

Non-convexity makes extensions beyond GLMs hard!

x∗

x̃

x̃ f(x)

• Optimality Conditions: Stationarity ≠⇒ optimality. We
have no global optimality criteria and no certificates.

• Mathematical Tools: We lose most of convex analysis and
have to work with Clarke stationary points, etc.

• Unintuitive Phenomena: Surprising things happen even with
toy neural networks!
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Example: Discontinuous Paths

Consider training a toy neural network: given (x1, y1), (x2, y2),

min
w1

1

2
((w1x1)+ − y1)

2 +
1

2
((w1x2)+ − y2)

2 + λ|w1|.

(x1 , y1)

(x2 , y2)

Goal: Overcome these problems via convexification..
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Our Contributions

Overall Approach: leverage convex reformulations of ReLU
networks [PE20] as an analytical tool.

1. Optimal Sets: we characterize all optima of the non-convex
training objective.

2. Uniqueness: we develop simple criteria for ReLU networks to
admit unique solutions up permutation/split symmetries.

3. Optimal Pruning: we leverage our theory to give a poly-time
procedure for computing minimal ReLU networks.
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I. Background on Convex
Reformulations
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Convex Reformulations: Flavor of Results

Basic Idea: We start with a non-convex optimization problem
and derive an equivalent convex program.

Equivalent means:

• The global minima have the same values: p∗ = q∗

• We can map every global minimum u∗ for one problem
into a global minimum v∗ of the other.

▶ We call this the solution mapping.
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Convex Reformulations: Two-Layer ReLU Networks

Non-Convex Problem (NC-ReLU)

min
W1,w2

1

2
∥

m∑
j=1

(XW1j)+w2j − y∥22︸ ︷︷ ︸
Squared Error

+λ

m∑
j=1

∥W1j∥22 + |w2j |2︸ ︷︷ ︸
Weight Decay

,

where (x)+ = max {x, 0} is the ReLU activation.

X

W1j

ŷ

w2j
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Aside: ReLU Activation Patterns

Each ReLU neuron is active on a half-space:

x1

x4x2

x3

x5

W1j
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Convex Reformulations: Convex Problem

Convex Reformulation (C-ReLU) [PE20]

min
v,w

1

2
∥

p∑
j=1

DjX(vj − wj)− y∥22 + λ

p∑
j=1

∥vj∥2 + ∥wj∥2

s.t. vj , wj ∈ Kj := {w : (2Dj − I)Xw ≥ 0} ,

where Dj = diag[1(Xgj ≥ 0)].

X

X

X

D3X

D2X

D1X

ŷ

uj
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Convex Reformulations: Hardness

Result: if m ≥ m∗ for some m∗ ≤ n, then C-ReLU and NC-ReLU
are equivalent [PE20].

How “hard” is the convex program?

p =
∣∣∣{Dj = diag[1(Xgj ≥ 0)] : gj ∈ Rd

}∣∣∣
The convex program is:

• Exponential in general: p ∈ O(r · (nr )
r), where r = rank(X).

▶ Bound comes from theory of hyperplane arrangements [Win66].

• Highly structured — it’s a (constrained) GLM!

We exchange one kind of hardness for another.
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II. Optimal Sets of ReLU Networks
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Optimal Set: Roadmap

Proof Roadmap:

1. Characterize solutions to the convex reformulation using
strong duality and KKT conditions.

2. Extend results to non-convex ReLU networks using the
solution mapping.

3. Leverage explicit characterization of the optimal set for
new insights and algorithms.
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Optimal Set: Roadmap

Proof Roadmap:

1. Characterize solutions to the convex reformulation
using strong duality and KKT conditions.

2. Extend results to non-convex ReLU networks using the
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3. Leverage explicit characterization of the optimal set for
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C-ReLU: Strong Duality

1. Characterize solutions to the convex reformulation using
strong duality and KKT conditions.

C-ReLU Solution Set:

W∗(λ) = argmin
vi,wi∈Ki

{
1

2

∥∥∥∥ ∑
Di∈D̃

DiX(vi − wi), y

∥∥∥∥2
2

+ λ
∑
Di∈D̃

∥vi∥2 + ∥wi∥2
}
.

1. Convex objective + linear constraints =⇒ strong duality!

2. Introduce dual variables ρ and analyze the KKT conditions.

3. Define θ =

[
vi
−wi

]
and index Di’s from 1 to 2p.
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C-ReLU: Optimality Conditions

We form the Lagrangian for the convex reformulation:

L(θ, ρ) = 1

2
∥

2p∑
i=1

DiXθi − y∥22 + λ

2p∑
i=1

∥θi∥2 −
2p∑
i=1

〈
K⊤

i ρi, θi

〉
,

where Ki = (2Di − I)X.

