

What Causes Friction to Produce Heat?

Liu, Jerry Z.

ZJL@CS.Stanford.EDU

Keywords: Frictional Heating, Impactrans, Electron Excitation, Orbital Transition, Electromagnetic Radiation

Introduction

We all know from experience that rubbing your hands together generates warmth. Car brakes slow a vehicle by creating friction between brake pads and wheels, producing substantial heat. Similarly, when a spacecraft re-enters Earth's atmosphere, friction with air particles generates intense heat, requiring protective heat shields. But what exactly causes friction to produce heat? At the macroscopic level, it is commonly explained that mechanical energy, specifically, the kinetic energy from relative motion between surfaces, is converted into thermal energy. This article explores what occurs at the microscopic level to enable this conversion. Indeed, the same underlying mechanism responsible for frictional heating also drives heat conduction, the behavior described by the ideal gas law, and many other thermal phenomena.

Impactrans

Impactrans is the mechanism at the microscopic level that converts kinetic energy into thermal energy. On the microscopic scale, surfaces are rarely perfectly smooth. Relative motion between such surfaces leads to collisions between particles, such as atoms and molecules, possibly mediated by electrostatic interactions.

These interactions can excite electrons, pushing them to higher energy orbitals or even ejecting them entirely, thereby increasing their potential energy. When these electrons return to lower energy states, the released potential energy is emitted as electromagnetic radiation, which manifests as frictional heat. In some cases, interactions may instead cause electrons to drop to lower orbitals directly, releasing energy in the form of radiation as well. Additionally, the rapid acceleration and deceleration of electrons during these microscopic impacts can generate radiation directly.

Together, these processes convert mechanical kinetic energy into radiative energy, which we perceive macroscopically as frictional heat. Indeed, impactrans play a critical role in the equilibration of systems by transforming kinetic energy into both potential and radiative energy at the microscopic scale, thereby enabling macroscopic phenomena such as heat conduction.

Other Examples of Impactrans

The conversion of kinetic energy into radiative and potential energy through impactranses is evident in many everyday phenomena. A common example is the dent formed on a surface after being struck by a hammer. The deformation arises from alterations in the bond structure. Some bonds are compressed, others are stretched, absorbing the hammer's kinetic energy as potential energy. Some change in the potential energy of the impacted bonds is released as radiative heat, a

process commonly experienced as impact heat, which frequently occurs during collisions. At its core, this impact can be understood as a collective impactrans process involving a vast number of particles.

Similarly, an impact spark is also a manifestation of impactrans. It appears as a sudden burst of light and heat resulting from a high-energy collision, such as when two hard objects strike each other or when a metal tool scrapes across a surface, producing visible sparks. Traditionally, this phenomenon is attributed to localized heating from friction or impact, causing small particles to reach ignition temperature. At the microscopic level, the process begins with intense kinetic interactions. As two surfaces collide or scrape, impactrans events occur: atoms and molecules at the contact surfaces experience rapid, high-energy collisions via electrostatic forces. During these interactions, electrons are rapidly accelerated and may be pushed to different orbitals, then fall back and release energy in the form of intense electromagnetic radiation, observed as the visible spark. In some cases, the energy released is sufficient to ignite small particles, causing material on the surface to burn.

In the case of static electricity, rubbing a plastic rod with fur creates microscopic friction between their surfaces, leading to the transfer of electrons from one material to the other. This occurs because impactrans events, triggered by mechanical interaction, dislodge electrons from their atomic orbitals. As electrons accumulate on the plastic rod, it becomes negatively charged, while the fur, having lost electrons, becomes positively charged. This charge separation is a clear manifestation of impactrans in action.

The Mechanism Behind the Ideal Gas Law

Impactrans events also occur between air molecules, particularly in systems involving pressure and temperature changes. At the molecular level, air is composed of rapidly moving particles that constantly collide with each other and with the walls of their container. These collisions are not merely elastic bounces; they involve microscopic interactions where kinetic energy is partially transformed into potential and radiative energy through impactrans events.

