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摘要 
 
与通常认为热膨胀源于粒子振动增强的观点不同，我们的研究表明，热膨胀主要源于粒子键空间的扩大，以容纳更多

的势能。如果仅由振动引起膨胀，那么随着温度升高，物质体积应始终增加，因为振动强度通常随温度升高而增强。

然而，许多物质在升温时却出现热收缩，显然违背了这一假设。化学键类似弹簧，可以储存拉伸后的势量。当物质吸

收热量时，电子跃迁至更高能级，表现为势能的增加。同样，键距的拉伸也反映出势能的提升。在比热特性中，这一点

尤为明显。尤其是多原子气体，比热与分子内部键的数量相关，说明部分热能转化为分子键的势能，而非完全转化为

动能。由此可见，热膨胀的本质，是物质在吸热后为储存更多能量而扩张结构空间的结果。这种结构扩张表现为电子

轨道的跃迁，分子键的拉伸、分子间距增大，进而导致体积变化。归根结底，物质的体积由其内部的粒子键结构决定。

这一观点也能解释某些特殊情况下的热收缩现象。例如水在接近 摄氏度4时，由于分子排列更为紧凑，反而导致体积

减小。 
 

 
前言 

 
热膨胀是指物质在不发生相变的情况下，因温度变化而导致其形状、面积、体积和密度发生变化的现象[1]。传统教材常将热

膨胀归因于分子振动加强，认为高温下分子振幅增大，从而需要更大的空间。维基百科也提供了类似的解释，如图0所示。然

而，这种解释具有误导性。 

 
图0：维基百科关于“热膨胀”解释截图（2025年10月22日)。 
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振动理论建立在三个关键假设之上：（1）温度代表动能；（2）动能来源于分子振动；（3）分子振动需要更多空间。如果这些假设

成立，那么物质的体积应随温度升高而持续增加，因为热量增加会加剧分子振动，理论上应无例外。然而，现实中许多物质在

升温时却出现热收缩现象，这直接挑战了该理论的合理性[2–3]。例如，水在摄氏度4时体积最小，升温或降温都会导致其膨胀，

这种行为与振动理论的预测矛盾，揭示了其逻辑上的根本问题。 
 
从直观角度看，振动理论也难以自洽。在固体中，分子被束缚于晶格或分子网络中，类似树木扎根于森林。分子振动就如同树

木在风中摇摆，对整体结构影响有限。如果热膨胀仅由振动引起，那么一段铁轨在受热时，其膨胀应主要出现在两端。然而，

实际观察显示，热膨胀沿整条轨道均匀发生，表明其是一个结构层面的累积过程，而非边界处的微小偏移。这种现象难以用

单纯的振动机制解释。 
 
振动理论的根本问题在于其基本假设中至少有两项与事实不符。首先，将温度与动能简单直接关联是一种误解。正如《温度

是分子平均动能的标志吗?》一文所指出，温度并不直接反映系统的平均动能，而是体现内能中的动态分量，尤其是势能[4]。

其次，热膨胀更可能是分子间键结构发生变化的结果，而非分子振动的简单放大。这一观点构成本文所提出新理论的基础。 
 
 

温度与动能的关系偏差分析 
 
若温度完全由系统的动能所决定，则温度与动能的变化应可直接用于计算比热。比热定义为使单位质量的物质温度升高一

摄氏度所需的能量。根据动力学理论，在理想气体中，至少在理想温度和压力范围内，温度与分子平均速率相关[5–7]： 

 

​ (1)​  𝑣 =
3𝑘

𝐵
𝑇

𝑚

 
其中，m表示气体分子的质量，T为绝对温度，kB代表玻尔兹曼常数[8]，而v是气体分子的平均速率。因此，根据气体动力学理

论，理想气体中单个分子由于热运动所具有的平均动能可表示如下： 
 

​ (2)​  𝐾 = 1
2 𝑚𝑣

2 = 3
2 𝑘𝐵𝑇

 
由此可见，气体分子的动能与系统的绝对温度呈正比关系。该公式反映了一个广泛接受的观点：温度代表体系中粒子的平均

动能。因此，每摩尔气体分子的总动能可表示为： 
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其中，NA表示阿伏伽德罗常数，R为气体常数。假设比热所提供的能量全部用于增加气体分子的动能，则比热可依据动力学

理论进行推导。按照定义，摩尔比热是指使一摩尔物质升高一摄氏度所需的能量。因此，气体的摩尔比热可由公式（3）推导
如下： 
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也就是说，根据动力学理论，理想气体的摩尔比热应为常数，且对所有理想气体均相同。该预测与单原子气体的实验数据高

