
Autonomous Sign Reading for Semantic Mapping

Carl Case∗ Bipin Suresh∗ Adam Coates Andrew Y. Ng

Abstract— We consider the problem of automatically col-
lecting semantic labels during robotic mapping by extending
the mapping system to include text detection and recognition
modules. In particular, we describe a system by which a SLAM-
generated map of an office environment can be annotated
with text labels such as room numbers and the names of
office occupants. These labels are acquired automatically from
signs posted on walls throughout a building. Deploying such a
system using current text recognition systems, however, is dif-
ficult since even state-of-the-art systems have difficulty reading
text from non-document images. Despite these difficulties we
present a series of additions to the typical mapping pipeline
that nevertheless allow us to create highly usable results. In
fact, we show how our text detection and recognition system,
combined with several other ingredients, allows us to generate
an annotated map that enables our robot to recognize named
locations specified by a user in 84% of cases.

I. INTRODUCTION

Autonomous mapping and navigation is an essential pre-

requisite for successful service robots. In contexts such as

homes and offices, places are often identified by text on signs

posted throughout the environment, such as room numbers

or the names of people that work in a particular office

or cubicle. Unfortunately, robotic mapping systems do not

presently capture this information and thus are unable to

take instructions from users that refer to these places by

their names (e.g., “Room 120” or “John Smith’s office”).

In this paper, we propose a system that allows a robotic

platform to discover these types of names automatically by

detecting and reading textual information in signs located

around a building. We show that the text-extraction compo-

nent developed is a valuable addition to the usual mapping

pipeline commonly used on mobile robots. In particular, our

completed map allows the robot to identify named locations

throughout the building with high reliability, allowing it to

satisfy requests from a user that refer to these places by

name.

The problem of mapping and navigating within an un-

known environment has been studied thoroughly in the

robotics literature. Robots can now routinely build metric

maps of a new environment [1], and navigate from one

location to another reliably [2], [3]. Prior work has shown

that higher level knowledge can be extracted directly from

these highly accurate (usually grid-based) maps, such as the

locations of doors and corridors [4], [5] in order to build

“semantic” representations of the environment. However,

much critical information about a location is included in

∗Denotes equal contributions. The authors are with the
Department of Computer Science, Stanford University.
{cbcase,bipins,acoates,ang}@cs.stanford.edu

Fig. 1. Reading and Mapping Signs

signs and placards posted on walls, yet existing mapping

systems do not fully utilize this source of semantic data. For

instance, signs near offices usually include room numbers,

lists of office occupants, or the name of a room or hall. Thus,

in this work we propose a system that incorporates a text

extraction module into the usual mapping pipeline to capture

this information and annotate the robot’s map, enabling the

robot to recognize locations by the names posted near them.

Our system uses several steps to accomplish the mapping

task: (i) it automatically explores a building to collect im-

agery of all of the walls, (ii) detects and reads characters

from these images belonging to signs and placards, and (iii)

attaches these annotations to the robot’s map. In the first step,

we use the map generated by a standard mapping system

to traverse the entire building and capture images of walls

where signs are likely to be located. We then use a logistic-

regression classifier to detect likely text regions, and use an

optical character recognition (OCR) system to extract text

strings. The strings are then attached to the map based on

the location where the text was found.

The most challenging sub-problem in this system is the

text detection and character recognition itself (a problem that

has warranted much prior work [6], [7], [8], [9], [10]). Unfor-

tunately, while some off-the-shelf components are available,

their performance is generally low when applied to non-

document images (such as those acquired from our robot).

Though initially this would seem to limit their use in

robotics, where we need high accuracy for any useful system,

we have found that various simple ingredients combined can

result in a very usable system. This paper will present a

complete end-to-end application including numerous such

ingredients that make it possible to deliver high accuracy

to the user despite the inherent difficulties in non-document

OCR applications. In our final system, the robot can respond

successfully in 95 out of 113 possible user queries, far

beyond the raw performance of the OCR systems themselves.