One prominent example is the temperature increase at the base of a piston tube, where compression causes molecules to collide more frequently and with greater energy. As the density and velocity of the particles increase, so do the frequency and intensity of impactrans interactions. These microscopic events convert mechanical energy into potential and radiative energy, raising the system's temperature.

This microscopic mechanism of energy transformation, from kinetic to thermal via impactrans, forms the basis of gas behavior under compression and expansion. This relationship is described by the ideal gas law, which states that for a fixed volume and quantity of gas, pressure is directly proportional to temperature, as expressed in the following equation:

$$T = \frac{V}{nR}P$$

In this equation, T , P , and V denote the temperature, the pressure, and the volume of a system. R represents the ideal gas constant, and n is the amount of substance. Modern heating and cooling systems, such as refrigerators, air conditioners, and heat pumps, exploit this principle. By controlling pressure through compression and expansion, these systems

regulate temperature via the underlying impactrans-mediated interactions between molecules. The predictable relationship between molecular motion, collision energy, and heat generation is what allows these technologies to function effectively.

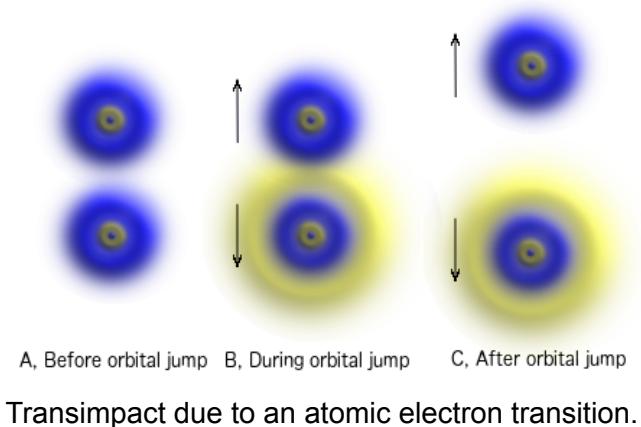
Thus, impactrans provides a unifying explanation for the thermodynamic behavior of gases, offering a deeper understanding of how mechanical processes at the microscopic scale manifest as macroscopic temperature and pressure changes.

The Mechanism Behind Thermal Conduction

Heat can be transferred through a macroscopic process known as conduction, in which thermal energy flows from regions of higher temperature to lower temperature within a material. While this process is well described at the macroscopic scale by Fourier's law, the microscopic mechanisms that enable conduction have traditionally been less clearly understood.

One of the critical mechanisms that underlie thermal conduction at the microscopic level is impactrans. In a solid, atoms and molecules are arranged in a lattice and constantly vibrate due to thermal energy. As the temperature increases in one region, the amplitude and energy of these vibrations also increase. When neighboring particles vibrate with differing energies, impactrans events occur—microscopic interactions where the kinetic energy of one particle is partially converted into potential and radiative energy during collisions or electrostatic interactions with adjacent particles.

These impactrans events enable energy to move progressively through the material, forming the microscopic basis of macroscopic heat conduction. They do not rely solely on the physical displacement of atoms but also involve the excitation of electrons and localized electromagnetic interactions, which contribute to the overall energy transfer.


This process typically operates in concert with another mechanism called **transimpact**, which facilitates the spatial transfer of radiative and potential energy released during impactrans events. Together, impactrans and transimpact provide a cohesive framework for understanding how thermal energy moves through materials, bridging the gap between classical thermodynamics and quantum-scale interactions.

Transimpact

Electrostatic attraction typically acts between nearby atoms or molecules; however, when they come too close, electron-electron repulsion increases sharply. A stable equilibrium is established at a characteristic distance, where these opposing forces balance. This equilibrium can be disrupted during atomic electron transitions. When an electron absorbs energy, it becomes excited to a higher orbital, typically within a few nanoseconds or less. As the electron cloud expands, the volume of the host atom increases, reducing the distance to adjacent atoms. This abrupt decrease in spacing disrupts the electrostatic balance, often triggering a sudden increase in repulsive forces that push atoms apart. This dynamic process, illustrated in the figure below, is referred to as **transimpact**.