度吻合，准确率超过99%。然而，该理论不能准确描述多原子分子气体的比热，预测值普遍低于实测值，且随着分子复杂度的

增加，误差逐渐扩大。以辛烷为例，其理论预测的比热仅约为实测值的7%，对应约93%的预测误差。 
 
为探究比热预测中能量缺失的根源，针对不同分子复杂度的理想气体进行了比热测量实验。结果分析表明，预测值与实测值

的差异与分子键数呈显著正相关，如图1所示。这表明，未计入的能量主要用于提升分子键的势能。分子键如同弹簧，拉伸时

储存能量。当原子或分子间键长被拉伸时，所做的功以势能形式储存在伸长的键内。 
 

 
图1：缺失的摩尔比热与分子键数的关系。缺失的比热指实验测量值与动力学理论预测值（公式4）之差。拟合直线斜率

约为6.56，决定系数（R²）为0.98，表明两者呈高度线性相关。 
 
这一发现带来两个重要启示：首先，温度并不只是动能的度量；其次，它更本质地反映了系统内部的势能状态。这一认知促使

我们重新审视传统的温度观，并深入探讨动态能这一更为全面的能量描述方式。 
 
 

什么决定温度？ 
 
温度通常被视为系统热能的表现，而热能往往被理解为分子的热运动，因此，温度被认为是分子平均动能的指标。然而，前

述观察表明，这一传统观点可能并不完整，甚至存在误导。温度与动能之间存在本质性的脱节。许多温度测量设备，尤其是

红外测温仪，并非直接测量动能，而是通过探测辐射能来推断温度。理想黑体辐射行为遵循普朗克定律，该定律揭示了辐射

频谱分布与温度之间的关系[9–11]。对普朗克定律在全频率范围内积分后，可得到理想黑体所发出的总辐射功率P，该功率与绝

对温度的四次方成正比，即斯特藩–玻尔兹曼定律所述的关系[12–13]： 
 

​ (5)​  𝑃 = 𝑝𝑇4



 

 
其中，p表示斯特藩－玻尔兹曼常数。重新整理该公式，可以将温度表示为目标物体辐射功率的函数： 
 

​ (6)​  𝑇 = 4 𝑃
𝑝

 
该关系表明，系统的辐射特性可用于预测其温度，构成了温度测量仪器的理论基础。这正是红外测温仪可以遥测目标物体温

度的原理。 
 
普朗克定律的另一个推论是维恩位移定律，其指出：辐射峰值波长与温度成反比。也就是说，随着温度升高，辐射曲线的峰值

将向更短波长方向移动： 
 

​ (7)​  λ = 𝑏
𝑇

 
其中，𝜆表示辐射曲线的峰值波长，b为维恩位移常数。该关系亦可通过推导普朗克辐射曲线的峰值获得，即对其波长形式求

导并求解极值。对所得方程进行整理后，可将温度表示为峰值辐射波长的函数： 
 

​ (8)​  𝑇 = 𝑏
λ

 
该关系表明，通过测量系统所发射辐射的峰值波长，即可推算其温度。维恩位移定律描述了温度与辐射峰值波长之间的反比

关系，这一规律在很多方面得到应用。例如，经验丰富的面包师可通过火焰的颜色判断烤箱的温度。类似地，太阳表面温度约

为5,778K，借此可以推断其辐射峰值波长约为500纳米，正好位于可见光范围内。这些例子说明，温度本质上与辐射源所发出

的能量密切相关。 
 
辐射与系统内部的势能密切相关。当物体加速时，其伴随的力场变化会以波动形式释放能量[14–15]。例如，带电粒子在轨道间

跃迁时，会辐射能量，包括可见光。本质上，辐射能来源于化学键或轨道电子中储存的势能转化。这一视角有助于理解图1中
气体系统缺失的比热问题，表明温度与系统辐射强度及内部势能的关系，远较与动能关联更为密切。 
 
 

动能的来源 
 
动能（如粒子振动的动能）的来源引发了一个深层且常被忽视的问题：粒子为何以及如何开始振动？迄今，针对这一根本问题

的直接研究尚少。然而，一项关于克鲁克斯辐射计工作原理的研究对此进行了探讨[16]。该研究指出，微观粒子动能源自一种

称为跃迁冲击的过程，这是电子轨道跃迁所导致的。 
 
相邻的原子或分子之间通常产生库仑引力，使其靠近，但当它们过于接近时，价电子间的排斥力会急剧增强。在一个叫范德

华间距的特征距离，这两种相反的力达到平衡。在电子跃迁过程中，这种平衡往往被打破。当电子吸收能量激发后，通常在数

纳秒甚至更短时间内跃迁至更高轨道[17–18]。如图2所示，随着电子云膨胀，原子体积增大，导致与相邻原子的间距缩小。这种

https://cs.stanford.edu/people/zjl/mill.html


 

