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电子通道的概念是理解超导现象的关键，也是加速寻找或设计室温超导体的重要理论基础。所谓电子通道，指的是导体中分

子之间形成的电子路径网络，电子可在这些路径中以相同的能级自由移动，从而产生电流。而能级低于电子通道的电子则被

束缚在各自分子内部的轨道[1]，无法参与导电。只有当电子的能量足够高，能够进入电子通道时，电流才能在导体中形成[2]。

由此可见，导体内部空间可分为两类区域：一类是贯穿分子之间、允许电子流动的电子通道网络；另一类是围绕单个分子的

孤立电子单元。二者的结构关系类似于混凝土中水泥与鹅卵石的分布。电子通道并非普遍存在于所有材料中：它是导体导电

所必需的，但在绝缘体中则完全缺失。超导体[3]是一类特殊的导体，其价层轨道与电子通道直接相连。因此，价电子无需额外

能量即可自然进入电子通道，自由移动，从而实现零电阻状态，这也是超导现象的核心所在。需要强调的是，这里所说的“电
子通道”与能带理论中的“导带”[4]属于不同概念，二者描述的物理机制并不相同，不应混淆。 

“电子通道”一词最早在《低温与高温超导的统一理论》提出2。该理论建立了一个统一框架，系统解释了低温与高温超导现象
[5]，并为理解绝缘体、导体与超导体之间的本质差异提供了理论基础。在这一模型中，绝缘态、导电态与超导态被视为同一

物质在不同物理条件下可能呈现的三种电学状态，而这些状态之间的转变，通常与电子通道对温度和压力变化的响应密切相

关。此外，电子通道的概念不仅统一了对各种超导现象的解释，也为在常温常压等标准地球条件下筛选和开发超导材料提供

了理论依据和实践指导。 

吸引系数 

分子中原子的外层电子云通常分布不均，由此产生多种分子间作用力[6]。这些分子间的吸引力（或称分子键）将分子维持在

足够接近的距离，这是形成电子通道，实现电子在分子之间流动的必要条件。需要注意的是，尽管如共价键[7]等分子内部的化

学键允许电子在单个分子内部的原子之间移动，但它们并不能实现电子在不同分子之间的迁移，而这种跨分子的电子运动正

是电流产生的关键。 

为了研究键合强度对电子通道形成的影响，并界定导体中电子通道与分子单元之间的边界，引入了吸引系数[2]（attraction 
coefficient)，记作c。该系数用于描述相邻分子对某电子的吸引强度，典型情形如金属键[8]

产生的作用。假设一个电子受到其

所在分子中原子核的吸引，其等效电荷为Q（已考虑同分子内其他电子的屏蔽效应)；那么，相邻分子对该电子的吸引可建模

为一个等效电荷cQ所施加的作用力，其中c的取值通常在0到1之间。当c=1时，表示相邻分子的吸引力与原始分子等效，例

如该相邻分子存在电子空穴；而当c=0时，则表示该分子对电子无吸引作用。因此，考虑晶体结构中多个分子的叠加效应后，

仍可通过该模型计算电子所受的总作用力，并进一步推导出晶格中任意位置处电子的能级及分子间的电势分布。 

例如，在两个分子之间连线的中心线上，电子所受的库仑力[9]可以精确求得，为进一步计算电子通道的形态与稳定性提供基

础。 
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其中，K表示库仑常数[10]，e为电子的电荷量，r是电子的轨道半径，R为两分子中心之间距离的一半，代表电子位置到两分子

边界的距离。不同的c值对应于由不同类型的分子键所产生的吸引强度。该模型可进一步扩展，用于模拟导体晶格中所有分

子对电子的整体作用。然而，随着分子间距离的增加，远离电子原始位置的分子所产生的影响迅速减弱，因此它们在总作用

中的贡献可忽略不计。 

 