We begin by discussing related work, followed by de-

scribing the setup for our application and each of the

components of our system. Section III gives an overview

of the application, while in Section IV-A we describe the

process of collecting, and in Sections IV-B through IV-D we

describe our text detection and recognition algorithms. Our

experimental results are presented in Section V. We assess

the performance of our system by presenting results for

each algorithmic component in isolation, and then measure

the performance of the full pipeline in a simple application

carried out in both familiar and novel environments. We

demonstrate high accuracy in our associations between labels

and map locations.

II. RELATED WORK

There has been a good deal of recent research focused

on the question of “semantic mapping.” One thread of such

work has focused on creating linkages between spatial and

geometric information (e.g., laser scans) and object class

labels (such as “door” or “wall”) so that automated reasoning

methods may be applied to those entities. The authors

of [11], for instance, use laser scans to detect planar surfaces

in the world, then classify those planes as walls, tables,

ceilings, etc. using a set of simple constraints. In [12] the

authors extend this work by creating hierarchical spatial and

topological maps then establishing links between the two.

Other researchers have used various tools from machine

learning to identify properties of spaces and recognize

higher-level layouts. For example, [13] shows how a mo-

bile robot can learn to classify regions of a 2D map

as navigable/non-navigable or as sidewalk/street. Friedman

et al. [14] present an algorithm based on conditional random

fields and Voronoi diagrams to automatically extract the

topological structure of a metric map and label every cell

as room, hallway, door, or junction.

A handful of researchers have considered applications of

text reading in robotic navigation. For instance, the authors

of [15] present an edge-based text detection algorithm appli-

cable to office or home environments. (They suggest it may

be useful for robotic navigation but do not demonstrate such

an application which would have required the navigation,

mapping, and text-recognition components that are integrated

into our system.) In [16], an algorithm is presented to detect

a set of known (pre-specified) landmarks where some include

text such as room numbers, and the authors of [17] provide

a model of their environment’s hallways and doors so that

the robot can search for a given room by first matching the

door model and then using it to locate the target text. In

contrast to these last two, we provide no prior knowledge of

what rooms are present nor any model of the environment

beyond very basic assumptions about the general locations

of signs. Finally, the authors of [18] describe a robot that can

read text from signs of known font, size, and background in

a controlled lab environment (with no mapping component).

We assume nothing about the text and depend on machine

learning to handle novel or unusual environments.

Text detection and optical character recognition are also

key components of our application and have warranted a

body of research themselves. Early research has used texture

segmentation with heuristics to detect text in non-document

settings [19]. Other work has applied machine learning as

in [20] where a boosted classifier is trained to detect text

in street images. [6] shows that generic object detection

techniques (in this case, deformable parts models) are also

applicable to “word spotting” — finding words from a fixed

lexicon in a natural scene. In our application we use a

supervised learning method related to that in [20], though

other methods might also be applicable.

III. OVERVIEW OF APPLICATION

In the remainder of the paper we will develop a text-aware

mapping system that fulfills the needs of a simple appli-

cation: enabling a user to direct the robot’s navigation by

text queries (naturally, containing names and room numbers

referring to places within a building). For instance, when the

user types “john smith”, the robot will locate the point on the

map associated with this name (i.e., the nameplate outside

his office.) Thus, our system will need to construct a map

then annotate it with text data, including room numbers and

any names associated with the rooms and offices.

We make two simplifying assumptions. First, we trust

that the environment follows ADA guidelines with respect

to room signage1. Most notably, signs must be posted five

feet above the ground (modulo the size of the sign itself),

thus limiting the areas that our robot must search for valid

text data. Second, we separate the usual SLAM map-making

task from the semantic mapping one; that is, we presuppose

the existence of a navigable map for the target environment.

This second assumption is made largely for simplicity: since

our text modules do not use prior knowledge about the

environment, they could reasonably be run simultaneously

with typical SLAM systems during map building.

Several components comprise our end-to-end application.