间距的骤减扰乱了粒子之间的平衡，通常引发排斥力骤增，使原子相互排斥。这一由电子跃迁引发的冲击现象被称为跃迁冲

击（transimpact)，来源于两个英文单词（transition impact)。 
 

 
图2：电子跃迁引发的跃迁冲击现象。 

 
跃迁冲击是爆发性的，类似于爆米花的瞬间爆裂。由此产生的动量将大量动能传递给邻近粒子，推动它们分离并引起振动。

电子跃迁是微观层面普遍且经常发生的过程，因此跃迁冲击是广泛存在的相互作用，在很多物理工程中，尤其在热力学中，

非常重要。跃迁冲击机制也提供了相变[22]、布朗运动[19–21]以及克鲁克斯辐射计运作[23–27]等多种现象的原动力。由此可见，微

观粒子的动能最终源自辐射能，反映了系统势能的水平。 
 
跃迁冲击过程使系统内部动能不断积累，但这种积累不可能无限持续，必须通过某种相反机制将动能转化为其他形式的能量

——这一机制被称为冲击跃迁[16]。在该过程中，粒子（如分子、原子或亚原子粒子）的运动或振动与相邻粒子发生碰撞。这种

相互作用可能将电子激发至更高轨道，甚至将其逸出，从而改变粒子的势能状态。此外，冲击跃迁中电子的加速运动会导致

其辐射电磁波，因而释放能量。通过冲击跃迁，动能被转化为势能与辐射能。 
 
动能向辐射能的转化在诸多日常现象中都有体现。例如，摩擦生热便是冲击跃迁作用的表现：双手互相摩擦时产生的热感，

实质上源于皮肤表面分子撞击的动能转化为辐射能。类似地，气筒打气时，底部分子撞击加剧发热，也可归因于冲击跃迁效

应。在静电现象中，用塑料棒摩擦毛皮导致表面分子撞击，使电子从原子中逸出，形成电荷积累，这同样是冲击跃迁的具体

表现。 
 
 

动态能的定义 
 
热能传统上被定义为物质中粒子总动能的体现，包括其平动、转动与振动等形式的运动。温度则通常被视为热能的度量，进

一步被理解为系统中粒子平均动能的标志。然而，如上所述，这一传统定义可能存在不完整甚至根本性的偏差，忽略了势能

与辐射能在热能中的重要作用。 
 
动能、势能与辐射能并非彼此孤立，而是通过跃迁冲击和冲击跃迁，持续相互转化。我们将“动态能”定义为这三种互相关联能

量形式的总和： 



 

 
​ (9)​  𝑇 = 𝑅 + 𝑈 + 𝐾
 
其中，T代表系统的动态能，包含辐射能（R）、势能（U）和动能（K）。之所以称为“动态”，是因为这三者在系统中不断相互转换，

推动系统演变。将它们归为动态能，强调了它们的相互转化和波动特性。这种能量的动态平衡是包括热膨胀在内的多种物理

和化学过程的基础。虽然三者均影响温度，但温度主要由辐射能与势能决定；动能则通过它们间接影响温度。 
 
 

热膨胀的机理 
 
由于温度反映系统的动态能，温度升高即意味着动态能的增加。在动态能的三种形式中——动能、势能与辐射能，势能和动

能均可能对物质体积产生影响。如前所述，动能对体积的作用应为单调性增长，仅表现为膨胀，因而无法解释热收缩现象。相

比之下，由势能变化引发的结构重组提供了更合理的解释，因为其既可导致膨胀，也可引起收缩。在高能态下，原子或分子

键间距的延展可解释常见的热膨胀；而在特定条件下，某些键可排列为更紧凑的结构，从而产生热收缩。 
 
在这一理论框架下，热膨胀率可根据图1所示的温度与分子键数量之间的相关性进行估算。方程（4）给出了动理论推导的摩

尔比热，代表用于增加粒子动能的能量部分。鉴于每个化学键都能储存一部分能量，且比热与键数之间呈高度相关，因此可

粗略假设各类键具有相似的能量储存能力。基于此假设，可建立一个摩尔比热的经验公式： 
 

​ (10)​  𝐶
𝑚
= 3

2 𝑅 + 𝑐𝐵

 
其中，B表示气体分子中的键数，c为每个键的平均能量储存能力。根据图1所示的实验数据，每个键约可储存6.56J/mol·K的
能量。公式中的第一项对应于气体系统中动能的贡献。然而在液体和固体中，动能的占比通常较小，其影响可被视为已包含

