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ABSTRACT

Effective local feature extraction is one of the fundamental tools for retrieval applications in computer vision.
However, it is difficult to achieve distinguishable local features in large viewpoint variances. In this paper,
we propose a novel non-iterative approach of normalized feature extraction in large viewpoint variances, which
adapts local regions to rotation, scale variance and rigid distortion from affine transformation. Our approach
is based on two key ideas: 1) Localization and scale selection can be directly achieved with the centroid and
covariance matrix of the spatial distribution of pixels in a local region. 2) Principal Component Analysis (PCA)
on gradients of intensity gives information on texture, thus it can be used to get a resampled region which is
isotropic in terms of variance of gradient. Experiments demonstrate that our normalized approach has significant
improvement on matching score in large viewpoint variances.
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1. INTRODUCTION

Local features are highly effective to represent discriminable information in small image structures. In general,
hundreds of valid local interest points or regions can be detected in an image. The features extracted from them
can be effectively applied for matching correspondences in image retrieval. However, as the shape and texture of
a local region may vary obviously, the robustness of local features is hard to achieve in large viewpoint variances.
On the other hand, in most of the practical retrieval applications, large viewpoint variances are inevitably
introduced by the camera users. Many of the state-of-the-art local features are extracted from a circular image
patch, ignoring the local geometric transformation. Therefore, the matching performance drops dramatically in
large viewpoint variances. In order to maintain the effectiveness of local features, extraction methods have to be
designed with adaptation to geometric transformation. There are many algorithms that have been proposed to
solve this problem, which can be divided into two frameworks.

In the first framework, geometric transformations are estimated under the assumption of global planarity.
Segmentation is employed in1 and the estimated transformation is derived homogeneously for a whole segmented
region. Yu and Morel2 proposed affine scale space which involves affine transformation parameters into the
original scale space proposed by Lindeberg.3 The optimal transformation with the best feature matching result
is selected globally for image pairs.

Another framework is based on an iterative local manner. Lindeberg and Garding’s approach4 iteratively
refines the shape of Gaussian kernels. They achieved shape-adapted image smoothing after the relationship
between the shape of kernel and the second moment matrix of gradient converges. The method in5 employs the
same idea to normalize neighborhoods of Harris corners in image matching. The work of Mikolajczyk and Shmid6

introduced scale space into this framework for the first time. They achieved both scale and affine transformation
invariance.

The approaches discussed above either are dependent on global planarity or show low efficiency as a con-
sequence of the iteration. In this paper, we make efforts to harmonize high efficiency with the localness of
normalization. We replace the constraint of global planarity with a week assumption of local planarity, which
means that each local region is on an arbitrary planar surface and no local regions are required to be coplanar.
To estimate a normalizing transformation, we analyze gradients of intensity in a local region with PCA (Principal
Component Analysis). The normalization in our approach guarantees that local image patches corresponding
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Figure 1. Outline of our approach. (a) Detection: Regions filled with red pixels are detected by MSER. (b) Resample
scale selection: Ellipses are fitted based on the estimation of Σs, the yellow one is described in Section 2.2, while the red
one is enlarged to include the whole region. (c) Normalization: Applying our normalization based on PCA of gradient,
the two normalized regions only have difference in rotation and scale, thus the invariance to rigid distortion is achieved.
With the updated Σs described in Section 2.3, we get the scale for feature extraction. The yellow circle shows the
range in which dominant gradient orientation is calculated. The red one denotes range for HOG feature extraction. (d)
Feature extraction: Oriented HOG features extracted from patches in (c), which satisfy scale, rotation and rigid distortion
invariance.

to the same region on a real object only have difference in rotation and scale. In this process, resampling is
performed only once for each region, thus iteration is avoided. Assisted by our statistical scale selection and
oriented feature extraction, our approach achieves full invariance to rotation, scale variance and rigid distortion
simultaneously in large viewpoint variances.

Our approach with specific steps is discussed in Section 2. Matching score comparison and robust estimation
results are shown with experiments in Section 3.

2. FEATURE EXTRACTION BASED ON PCA OF GRADIENT

2.1 Outline of our approach

Our proposed approach is a non-iterative framework, which automatically adapt local features to rotation, scale
change and rigid distortion in large viewpoint variances. The outline of our approach is described in the following.

1) Initially detect local regions with MSER.7

2) Calculate the centroid and covariance matrix of pixels distribution in a local region. The eigenvalue is
used to determine a spatial range for resample.

3) Analyse the covariance matrix of gradient in the original region. An affine transformation is estimated to
transformthe original region to an isotropy one which has equal variance of gradient in an arbitrary direction.
At the same time, our approach can also prevent the normalizing resampling from losing image details.

4) Update the covariance matrix of pixels distribution with the normalizing transformation. To maintain
the completeness of a normalized local region, we select a proper scale for feature extraction with the updated
covariance matrix in the same way as 2).