The first stage of our system plans a path through the

environment’s free space that follows the walls.2 Along this

path, the robot stops every few feet to capture photos using

a high-resolution camera (often enough to adequately survey

the entire length of each wall). The second stage uses a

trained text detector to classify image regions as text or

non-text, followed by an optical character recognition stage

that attempts to read characters from these regions. Finally,

using depth data available from the robot, the text outputs

1http://www.access-board.gov/adaag/html/adaag.htm
2This is merely for exploration purposes and does not preclude using the

other components within a SLAM system before the map is completed.

(a) Original image of the map (b) After erosion

(c) Way points (d) Final plan

Fig. 2. Path planning

from the recognition module are collated and recorded on

the map at their precise location, along with a normal vector

representing the direction that the sign is facing (usually

outward from a wall). The final map and the attached text

data can then be saved for later queries by a user.

We now describe each of these components in detail

and evaluate their performance individually. We then move

on to demonstrate the performance of the full application,

evaluating its accuracy in associating user queries with their

corresponding locations on the map.

IV. METHODS

A. Map building, path planning and navigation

Our system is built on top of the ROS software framework

[21]. For our experiments, we manually drive the robot

around the office, then build a world map using the GMap-

ping SLAM toolkit [1], as is standard practice. The resulting

map is then used to plan a path for surveying the building

and collecting images (Figure 2(a)).

The path planning module aims to determine a set of “way

points” in the world for the robot to visit as it collects images

of the walls. The path must satisfy three goals: (i) maximize

coverage of the building, (ii) ensure that the robot is not

driven too close to the walls, and (iii) visits the way-points

in a reasonably efficient manner.

Given a grid-based map produced by the SLAM toolkit,

our system performs the following steps:

1) Binarize the map using a fixed threshold, yielding a

binary map of free space.

2) Erode the result by a fixed amount to eliminate posi-

tions that are too close to the walls. The added distance

ensures that each image covers a reasonable area of the

wall, while also making the path safer to follow. (See

Figure 2(b).)

3) Apply a Hough Transform [22] to find long straight

lines in the eroded binary image (Figure 2(d)). These

correspond to sections of wall long enough to incor-

porate signs, culling out cluttered areas not likely to

contain useful information.

4) Create a set of “way points” equally spaced along these

lines. These are the locations where the robot will stop

to take pictures of the walls. At each point, the robot

camera will be oriented orthogonally to the line (and

hence orthogonally to nearby the wall).

5) Plan and traverse a path that visits all of the way-

points, ordered greedily by distance, to capture images

and depth images of the walls. This path is traversed

in both directions so that, when necessary, images of

the walls on each side of a hallway can be captured.

The result of this procedure is a sequence of images of

the walls, along with registered depth data for each. These

images are the inputs to the next module, which will scan

them for text fragments.

B. Text detection and recognition

1) Detection: The output from the mapping module in-

cludes a set of images that need to be scanned for text. A

significant body of work focuses on detecting text in natural

scenes and video-frames. For comprehensive surveys of text-

detection, see [8], [23]. In this work, we use a logistic

regression classifier that uses a variety of text features,

similar to the approaches described in [24] and [20]. For

each image, our system computes a set of features known

to be associated with the presence of text. The features

are computed in 10x10 pixel windows (each 3 pixels apart)

across the entire image, yielding a vector of features for each

10x10 patch. These feature vectors are then used as input to

the classifier.

We use several text features from the text detection liter-

ature: local variance, local edge density, and horizontal and

Fig. 3. Text Detection: The first row shows the patches predicted by the logistic regression classifier to contain text. The second row shows the bounding
boxes that are submitted to the text-recognition phase.

vertical edge strength.3 The features provided to our classifier

are the max, min, and average value of these features within

the 10x10 window being classified. Thus, for each window

we have a total of 4∗3 = 12 features.