电子通道宽度与吸引系数之间的关系可通过一个简化模型加以说明。在该模型中，两个相邻分子的中心间距设为2000pm，一个分子

对电子的吸引强度以吸引系数c表示。每条曲线表示在特定c值下，电子能级随其轨道半径变化的情况。x轴从分子中心起，向相邻分子

方向延伸，图中展示的是从距离分子中心200pm起至两分子边界（1000pm）的电子能级分布。随着轨道半径增大，即电子远离分子中

心靠近相邻分子边界，其能级逐渐升高。当c=1时，电子能级由负值上升，并在382pm处转为正值，如图中黄色曲线所示。正能级意味

着电子已脱离原子核束缚，能够在分子间自由移动，对应的区域即为电子通道。此情形模拟的是相邻分子存在电子空穴，对电子产生

最大吸引力，因而形成最宽的电子通道。当c=1/3 时，电子能级在785pm处转正，通道变窄，对应红色曲线；而当c=0时，能级在整个范

围内均为负值，电子始终被束缚在原分子中，未形成电子通道，如蓝色曲线所示。 

基于该模型，计算了吸引系数c=1时，两个单原子分子中心线上电子的能级变化。电子能级从接近原子核处的负值开始，随着

轨道半径增加，在相当于两原子半核间距的0.382倍处升至零，随后向分子边界方向继续升高为正值。正能级表明电子已脱

离核束缚，能够在分子间自由移动，因此能级为正的区域即为电子通道。零能级点对应电子通道与分子单元边界的交界处。 

当c=1/3时，电子能级在距离边界约0.785倍轨道半径处转为正值，电子通道变得更窄。若c=0，电子能级始终为负，表明无电

子通道存在，对应物质的绝缘态。总体来看，电子通道宽度随吸引系数c下降而减小，约在c=0.225时消失。这揭示了吸引系

数（即分子间键合强度）与电子通道宽度（反映物质电学状态）之间的密切关系。 

电阻与超导的本质 

由于库仑力的作用，带负电荷的电子始终受到附近原子核和其他电子的影响[10]。电子在导体中的运动并非随机，而是由电场

规律所控制。电子沿对应能级的轨道运动，在低能级时被限制在原子轨道内[1]，可在同一分子的原子间移动，如共价键中的共



享电子[7]，但这类运动不会产生电流。因此，低能级电子被束缚在分子单元内，只有获得外部能量激发后才能跃迁至更高能

级。 

当电子处于较高能级时，便能沿着电子通道在分子间流动，产生电流[2]。电子通道可视为多个分子间共享的高能级轨道，构成

电子在导体分子间流动的等势路径。需要指出的是，电子通道并非自由空间，电子不能在其中无序运动。通道内充满由周围

分子电荷产生的电场，只有能量足够的电子才能沿其运动，电子流动完全受电场调控。 

导体中产生电流的前提是价电子被激发进入电子通道，而激发电子所需的能量正是电阻产生的根源[11]。被激发电子往往回落

到存在电子空穴的低能轨道，过程中的能量以光子的形式散失，表现为电阻热[12]。因此，导体的电阻率与电子通道与价轨道

之间的能量差距直接相关，差距越小，电阻率越低[2]。在超导体中，部分价轨道与电子通道重叠，实质上消除了这一能量差距

，使价电子无需额外能量即可自然进入电子通道自由运动，从而实现零电阻。 

超导的性质解析 

在外加磁场作用下，超导体电子通道中运动的电子会受到洛伦兹力偏转[13]，使电子沿特定方向循环流动，进而产生磁场抵消

超导体内部的外加磁场，同时在超导体外部叠加该磁场[2]，形成迈斯纳效应[14]。电子通道中运动电子的数量限制了超导体的

最大电流密度，即临界电流密度[15]。当外加磁场强度增大到电子通道内电子运动无法完全抵消该磁场时，剩余磁场将偏转轨

道电子的运动，主要影响价电子。电子云沿磁场方向被压缩，价电子被拉回电子通道以下，破坏超导[2]。超导体维持超导状态

的最大磁场称为临界磁场[16]。这揭示了超导体临界磁场与临界电流密度之间的内在联系。 

 