5) Extract oriented HOG descriptors on normalized regions with the scale selected in 4).



2.2 Statistical localization and scale selection

Our local region is localized at the centroid of the pixels in detected regions. As shown in Figure 1(a), we initially
detect local region Ω with MSER. The localization in our approach has sub-pixel accuracy as it is a statistical
average of the spatial distribution of pixels.

To achieve scale selection, the most widely used approach is the scale-space framework8 involving construction
of image pyramid for the detection of local maxima in scale space. In our approach, a more efficient statistical
way is employed.

We estimate the covariance matrix Σs of the spatial distribution of pixels in the local region with

Σs =

∫
x∈Ω

(x− E(x))(xT − E(xT ))dx. (1)

The symmetric Σs can be decomposed as

Σs = A

[
λs1 0
0 λs2

]
AT . (2)

Rows of orthogonal matrix A denote two directions a and b in which projected ordinates of pixels in Ω have
variances λs1 and λs2 respectively. Supposing that λs1 ≥ λs2, it can be proved a is the direction in which the
pixels in Ω are the most scattered with the largest spatial distribution variance. In common cases, if pixels in a
local region are all included in direction a in a certain circle, we can guarantee with great probability that pixels
are all included in an arbitrary direction so that we will not neglect any parts of the detected region for resample
and feature extraction. In our experiment, we use λs1 as the scale. Pixels lying in a circle which is centerd at
the centroid and has a radius equalling 2.5 times of λs1 in the original patch are all mapped into the resampled
normalized patch. Note that we first calculate Σs on the original patch to obtain a scale for the spatial range
for resample, then we directly update Σs,which will be discussed in Section 2.3 to obtain a new scale for feature
extraction.

To illustrate the above description more clearly, we fit yellow ellipses in Figure 1(b). The direction of long
axis and short axis are a and b, while the half length of the axes are λs1 and λs2.

2.3 Normalization based on PCA of gradient

Once localization is done and resample scale is selected, we now consider normalizing the local region. In our
approach, the first objective of normalization is to obtain a structure isotropic in terms of the variance of gradient.
The second objective is to maintain as many details in texture as possible without iteration.

In Lindeberg,4 the second moment matrix, or the correlation matrix of gradient is employed to adapt Gaussian
kernel to the local structure for shape adapted image smoothing. Baumberg,5 Mikojczyc and Shmid6 both use
a Gaussian-windowed second moment matrix iteratively. Inspired by their methods, we base our normalizing on
the PCA of gradients covariance matrix. As MSER is involved, the major difference is we do not need iterative
refinement to captured the shape of the region.

For image I(x) and Ω, a region detected by MSER, we define the covariance matrix of gradient as

Σg =

∫
x∈Ω

(∇I(x)− E(∇I(x)))(∇T I(x)− E(∇T I(x)))dx. (3)

Decomposing Σg as

Σg = B

[
λg1 0
0 λg2

]
BT , (4)

in which λg1 and λg2 (λg1 ≥ λg2) are positive and B is an orthogonal matrix, we can tell that on the directions
denoted by the two rows of B, the variances of gradient reach maximal λg1 and minimal λg2 respectively, which
is the main property of PCA.



In order to clarify the meaning of the decomposing in Equation (4), we can imagine that when a small patch is
shrunk, or downsampled, the value of gradient will increase and so as to the variance of gradient. To achieve the
second objective of our normalization method, we have to prevent losing details by avoiding spatial compression.
If we guarantee that the variance of gradient does not increase in an arbitrary direction after the normalization,
we can avoid spatial compression, thus to maintain as much details as possible in the whole local region. To
achieve this goal, we constrain that the variance of gradient equals λg2 in an arbitrary direction in the normalized
isotropic region.

Now we will show a general relationship between a patch and its correspondence after a affine transformation.
Patch I1(x) is transformed to I2(x) = I1(Ax) with an affine matrix A, the corresponding regions Ω1 and
Ω2 = {x|Ax ∈ Ω1} are detected respectively by MSER. The relation between gradient of the patches is

∇I2(x) = AT∇I1(x′)|x′=Ax. (5)

Calculating Σg1 and Σg2 respectively on I1(x) and I2(x) with Equation (3) and substitute (5) into it, we will
find a general relationship

Σg2 = det(A)−1ATΣg1A. (6)

As a special case, if we set transformation A to

A = λg1mindet(Σ
−1/2
g1 )Σ

−1/2
g1 (7)

in which λg1min denotes the smaller eigenvalue of Σg1. Then we have

Σg2 =

[
λg1min 0
0 λg1min

]
. (8)

It means after transforming I1(x) to I2(x) = I1(Ax), we get the desired isotropic resampled patch I2(x) with a
variance of gradient equalling λg1min in an arbitrary direction.