Given this set of features and a hand-labeled training set,

we train a logistic regression classifier to distinguish between

text and non-text image patches. For each 10x10 window,

this classifier outputs the probability that the region contains

text. Running this classifier across an image and thresholding

yields a binary image where the positive-valued pixels repre-

sent regions identified as likely to contain text. These pixels

are then grouped together into connected components. We re-

ject regions whose areas are less than a predefined threshold

(1
2000

∗ ImageArea in our experiments); and regions whose

heights are greater than their widths. Finally, we construct

tight bounding boxes around the remaining regions. These

bounding boxes contain candidate chunks of the image that

will be analyzed by the character-recognition module. Figure

3 shows the set of 10x10 patches identified as containing text

for an example image.

We tested our text-detection module on images taken by

the robot from two different buildings. The images show

variations in lighting conditions, font style, background

(light-text/dark-background vs. dark-text/light-background),

font size, and relative location of text within the image.

For training, we hand annotated 23 images, which resulted

3If I is the image, S is a circular disk filter, and D is an edge filter like
the Sobel filter, then local variance V = S• (I −S• I)2; local edge strength
E = S • |D • I|; and the horizontal and vertical edges are detected using
Canny edge detection. We keep only edges shorter than a fixed threshold,
as these tend to be associated with text.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

R
e
c
a
ll

Fig. 4. Precision/Recall curve for text-detection.

in 5000 image patches containing text (portions of door-

numbers or occupant-names) and 150000 non-text example

patches extracted from other parts of the same images.

We then tested our classification system against an unseen

set of 80000 (similarly labeled) image patches from 13

new images. Our train and test accuracies are listed in

Table 1, and the Precision/Recall curve in Figure 4. (For

the purposes of evaluating this classifier for our particular

scenario, extraneous text in the images that are not parts of

signs are counted as negative instances even though at this

stage of the pipeline there is no way to distinguish between

these classes.)

TABLE I

PRECISION/RECALL FOR TEXT-DETECTION

Train Test

Precision 0.65 0.73

Recall 0.86 0.80

TABLE II

TEXT RECOGNITION ACCURACY

Edit Dist. Nameplate Data ICDAR ’03

0 66% 59%
1 76% 66%
2 80% 72%

2) Recognition: The text detection module outputs a set

of image regions believed to contain textual information. The

next step is to extract text strings from these regions. Given

the candidate image regions, our approach to reading the text

follows that of [20]: we binarize the image and then pass its

output to an off-the-shelf OCR engine. In our experiments

we use the freely available Tesseract [25] engine.

Given a candidate image region containing text, it is

usually possible to separate the text from the background

using a simple constant threshold across the image. This is

because signs intended for humans are generally monotone

text on monotone backgrounds (as opposed to posters and

stylized logos). Due to lighting conditions and variation in

color choices, however, a fixed binarization threshold for

all regions often yields poor results that confuse the OCR

engine. Instead, we compute multiple candidate binarizations

(nine in our experiments) and run the OCR engine on each.

We then choose to keep the resulting text string whose

confidence score (output by Tesseract) is highest.

We tested the performance of our text recognition module

using two datasets. The first is a dataset of our own con-

struction consisting of 50 images of hand-cropped text from

a wide variety of nameplates — a sampling is shown in

Figure 5. We additionally test the text recognition on the

ICDAR 2003 Robust Word Recognition dataset with 896

of its images4. Note that the latter dataset contains script,

handwritten, and other non-standard text styles which we

make no explicit effort to handle. The results are shown in

Table II. We also show how the accuracy changes as the

number of errors (measured by edit distance) between the

OCR result and the true string are allowed to increase. Thus,

zero distance corresponds to the accuracy when requiring an

exact match, and distance of one corresponds to the accuracy

when allowing one “mistake”, and so on. We will see that

counting partial matches in this way is valuable in our final

application.

C. Map annotation and post-processing

At the end of the recognition phase, we have most of

the text data we desire: a set of text strings associated with

bounding boxes in images captured from various locations on

the map. The final step is to place these text strings accurately

on the map by using the depth and position data acquired

during the mapping run.