于分子间键所储存的能量中，从而等效地增加总键数B。因此，对于液体和固体，公式（10）可进一步简化如下： 
 
​ (11)​  𝐶

𝑚
= 𝑐𝐵

 
依据比热的定义，该式可改写为： 
 

​ (12)​  ∆𝐸
∆𝑇 = 𝐶

𝑚
= 𝑐𝐵

 
需要指出的是，此处的比热指每摩尔分子的比热。每一条化学键的延展既促进线性膨胀，也推动体积膨胀。因此，该公式表

明，热膨胀与分子中键的数量成正比，其比例由某一系数决定。该膨胀可视为单位能量在环境压强P下对面积A和长度增量 
ΔL所做的功，其表达式为： 
 
​ (13)​  ∆𝐸 = 𝑃𝐴∆𝐿
 
上述所有因素均可包含在线性热膨胀系数l和体积热膨胀系数v中。根据方程（12）与（13)，膨胀系数可表述为： 



 

 

​ (14)​  α
𝐿
= 1

𝐿
∆𝐿
∆𝑇 = 𝑙𝐵

𝑃

 

​ (15)​  α
𝑉
= 1

𝑉
∂𝑉
∂𝑇( )

𝑃
= 𝑣𝐵

𝑃

 
名称 分子式 化学键数 摄氏20度线性热膨胀系 (x10-6K-1) 摄氏20度体积热膨胀系 (x10-6K-1) 
水 H2O 2 69 207 
丙烯 C3H6 9 150 450 
汽油 C8H18 25 317 950 

 
表 1：不同分子键数对应的热膨胀系数比较。热膨胀系数随分子键数增加而增大，符合公式（14）和（15）的预测。表

中液体的热膨胀系数测量条件为摄氏20度和1个大气压。 
 
这些公式基于简化假设推导，可能无法直接应用于实际情况，但有效揭示了温度与粒子（原子或分子）间键距膨胀的关系，阐

明了材料热胀冷缩基本机制。线性膨胀系数l和体积膨胀系数v取决于物质的分子结构，尤其是键的性质。公式表明，膨胀与

环境压力P成反比，符合物理常识。值得注意的是，分子键数B越多，热膨胀系数越大。表1中线性和体积膨胀系数实际数据

支持这种相关性预测。 
 
 

热收缩的原因 
 
由于分子键结构决定了粒子间的间距，物质在键结构保持不变的情况下通常表现出均匀的热胀冷缩。然而，某些材料中键结

构的变化会导致热胀冷缩行为显著变化，甚至出现热收缩。典型例子是水在约摄氏4 度附近发生的热收缩现象，主要源于氢

键结构的重组，体现了键结构对热学性质的直接影响。 
 
水分子由一个氧原子与两个氢原子通过共价键连接。由于氧核含有较多质子且电负性强，氧原子对共享电子的吸引力更大，

导致电荷分布不均，氧呈现负极性，氢呈现正极性。这种极性促使一个水分子的氧原子吸引邻近水分子的氢原子，形成强度

较弱的氢键。 
 
在水和冰中，分子间的吸引力主要由氢键提供的。低温时，氢键缩短引力增强。约在摄氏4 度时，氢键如支架般固定水分子

相对位置，形成雪花晶体般的较稀疏结构。随着温度降低，该晶体结构更为明显，导致体积膨胀。虽然键长变化导致的常规

热膨胀冷缩效应依旧存在，但在氢键重组引起的结构变化主导了冰的体积膨胀。体现了分子键结构对热学性质的主导作用。 
 
当温度升高时，氢键拉长，引力减弱，最终被跃迁冲击破坏较稀疏的固定结构而坍缩，分子排列更加紧密。因此，在约摄氏4 
度以上时，键长变化导致的常规热膨胀冷缩效应回归主导，表现为水的正常热膨胀。 
 
此外，粒子间的吸引力既包括原子或分子间的键力，也包括电子与核间的吸引。因此，单原子分子构成的物质亦呈现出热膨

胀冷缩效应，且通常各向均匀的。相比之下，结构复杂的晶体更容易表现出非均匀的热胀冷缩。 



 

 
 

结论 
 
热胀冷缩本质上源于物质内部粒子间键结构变化。随着能量的吸收，分子键可通过延展来储存额外的能量。这种键距变化可

表现为分子间距的增大、分子内部原子之间的键长延伸，或电子轨道半径的扩大，导致体积膨胀。动态能主要以势能形式储

存在这些键结构中，并与温度变化高度相关，是导致物体热胀冷缩的本质。除了键长变化导致的常规热膨胀冷缩外，有时分

子键结构主导体积变化，在某些材料中，特定的分子键结构可形成更低密度的分子排列，从而在加热过程中引起收缩。 
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