外加磁场对超导的破坏机制可以通过电子通道模型来解释：（A）当外部磁场较弱或不存在时，超导体可通过迈斯纳效应产生内部感应

磁场，完全抵消外加磁场，使其内部呈现出“无磁场”状态。此时，价电子的电子云可在晶格中自由扩展，电子保持在电子通道中，超导

得以维持。超导体可在外加磁场不超过其临界磁场的条件下保持零电阻状态。（B）当外加磁场超过临界值时，由于临界电流密度的限

制，电子通道中所有电子所产生的反向磁场已不足以完全抵消外场。此时，剩余的磁通量穿透超导体，电子在该磁场中受到洛伦兹力

作用，其运动轨道被迫偏转，轨道面沿垂直于磁场方向发生扭曲。电子云因而被压缩，形状类似被压扁的灯笼。随着轨道形变，价电子

脱离电子通道，超导随之丧失。 

二型超导体[17]通常由合金或化合物构成，不同分子键的强度和电子通道宽度存在差异，因此各区域对外加磁场的耐受能力

不同，导致超导在不同区域于不同磁场强度下被破坏。其超导状态存在两个临界磁场：下临界场和上临界场，分别对应超导



性开始被破坏和完全消失的外加磁场强度。由于晶体结构具有各向异性，同一区域对来自不同方向的磁场响应不同，即超导

性的破坏与磁场方向有关。因此，二型类超导体的临界磁场对磁场方向敏感，并具有方向依赖性。在混合态下，超导性被部分

破坏的区域转变为导体区，形成磁通涡旋结构[18]，使外部磁场能够局部穿透超导体。随着外加磁场强度升高，更多临界场较

高的区域丧失超导性，涡旋数量增加，涡旋密度随之升高。 

磁通量子是由单个电子运动所产生的最小磁通单位[19]，其数值可由薛定谔方程导出为h/2e，其中h是普朗克常数，e是电子的

电荷量。这一理论预测可通过环形超导体加以验证。电子在分子间运动时，需通过轨道跃迁完成转移，同时会产生一个电子-
空穴对。因此，每一个电子的流动都伴随着一个电子空穴的反向漂移，形成两个方向相反的电荷流。在环形超导体中，这两

个反向流沿环路径构成两个相对的环流，其等效效果相当于两个电子沿同一方向运动，从而使超导环中形成的最小磁通量

为两个磁通量子。这一结论已被B.S.Deaver与W.M.Fairbank[20]，以及R.Doll与M.Näbauer[21]独立实验证实，确认超导体中最

小可观测磁通量为2×(h/2e)。 

 