For each single original patch, we apply the transformation in Equation (7) respectively. To reveal the
relationship between two normalized patches originally sampled from different viewpoints, we will discuss the
following case.

Io1(x) and Io2(x) are patches from two images taken from different viewpoints . They contain local regions
corresponding to the same region on a real object. In1(x) and In2(x) are the corresponding normalized patches.
Under our week assumption of locally planarity, the relation between Io1(x) and Io2(x) is affine transformation.
The normalizations on Io1(x) and Io2(x) are also affine. Thus the relation between In1(x) and In2(x) is an affine
transformation. We denote the transformation as B with which the relation between the normalized patches can
be describe as In2(x) = In1(Bx).

Let λgo1min and λgo2min denote the smaller eigenvalues of Σgo1 and Σgo2 (Σg of patches Io1(x) and Io2(x))
respectively, we will have

Σgn1 =

[
λgo1min 0
0 λgo1min

]
Σgn2 =

[
λgo2min 0
0 λgo2min

]
(9)

With Equation (6) we can derive
Σgn2 = det(B)−1BTΣgn1B. (10)

Substituting Equation (9) to (10), we get

BTB = det(B)
λgo2min
λgo1min

I (11)

in which I is an identity matrix. Now it emerges that B is orthogonal as a compound of rescaling and rotation.
It is proved that normalized with our proposed approach, the two patches originally from different viewpoints
now only have difference in rotation and a constant factor for rescaling.



In Figure 1(c), the normalization result is visualized. Reverse mapping and bilinear interpolation are used to
get the normalized region.

Additionally, in our experiments, we found that regions detected by MSER tend to have large intensity
changes near the region boundary, thus providing rich information about gradient. If we enlarge the detected
region with four-neighbours of the boundary pixels, the estimation on Σg may have obvious change. Empirically,
we can achieve an relatively stable estimation if we repeat the enlargement for 3 ∼ 5 times. This inflation
procedure can result in more reliable estimation of the transformation matrix.

2.4 Descriptor extraction

On the normalized region pairs, there is still difference in scale and rotation. Many Descriptors dealing with these
two differences have been proposed. Most of the state-of-the-art descriptors keep invariance to scale change, and
in Lowe 9 and Shmid and Mohr ,10 methods to obtain invariance to rotation are proposed. In our experiment,
we use the oriented HOG in SIFT as descriptor which shows good rotation and scale invariance.

In the first step of descriptor extraction, we have to guarantee the spatial completeness of the normalized
region with a new scale on the normalized region. We may directly calculate Σs with Equation(1) inside the
normalized region. However, considering to avoid the redetection with MSER and recalculation of Σs with
Equation (1), we substitute Equation (7) into Equation (1) and the calculation can be simplified as

Σsn = λ−3gomindet(Σ
1/2
go )4Σ1/2

go ΣsoΣ
T/2
go (12)

in which, index s refers to the spatial distribution of pixels, while g is related with gradient. Index o and n
mean the original region and normalized region respectively. λgomin is the smaller eigenvalue of Σgo. In this
way, without too much computation, we get the characteristic scale λsnmax (the greater eigenvalue of Σsn) of
the resampled region for feature extraction.

In our experiment, we calculate dominant gradient orientation in a circle (shown with yellow color) in Fig-
ure 1(c) with a radius of λsnmax on the normalized patch. Descriptor is formed with the gradient in another
circle (shown with red color) in Figure 1(c) with a radius of 2.5 times of λsnmax. In terms of the histograms in
calculating descriptors, we used 36 bins for dominant orientations and 128 bins for forming descriptors.

3. EXPERIMENT

In this section, we demonstrate the performance of our normalized extraction approach. Our approach is com-
pared with Harris Affine, Hessian Affine, MSER and SIFT. Implementations of Harris Affine and Hessian Affine
are from the author’s website.11 SIFT is implemented with VLfeat.12

We test the performance on two datasets. The first dataset is ’Graffiti’, outdoor scene sequences from
website,11 which is used to test Harris-Affine and Hessian-Affine in viewpoint variances in.6 We set up the
second dataset ’Close-up Shot’ to have further test. 10 subsets of object images are collected, and each one has
a sequence whose viewpoint angle changes from 10◦ to 70◦.

3.1 Matching score test

To test the extraction performance, we judge different approaches by comparing the putative matching result
of features extracted with different approach. Matching score used in Mikolajczyk and Shmid13 is the metric
in our experiment, which is the number of correct matched local region pairs with respect to the total number
of putatively matched pairs. A region is putatively matched with its nearest neighbour if its angle in feature
space to its nearest neighbour is less than 0.9 times of that to its second nearest neighbour. We verify correctly
matched pairs with their consistency with the ground truth transformation.