Since the robot includes a textured light projector and a

stereo camera pair, each captured visual image includes depth

4We use the Trial Test Dataset without non-ASCII and very
low-resolution (height < 25px) images (removing 214), available at
http://algoval.essex.ac.uk/icdar/Datasets.html

Fig. 5. Sample Text Patches

Fig. 6. Two images of the same piece of text, the OCR result of reading
the detected text, and the final resulting string created by merging them
using a sequence alignment algorithm. See text for details.

data precisely registered with the visual images. Thus, we

can straight-forwardly take the center of each text region

and find its 3D position relative to the camera (mounted on

the robot’s head). Using the robot’s localization system this

point can then be transformed into the map coordinate frame

and stored. In addition to recording the location of the text,

we also include a surface normal vector computed by fitting

a plane to the depth data in a small neighborhood around the

text region.

This step is easy to carry out when each string of text

is fully contained in exactly one image. However, text

inevitably appears in multiple images and can lead to errors

in two ways. First and more commonly, a label will be

present in two images and will be recognized as the same

string both times. Second, it is possible for a name to be split

at the border of two sequential images. In this case, we end

up with partial overlap between the strings — for example,

we may detect ”John Sn” and ”in Smith”. Thus, as a final

post-processing stage, we combine these redundant bits of

text by matching up parts of strings that occupy the same

3D location.

More specifically, for any string si we define its neighbors

{n
(j)
i } to be all detections within a radius r on the map (with

r = 50cm in our experiments). We then search for an optimal

semi-global alignment of si with each n
(j)
i . This is done using

the Needleman-Wunsch sequence alignment algorithm [26],

but with no penalties for gaps at the beginnings or ends

of the strings.5 If the alignment score of the best match is

above a threshold (in practice, 4 works well), we discard the

two partial strings and replace si with the optimal alignment

of the two strings: We insert/delete characters as suggested

by the alignment, and replace mismatched characters with

whichever character is furthest from the end of its original

string (as these characters tend to be more reliable). This pro-

cess can be repeated on the remaining strings until no more

merges are possible. The result is a reduced set of strings

where duplicates and partial strings have been combined to

yield an improved set of detections. See Figure 6 for an

example of two strings merged together using this process.

D. User Queries

In our final application a robot operator can enter a name

or room number and the robot navigates there without further

instruction. During this process we must map the user’s

free-text query (“john smith”) to a localized detection. It is

possible to require an exact string match, but this requirement

is inconvenient for the user who should be able to specify,

for example, only a first name as long as it is unique.

Furthermore, such a requirement degrades performance, as

more intelligent string matching allows the system to recover

from minor OCR errors such as one mis-read character. (See

Table II.)

Since the user might enter a substring of the target, a

global edit distance metric is not appropriate. Instead, we

compute a local sequence alignment score between the query

string and every detected string using the Smith-Waterman

algorithm [27]. The string with the greatest alignment score

is used. Note that an exact match necessarily has the

maximum possible alignment score, so performance cannot

degrade over using exact matches only.

V. EXPERIMENTS AND RESULTS

We demonstrate the performance of the nameplate map-

ping application on the STanford AI Robot (STAIR) plat-

form. We show that it can successfully detect and read

the nameplates present in a novel environment with high

accuracy which provides excellent performance for an end

user.

A. Hardware

Our robotic platform is the STAIR platform, which is

based on the PR2 robot platform from Willow Garage

[28]. A Prosilica GC2450C camera on the head takes the

high-resolution (2448x2050) images for text detection and

recognition. Also mounted on the head are a textured light

projector and two wide-angle cameras (approximately 90◦

field of view) used to gather depth information.

5In our implementation, we use a score of 2 for matching characters,
-1 for mismatched/inserted/deleted characters, and -2 for inserted/deleted
characters at the ends of strings.