二型类超导体的特性，可以通过电子通道对不同方向外加磁场的响应来加以解释：（A）二型类超导体通常由合金或化合物构成。当外加

磁场低于下临界场时，所有分子间的电子通道保持完好，价电子可在其中自由流动，超导性在整个材料中完全维持。（B）当磁场强度介

于上下临界场之间时，部分价电子在洛伦兹力作用下被拉下电子通道，例如中心小分子区域的价电子。这会在局部区域蜕变成导体，

表现为混合态中的磁通涡旋或“超导空洞”。（C）当磁场超过上临界场时，所有价电子都脱离电子通道，超导完全丧失，材料恢复为导

体。此外，电子云在外磁场作用下的形变受磁场方向影响，因此，二型超导体的临界磁场具有明显的方向性，不同方向的外加场可能导

致不同的超导响应。 

物质的导电状态分类 

固态和流体态是物质在不同压力和温度下表现出的不同抗剪切状态[22]。同样，物质也会呈现不同的电阻状态：绝缘态、导电

态和超导态，并且能在不同的压力和温度条件下实现这些状态之间的转变[2]。 

随着压力增大，分子间距减小，导体中电子通道与价轨道之间的差距缩小，导致电阻率下降。这解释了压力与电阻率负相关

的现象[23-25]。在某些高压条件下，该间距可被压缩至零，电阻消失，材料转变为超导态。因此，越来越多的超导体是在高压下

发现的，甚至一些原本为绝缘体的陶瓷材料也能在高压条件下转变为超导体[26-29]。 

低温条件下，电子倾向于回到较低能级轨道，减小分子间的排斥力。因此，环境压力的作用更加明显，导致分子间距缩小，产

生相当于压力增加的压缩效应。这解释了导体中温度与电阻率的正相关，以及传统超导体多在低温下出现的原因[30-31]。 



分子原子距离较短时会产生吸引力或形成化学键。其中部分键，如压缩键[32]，主要在压力作用下导致的。因此，吸引系数通

常随压力升高而增加，这也强化了压力与电阻率之间的负相关关系。 

通常情况下，随着压力的增加，电子通道与价轨道之间的间距缩小，导体的电阻率随之下降[2]。压力升高还会增强分子间的吸

引力系数，使电子通道变宽，进一步降低电阻率。因此，绝缘体在压力增大时可能形成电子通道，实现向导体的转变。随着压

力继续增大，电子通道进一步拓宽，能隙进一步缩小，导体的电阻率持续降低。在更高压力下，能隙可能完全闭合，导体电阻

消失，转变为超导体。正如上文所述，在恒定环境压力下，温度降低同样会产生相当于加压的压缩效应，导致温度与电阻率呈

正相关。因此，压力和温度是决定物质电学状态的关键因素。 

 

超导、导电和绝缘状态的相变，以及传统剪切阻力状态的相示意图。超导相变边界通常位于室温条件下的低温高压区域，这解释了室

温超导体较为罕见的原因，因为地表环境条件难以满足其形成需求。当物质能够直接从绝缘态转变为超导态时，绝缘相变边界可能与

超导相变边界相交。 

超导体的临界点是指在特定压力下出现超导转变的临界温度。对于传统超导体，这一临界点通常是在常压下测得的。而一个

超导体在不同压力条件下可能具有多个临界温度[2]，所有临界点共同构成了状态图中的超导相变边界。 

从宏观角度看，导体的电阻率可以视为温度与压力的函数，并构成一个三维曲面，曲面上的每一个点代表在特定温压条件下

的电阻率值。超导相变边界即是该电阻率曲面在值为零处与压力–温度平面的交线。 

从微观机制来看，导电–超导相变边界对应于电子通道开始与价轨道发生重叠的温压条件；而导电–绝缘转变边界则对应电子

通道宽度收缩至零的点，此时吸引系数约为0.225，正如前述模型所预测的那样。 

室温超导体的设计与实现 

随着对超导微观机制的深入理解，室温超导体的研发已从随机探索转变为可系统推进的工程实践。尽管电子通道理论认为超

导是一种常见的物质状态[2]，现实中大多数材料仅在极高压力或极低温度下才能进入该状态。要实现室温超导的实用化，必

须开发能在地表常规环境下稳定工作的材料。基于电子通道理论，以下几点工程策略可有效缩小室温超导体的设计范围： 



●​ 利用分子间吸引力形成电子通道：通过合理排列分子，引入特定的分子间吸引作用，可在局部区域实现压缩，使分子

排列接近，从而有助于构建宽阔的电子通道并与价轨道重叠，形成连续导电路径。 
●​ 合理选择元素电负性[33-34]：避免使用电负性过高的元素（如NaCl中的Cl)，因其对电子的强束缚性会抑制电子在分子间

的自由流动；而电负性过低的元素则难以建立必要的分子间吸引力，不利于通道形成。理想的选择是在元素电负性变

化范围较小的材料体系中寻找平衡，以优化电子通道的连通性和电子迁移效率。 
●​ 规避过于复杂的分子结构：过大的分子或结构复杂的化合物可能会破坏电子通道的完整性，类似绝缘体中常见的电子

阻断效应。优质超导体应具备方向各异、连通性良好的电子通道结构，避免引入绝缘区域或通道中断。 
●​ 引入大小原子的结构不对称性：由大小原子共同组成的合金或化合物，易在微观层面形成不规则的分子间电场和局

部应力场，从而增加形成分子间吸引力和压缩区域的可能性。这有助于在部分区域形成有利于超导的电子通道结构。 
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