Transimpacts are explosive, impulsive events, much like the sudden burst of popcorn, that forcefully propel adjacent particles apart, imparting significant momentum and initiating or amplifying their motion. These events are driven by atomic electron transitions, which occur routinely at the microscopic scale. As such, transimpacts represent pervasive interactions

that play a fundamental role in many physical processes, particularly within thermodynamics. Ultimately, the kinetic energy of microscopic particles originates from radiative energy and reflects underlying changes in potential energy.

In reverse processes, the kinetic energy of particle motion can also be converted into potential and radiative energy through impactrans. Together, impactrans and transimpact facilitate energy transformations among all three forms, potential, kinetic, and radiative, allowing a system to maintain equilibrium internally and with its surroundings.

Revision History

- 08/24/2025: Initial Post on Stanford Site
- [11/01/2025: Published on Zenodo](#)
- [12/17/2025: Adding Links to Summaries of Related Articles](#)

Links to Summaries of Related Articles

- <https://cs.stanford.edu/people/zjl/abstract.html>, PDF
- <https://sites.google.com/view/zjl/abstracts>, PDF
- <https://xenon.stanford.edu/~zjl/abstract.html>, PDF
- <https://doi.org/10.5281/zenodo.17967154>, PDF

Further Literature

- [Misconceptions in Thermodynamics \(PDF: DOI\) \(中文: DOI\)](#)
- [The Mechanism Driving Crookes Radiometers \(PDF: DOI\) \(中文: DOI\)](#)
- [The Cause of Brownian Motion \(PDF: DOI\) \(中文: DOI\)](#)
- [Can Temperature Represent Average Kinetic Energy? \(PDF: DOI\) \(中文: DOI\)](#)
- [The Nature of Absolute Zero Temperature \(PDF: DOI\) \(中文: DOI\)](#)

- [The Triangle of Energy Transformation \(PDF: DOI\) \(中文: DOI\)](#)
- [Is Thermal Expansion Due to Particle Vibration? \(PDF: DOI\) \(中文: DOI\)](#)
- [Superfluids Are Not Fluids \(PDF: DOI\) \(中文: DOI\)](#)
- [Why a Phase Transition Temperature Remains Constant \(PDF: DOI\) \(中文: DOI\)](#)
- [What Causes Friction to Produce Heat? \(PDF: DOI\) \(中文: DOI\)](#)
- [The Easiest Way to Grasp Entropy \(PDF: DOI\) \(中文: DOI\)](#)
- [Entropy Can Decrease \(PDF: DOI\) \(中文: DOI\)](#)
- [The Restoration Principle \(PDF: DOI\) \(中文: DOI\)](#)
- [Is There a Sea of Free Electrons in Metals? \(PDF: DOI\) \(中文: DOI\)](#)
- [Electron Tunnel \(PDF: DOI\) \(中文: DOI\)](#)
- [Unified Theory of Low and High-Temperature Superconductivity \(PDF: DOI\) \(中文: DOI\)](#)
- [LK-99 Limitations and Significances \(PDF: DOI\) \(中文: DOI\)](#)
- [Superconductor Origin of Earth's Magnetic Field \(PDF: DOI\) \(中文: DOI\)](#)
- [Fundamental Problems about Mass \(PDF: DOI\) \(中文: DOI\)](#)
- [The Evolution from the Law of Gravitation to General Relativity \(PDF: DOI\) \(中文: DOI\)](#)
- [The Simplest Derivation of \$E = mc^2\$ \(PDF: DOI\) \(中文: DOI\)](#)
- [How to Understand Relativity \(PDF: DOI\) \(中文: DOI\)](#)
- [Mathematics Is Not Science \(PDF: DOI\) \(中文: DOI\)](#)
- [Tidal Energy Is Not Renewable \(PDF: DOI\) \(中文: DOI\)](#)
- [AI Contamination \(PDF\) \(中文\)](#)
- [DeepSeek pk ChatGPT \(PDF\) \(中文\)](#)