TABLE III

SIGN READING RESULTS — ENVIRONMENT 1

Room Numbers Room Names

Env. Total 30 41
Total Detections 30 147
False Positives 5 58
False Negatives 5 2
String-level Accuracy 50% 71%
User-level Accuracy 77% 93%

TABLE IV

SIGN READING RESULTS — ENVIRONMENT 2

Room Numbers Room Names

Env. Total 19 23
Total Detections 21 21
False Positives 4 2
False Negatives 2 6
String-level Accuracy 74% 47%
User-level Accuracy 89% 74%

B. Evaluation

To measure the performance of our application, we provide

STAIR with a map of a novel environment from which no

data was collected for classifier training. We run the entire

system described above, the output of which is a set of strings

(classified as room number or name), each associated with

an (x,y) coordinate on the provided map.

We define two metrics of accuracy to measure perfor-

mance. Let {s∗i }
n
i=1 be the n ground-truth text strings (names

or numbers) present on nameplates in the given environment

and let {t j}
m
j=1 be the m strings returned by our system. The

first metric is string-level accuracy: for each s∗i , a correct

value is a t j in the correct location6 that matches s∗i exactly

(edit distance zero). The second metric is user-level accuracy:

for each s∗i , a correct value is a t j in the correct location such

that s∗i has minimal distance to t j of all {t j}. This definition

corresponds to the user’s entering each s∗i in sequence and

measuring the robot’s navigational accuracy.

To test our system in full we run the entire application

in two different novel environments. For each of these

environments we report separate results for room numbers

and room names. Within these two categories we report the

total number of detections, false positives and negatives,

and the overall accuracy at both a string-level and user-

level as defined above. For room numbers, any detection

that is not text or not a room number counts as a false

positive; for names, we count only non-text and detections

that should have been room numbers. The accuracy numbers

are a percentage of all the text in the environment — not

only of detected text. The results for the two environments

are in Tables III and IV.

We see that while the low-level measures of accuracy

are relatively poor, we nevertheless associate a significant

number of correct strings with their correct locations on

the map. More importantly, from the point of view of a

6We define a correct placement as one within 50cm of the coordinates
given on a hand-labeled map

user, queries are mapped to the correct locations in the great

majority of cases in both buildings (since exact matches are

not necessary to get the correct destination). A portion of the

map from the first building showing several typical detections

and their locations (as recorded by our system) are shown in

Figure 7.

Fig. 7. Portion of map with typical annotations found by our system. The
red arrows denote the position and normal vector of the detected signs. The
image snippets show the detected text at each location, along with the OCR
results.

VI. CONCLUSION

In this paper we have presented a system that automat-

ically collects semantic labels associated with places on a

map by reading them from signs posted on walls in the

environment. The output of our system is a map annotated

by dozens of accurate text labels suitable for use in appli-

cations. Despite the difficulties in detecting and reading text

accurately in general, we have shown that our combination

of text-handling components is already a valuable addition

to the standard mapping pipeline, allowing users to specify

locations by name with a reasonable degree of reliability in

multiple buildings. That these results are achievable using

off-the-shelf OCR software and virtually no assumptions

about the language structure or spatial layout of the text

is surprising and suggests that even better results may be

obtainable in the future through improvements in the basic

modules laid out in our work.

REFERENCES

[1] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-

tions on Robotics, vol. 23, no. 1, pp. 34–46, Feb 2007.

[2] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance.” IEEE Robotics and Automation, vol. 4, no. 1,
1997.

[3] B. P. Gerkey and K. Konolige, “Planning and control in unstructured
terrain,” in ICRA Workshop on Path Planning on Costmaps, 2008.

[4] D. Anguelov, D. Koller, E. Parker, and S. Thrun, “Detecting and
modeling doors with mobile robots,” in IEEE International Conference

on Robotics and Automation, 2004, pp. 3777–3784.

[5] W. Shi and J. Samarabandu, “Investigating the performance of corridor
and door detection algorithms in different environments,” in Interna-

tional Conference on Information and Automation, 2006.