In Figure 2, Table 1 and Table 2, we show the matching score comparison. The viewpoint variance ranges
have a little difference, as variances in ’Graffiti’ are from 20◦ and 60◦ while ’Close-up Shot’ ranges from 10◦ to
70◦. All the methods in the comparison have generally better performance on ’Close-up Shot’, as the photos in
’Close-up Shot’ are product packages with more surface pattern details and less background interference.



On both datasets, our approach outperforms the others in viewpoint variances from 30◦ to 60◦. Comparing
with Harris-Affine and Hessian-Affine, we have 10% to 15% improvements in large viewpoint variances. Our
approach successfully slows down the decline of matching score and we can still keep it above 35% and 50%
respectively in the two datasets under variance of 50◦. It is noticeable that our approach also has significant
improvement over MSER, which shows that our normalization based on PCA of gradient shows its contribution
to the improved performance.

(a) (b)
Figure 2. Matching score comparison: Comparison on matching score among our approach, Harris-Affine, Hessian-Affine,
MSER and SIFT. (a) Comparison on ’Graffiti’. (2) Comparison on ’Close-up Shot’ (average on 10 subsets).

Viewpoint Variance(◦)
Algorithm 10 20 30 40 50 60 70

Our approach ∼ 64.42% 51.68% 45.02% 35.47% 15.82% ∼
Harris-Affine ∼ 55.60% 41.00% 27.10% 19.80% 11.30% ∼

Hessian-Affine ∼ 48.20% 37.10% 22.50% 16.70% 9.40% ∼
SIFT ∼ 70.92% 53.16% 29.22% 6.51% 3.65% ∼

MSER ∼ 63.23% 39.24% 17.90% 13.21% 11.65% ∼

Table 1. Comparison on ’Graffiti’

Viewpoint Variance(◦)
Algorithm 10 20 30 40 50 60 70

Our approach 72.17% 74.16% 68.94% 65.00% 53.67% 30.79% 15.50%
Harris-Affine 55.80% 54.59% 50.07% 46.01% 33.26% 19.18% 13.18%

Hessian-Affine 64.46% 62.43% 57.48% 52.26% 43.19% 21.14% 16.37%
SIFT 55.73% 53.40% 49.22% 40.01% 27.78% 12.41% 1.63%

MSER 73.54% 71.94% 64.79% 56.80% 38.71% 18.98% 11.42%

Table 2. Comparison on ’Close-up Shot’ (average on 10 subsets)

3.2 Application in robust estimation

To apply our extraction approach to robust estimation, we conduct experiments with two stages. In the matching
stage, we simply match descriptors with their nearest neighbours. A threshold on the correlation of features
vectors is involved as an initial elimination of wrong matches. In the estimation stage, we estimate geometric
constraints with RANSAC13 on the initial correspondence set. The fitted models vary according to the content
of test images. We estimate affine transformation with normalized DLT14 algorithm for planar surfaces and
fundamental matrix with normalized eight-points algorithm15 for complex scenes.



(a)

(b)
Figure 3. Robust estimation test: (a) Affine transformation guided matching in 60◦ viewpoint variance. (b) Estimation of
fundamental matrix in complex scenes. Epipolar lines are shown to demonstrate the result of estimation. In both (a) and
(b), small red spots are the location of the related local regions. Only a subset of spots and lines are shown for clearness.

In affine transformation guided matching, we use the estimation of RANSAC to limit the correspondence
searching area in the image for each descriptor to achieve guided match. In Figure 3(a), robust matching is
shown between image pairs in ’Close-up Shot’. We typically have a few hundreds of correct matches on 800×600
images after guided matching.

As discussed in Section 1, our normalized extraction only depends on the week assumption of locally planarity.
To show the extraction performance in complex scenes which are not globally planar, we use features extracted
with our approach to estimate fundamental matrix. The epipolar lines corresponding to the matches tightly
consistent with the estimation are shown in Figure 3(b). In experiments shown in Figure 3, we only display
subsets of the spots and lines for clearness.

4. CONCLUSION

In this paper, we proposed a novel non-iterative approach for normalized local feature extraction. We simul-
taneously adapt local regions to rotation, scale change and rigid distortion from affine transformations in large
viewpoint variances. Localization and scale selection are based on analysis of the spatial distribution of pixels.
Normalization is performed with PCA on gradient in local regions without any iteration. In our experiments,
matching score is significantly improved in the comparison with other feature extraction methods in large view-
point invariances. Application tests in affine transformation guided matching and fundamental matrix estimation
show that our extraction approach works both in global planar cases and complex scenes. As our initial detector
is MSER, our approach is more effective on image with many closed segmentable local regions (e.g. letters, small
pattern in trademarks). Future work may include methods to combine our approach with other local point based
algorithm so that the normalized approach can be more effective both on images mainly providing discriminable
local points and images with more closed segmentable local regions.
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