The KKT conditions are necessary and sufficient for optimality:

• Define the optimal model fit: ŷ =
∑2p

i=1DiXθ∗i .

• The Lagrangian is stationary when,

X⊤Di(ŷ − y) +K⊤
i ρi︸ ︷︷ ︸

qi

∈ ∂λ∥θi∥2.

• It turns out each “block correlation” qi is unique WLOG!
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∑2p

i=1DiXθ∗i .

• The Lagrangian is stationary when,
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C-ReLU: Implications of Stationarity

Stationary Lagrangian:

X⊤Di(ŷ − y) +K⊤
i ρi =: qi ∈ ∂λ∥θ∗i ∥2.

Non-zero Blocks:

• Suppose θ∗i ̸= 0.

• Then ∇θλ∥θ∗i ∥2 = λ
θ∗i

∥θ∗i ∥2
and there exists αi > 0 for which,

qi = λ
θ∗i
∥θ∗i ∥2

=⇒ θ∗i = αiqi.
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C-ReLU: the Optimal Set

• Optimal Fit: ŷ =
∑2p

i=1DiXθ∗i .

• Block Correlation: qi := X⊤Di(ŷ − y) +K⊤
i ρi.

• Support Set: Sλ = {i ∈ [2p] : ∃θ ∈ W∗(λ), θi ̸= 0}.

Proposition (Informal)

Fix λ > 0. The optimal set of the C-ReLU problem is given by

W∗(λ) =
{
θ :

2p∑
i=1

DiXθi = ŷ

∀ i ∈ Sλ, θi = αiqi, αi ≥ 0,

∀ j ∈ [2p] \ Sλ, θj = 0,
}
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Returning to our Roadmap

Proof Roadmap:

1. Characterize solutions to the convex reformulation using
strong duality and KKT conditions.

2. Extend results to non-convex ReLU networks using
the solution mapping.

3. Leverage explicit characterization of the optimal set for
new insights and algorithms.
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NC-ReLU: Using the Solution Mapping

2. Extend results to non-convex ReLU networks using the
solution mapping.

We need to do some accounting for model symmetries:

• Permutations: Re-ordering neurons inside the layers.

• Splits: Splitting a neuron into two collinear neurons.

Theorem (Informal)

Suppose m ≥ m∗. Then the optimal set for NC-ReLU up to
permutation/split symmetries is

Oλ =
{
(W1, w2) : fW1,w2(X) = ŷ,

∀ i ∈ Sλ,W1i = (αi/λ)
1/2qi, w2i = (αiλ)

1/2, αi ≥ 0

∀ i ∈ [2p] \ Sλ,W1i = 0, w2i = 0
}
.
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NC-ReLU: Surprises from the Optimal Set

Theorem (Informal)

Suppose m ≥ m∗. Then the optimal set for NC-ReLU up to
permutation/split symmetries is

Oλ =
{
(W1, w2) : fW1,w2(X) = ŷ,

∀ i ∈ Sλ,W1i = (αi/λ)
1/2qi, w2i = (αiλ)

1/2, αi ≥ 0

∀ i ∈ [2p] \ Sλ,W1i = 0, w2i = 0
}
.

Surprising Properties of the Optimal Set:

• Given the ordering induced by Di, every optimal neuron W ∗
1i

is positively collinear!

• Up to permutation/split symmetries the optimal set is
connected!
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NC-ReLU: Appearance of Solution Sets

• The non-convex parameterization maps the convex polytope
of solutions into a curved manifold.
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NC-ReLU: Exploring the Optimal Set

• Take 10,000 samples from the set of optimal neural networks.

• All samples have (i) same training accuracy, (ii) same
model norm, but can generalize differently.
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Implicit regularization is critical to generalization.
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III. Optimal Pruning
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Optimal Pruning: the Final Step

Proof Roadmap:

1. Characterize solutions to the convex reformulation using
strong duality and KKT conditions.

2. Extend results to non-convex ReLU networks using the
solution mapping.

3. Leverage explicit characterization of the optimal set
for new insights and algorithms.
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Optimal Pruning: the Polytope of Solutions

3. Leverage explicit characterization of the optimal set for new
insights and algorithms.

W∗(λ) =
{
θ :

2p∑
i=1

DiXθi = ŷ,

∀ i ∈ Sλ, θi = αiqi, αi ≥ 0,

∀ j ∈ [2p] \ Sλ, θj = 0
}

The C-ReLU optimal set is a
convex polytope!