[6] K. Wang and S. Belongie, “Word spotting in the wild,” in European

Conference on Computer Vision (ECCV), Heraklion, Crete, Sept.
2010. [Online]. Available: http://vision.ucsd.edu/ kai/grocr/

[7] B. Epshtein, E. Ofek, and Y.Wexler, “Detecting text in natural scenes
with stroke width transform,” in Computer Vision and Pattern Recog-

nition, 2010.
[8] J. Liang, D. Doermann, and H. Li, “Camera-based analysis of text and

documents: a survey,” International Journal on Document Analysis

and Recognition, vol. 7, no. 2, pp. 84–104, July 2005.
[9] V. Vanhoucke and S. B. Gokturk, “Reading text in consumer digital

photographs,” in SPIE, 2007.
[10] T. Sato, T. Kanade, E. Hughes, and M. Smith, “Video OCR for digital

news archives,” in IEEE Workshop on Content-Based Access of Image

and Video Databases(CAIVD’98), January 1998, pp. 52 – 60.
[11] A. Nüchter and J. Hertzberg, “Towards semantic maps for mobile

robots,” Robotics and Autonomous Systems, vol. 56, no. 11, pp. 915–
926, 2008.

[12] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernandez-
Madrigal, and J. Gonzalez, “Multi-hierarchical semantic maps for
mobile robotics,” in International Conference on Intelligent Robots

and Systems (IROS), Aug. 2005, pp. 2278–2283.
[13] D. Wolf and G. Sukhatme, “Semantic mapping using mobile robots,”

IEEE Transactions on Robotics, vol. 24, no. 2, pp. 245–258, Apr.
2008.

[14] S. Friedman, H. Pasula, and D. Fox, “Voronoi random fields: extracting
the topological structure of indoor environments via place labeling,”
in IJCAI’07: Proceedings of the 20th international joint conference

on Artifical intelligence, 2007, pp. 2109–2114.
[15] X. Liu and J. Samarabandu, “An edge-based text region extraction

algorithm for indoor mobile robot navigation,” in Mechatronics and

Automation, 2005 IEEE International Conference, vol. 2, Jul. 2005,
pp. 701–706.

[16] M. Mata, J. M. Armingol, A. D. L. Escalera, and M. A. Salichs,
“A visual landmark recognition system for topological navigation of
mobile robots,” in IEEE International Conference on Robotics and

Automation (ICRA), 2001.
[17] M. Tomono and S. Yuta, “Mobile robot navigation in indoor environ-

ments using object and character recognition,” in IEEE International

Conference on Robotics and Automation (ICRA), vol. 1, 2000, pp.
313–320.

[18] D. Létourneau, F. Michaud, and J.-M. Valin, “Autonomous mobile
robot that can read,” EURASIP J. Appl. Signal Process., vol. 2004,
pp. 2650–2662, January 2004.

[19] V. Wu, R. Manmatha, and E. M. Riseman, Sr., “Textfinder: An
automatic system to detect and recognize text in images,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 21, no. 11, pp. 1224–1229, 1999.
[20] X. Chen and A. Yuille, “Detecting and reading text in natural scenes,”

in Computer Vision and Pattern Recognition, vol. 2, June 2004, pp.
366–373.

[21] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[22] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, pp. 11–15,
1972.

[23] K. Jung, K. I. Kim, and A. K. Jain, “Text information extraction in
images and video: a survey,” Pattern Recognition, vol. 37, no. 5, pp.
977–997, 2004.

[24] R. Lienhart, “Video ocr: A survey and practitioner’s guide,” In Video

Mining, Kluwer Academic Publisher, pp. 155–184, 2003.
[25] R. Smith, “An overview of the tesseract OCR engine,” in ICDAR

’07: Proceedings of the Ninth International Conference on Document

Analysis and Recognition (ICDAR 2007) Vol 2. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 629–633.

[26] S. Needleman and C. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[27] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
197, 1981.

[28] K. Wyrobek, E. Berger, H. der Loos, and J. Salisbury, “Towards a
personal robotics development platform: Rationale and design of an
intrinsically safe personal robot,” in Proc. IEEE Int. Conf. on Robotics

and Automation, 2008, pp. 2165–2170.