Figure
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Optimal Pruning: Vertices

1. Stack the qi vectors into a matrix Q =

 | |
q1 · · · q2p
| |

 .

2. The C-ReLU Optimal Set in α space is then,

W∗(λ) = QSλ

{
α ⪰ 0 :

∑
i∈Sλ

(DiXqi)αi = ŷ,
}

= QSλ
PSλ

.

(1)

3. ᾱ ∈ PSλ
is a vertex iff {DiXqi}ᾱi ̸=0 are linearly independent.

Are these vertices special in some way?
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Optimal Pruning: Minimal Models

Definition: An optimal C-ReLU model θ∗ is minimal if there does
not exist another optimal model θ′ with strictly smaller support.

• NC-ReLU: minimal ⇐⇒ sparsest (neuron-wise) model.

Proposition 3.2 (informal): For λ > 0, θ ∈ W∗(λ) is minimal
iff the vectors {DiXqi}αi ̸=0 are linearly independent.

• NC-ReLU: minimal if (XW1i)+ are linearly independent.

Our Results:

1. We prove vertices of W∗(λ) are minimal models.

2. There are at most n neurons in a minimal model.

3. We give a poly-time algorithm for computing minimal models
starting from any model θ.
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Optimal Pruning: Algorithm

Algorithm Compute Minimal Model

Input: data matrix X, solution θ.
k ← 0.
θk ← θ.
while ∃β ̸= 0 s.t.

∑
i∈Aλ(θk)

βiDiXθki = 0 do

ik ← argmaxi
{
|βi| : i ∈ Aλ(θ

k)
}

tk ← 1/|βik |
θk+1 ← θk(1− tkβi)
k ← k + 1

end while
Output: final weights θk

• NC-ReLU: Returns sparsest network that is still optimal!

• Complexity: O
(
n3l + nd

)
starting from l neurons.
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Optimal Pruning: Theory vs Practice

Optimal Pruning in Theory:

• Starts from any neural network and returns a neuron-sparse
model with the same predictions and weight-norm.

• But it can’t prune past minimum width: m∗ ≤ n. . .

Optimal Pruning in Practice:

• We propose a simple heuristic based on least-squares to prune
past minimal models.

• Our heuristic works with any neuron pruning rule.

Let’s see how this does on real data!
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Let’s see how this does on real data!
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(Sub)-Optimal Pruning: UCI Datasets
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(Sub)-Optimal Pruning: CIFAR-10
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(Sub)-optimal pruning dominates the naive baselines!
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Summary
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Recap

Our Contributions.

• Optimal Sets: We derive the set of all optimal two-layer
ReLU neural networks.

• Regularization Paths: We have some continuity results
(see paper) and are working on more.

• Algorithms: We give a poly-time algorithm for optimally
pruning ReLU networks.
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Try our Code!
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Bonus: Explicit Optimal Set

We gave a characterization of W∗(λ) that depends on

Sλ = {i ∈ [2p] : ∃θ ∈ W∗(λ), θi ̸= 0} .

Alternative expression involves additional linear constraints.

W∗(λ) =
{
θ : ∀ i ∈ Eλ, θi = αiqi, αi ≥ 0,

∀ j ∈ [2p] \ Eλ, θj = 0,

2p∑
i=1

DiXθi = ŷ,

∀ i ∈ [2p],Kiθi ≥ 0, ⟨ρ,Kiθi⟩ = 0.
}

More complex, but also explicit.
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Bonus: Solution Mapping for C-ReLU

Given (v∗, w∗), an optimal non-convex ReLU network is given by

C to NC:
W1i = v∗i /

√
∥v∗i ∥, w2i =

√
∥v∗i ∥

W1j = w∗
i /
√
∥w∗

i ∥, w2j = −
√
∥w∗

i ∥.

• Optimal convex weights satisfy v∗i = αiqi so that

∥v∗i ∥2 = αi∥qi∥2 = αiλ.

Recall structure of non-convex optima:

Oλ =
{
(W1, w2) : fW1,w2(X) = ŷ,

∀ i ∈ Sλ,W1i = (αi/λ)
1/2qi, w2i = (αiλ)

1/2, αi ≥ 0

∀ i ∈ [2p] \ Sλ,W1i = 0, w2i = 0
}
.
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