On Correctness of Automatic Differentiation for Non-Differentiable Functions

Wonyeol Lee¹, *
Hangyeol Yu¹, **
Xavier Rival²
Hongseok Yang¹

¹KAIST, South Korea
*now at Stanford, USA
²INRIA/ENS/CNRS, France
**now at Riiid!, South Korea

NeurIPS 2020 (Spotlight)
Problem For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?
Problem For $F: \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Chain Rule For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

Autodiff
Problem For $F : \mathbb{R}^N \rightarrow \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Autodiff \(\approx\) efficient way of applying the chain rule.

Chain Rule For $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $g : \mathbb{R}^m \rightarrow \mathbb{R}^l$ differentiable everywhere,

$$D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.$$
Autodiff

Problem For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Theorem F_l’s are differentiable everywhere \implies autodiff correctly computes $\nabla F(x)$.

Autodiff \approx efficient way of applying the chain rule.

Chain Rule For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.

Theorem

F_l’s are differentiable everywhere \implies autodiff correctly computes $\nabla F(x)$.

Problem

For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Autodiff

\approx efficient way of applying the chain rule.

Chain Rule

For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere,

$$D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.$$
Problem For $F : \mathbb{R}^N \rightarrow \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Theorem F_i’s are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla F(x)$.

e.g., $\text{ReLU}(x) = \max\{x, 0\}$

Chain Rule For $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $g : \mathbb{R}^m \rightarrow \mathbb{R}^l$ differentiable everywhere,

\[
D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.
\]
Problem: For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Theorem: If F_i's are differentiable everywhere, then autodiff correctly computes $\nabla F(x)$.

Example: $\text{ReLU}(x) = \max\{x, 0\}$ is non-differentiable on a measure-zero set.

Chain Rule: For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere,

$$D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.$$
Autodiff in Practice

Problem For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Theorem F_l’s are differentiable everywhere \implies autodiff correctly computes $\nabla F(x)$.

- e.g., ReLU$(x) = \max\{x, 0\}$ is almost-everywhere differentiable on a measure-zero set.

Chain Rule For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.
Theorem \(F_l \)'s are differentiable everywhere \(\Rightarrow \) autodiff correctly computes \(\nabla F(x) \).

Problem For \(F : \mathbb{R}^N \to \mathbb{R} \) given by \(F(x) = (F_L \circ \cdots \circ F_1)(x) \), how to compute \(\nabla F(x) \) correctly and efficiently?

Chain Rule For \(f : \mathbb{R}^n \to \mathbb{R}^m \) and \(g : \mathbb{R}^m \to \mathbb{R}^l \) differentiable everywhere, \(D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \) for every \(x \in \mathbb{R}^n \).
Our Results

Problem For $F : \mathbb{R}^N \rightarrow \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Theorem F_l’s are differentiable everywhere \iff autodiff correctly computes $\nabla F(x)$.

No, measure-zero non-differentiabilities matter!

Chain Rule For $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $g : \mathbb{R}^m \rightarrow \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ for every $x \in \mathbb{R}^n$.
Our Results

Problem For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Theorem F_i’s are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla F(x)$.

Our Result Disprove this and related claims.

Chain Rule For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$ differentiable everywhere, for every $x \in \mathbb{R}^n$,

$$D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$$

almost-

almost-everywhere
Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

\[f, g : \text{a.e.-differentiable and continuous} \]

\[(g \circ f)'(x) = g'(f(x)) \cdot f'(x) \quad \text{for a.e. } x \in \mathbb{R}. \]
Claim 1 For any \(f, g : \mathbb{R} \to \mathbb{R} \),

\[
(f \circ g)'(x) = g'(f(x)) \cdot f'(x)
\]

for a.e. \(x \in \mathbb{R} \).
Subtleties in Chain Rule (1)

Claim 1 For any $f, g : \mathbb{R} \to \mathbb{R}$,

\[(g \circ f)'(x) = g'(f(x)) \cdot f'(x) \]

for a.e. $x \in \mathbb{R}$.

$f, g : \text{a.e.-differentiable and continuous}$
Subtleties in Chain Rule (1)

Claim 1 For any \(f, g : \mathbb{R} \to \mathbb{R} \),

\[f, g \text{ : a.e.-differentiable and continuous} \]

\[(g \circ f)'(x) = g'(f(x)) \cdot f'(x) \quad \text{for a.e. } x \in \mathbb{R}. \]

Counterexample Involves the Cantor function.
Claim 2 \ For any $f, g : \mathbb{R} \to \mathbb{R}$, and $g \circ f$.

f, g : a.e.-differentiable and continuous

\Rightarrow

$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$

for a.e. $x \in \mathbb{R}$.

Subtleties in Chain Rule (2)

Claim 2 For any \(f, g : \mathbb{R} \to \mathbb{R} \),
\[f, g : \text{a.e.-differentiable and continuous} \]
\[\Rightarrow \] \((g \circ f)'(x) = g'(f(x)) \cdot f'(x) \) for a.e. \(x \in \mathbb{R} \).

Well-defined?
Claim 2 For any $f, g : \mathbb{R} \rightarrow \mathbb{R}$, and $g \circ f$

f, g: a.e.-differentiable and continuous

\[
(g \circ f)'(x) = g'(f(x)) \cdot f'(x)
\]

for a.e. $x \in \mathbb{R}$.
Claim 2 For any $f, g : \mathbb{R} \to \mathbb{R}$, and $g \circ f$

f, g: a.e.-differentiable and continuous \(\cdots (*) \)

$$\Rightarrow (g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

for a.e. $x \in \mathbb{R}$.

Counterexample \(f(x) = 0 \) and \(g(y) = \text{ReLU}(y) \).

\[\Rightarrow \text{easy to check that } (*) \text{ holds.} \]
Subtleties in Chain Rule (2)

Claim 2 For any \(f, g : \mathbb{R} \to \mathbb{R}, \)

and \(g \circ f \):

\(f, g \) : a.e.-differentiable and continuous

\[
(g \circ f)'(x) = g'(f(x)) \cdot f'(x)
\]

for a.e. \(x \in \mathbb{R}. \)

Counterexample \(f(x) = 0 \) and \(g(y) = \text{ReLU}(y). \)

\[
\Rightarrow \\
g'(f(x)) \\
= g'(0) \\
= \text{undefined for all } x
\]
Claim 2 For any $f, g : \mathbb{R} \to \mathbb{R}$, and $g \circ f$, f, g: a.e.-differentiable and continuous

$$\forall x \in \mathbb{R} : (g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Counterexample $f(x) = 0$ and $g(y) = \text{ReLU}(y)$.

$$\Rightarrow (g \circ f)'(x) = 0$$

$$= g'(0) = 0$$

$$= \text{undefined for all } x$$
Subtleties in Chain Rule (2)

Claim 2 For any $f, g : \mathbb{R} \to \mathbb{R}$, and $g \circ f$

f, g : a.e.-differentiable and continuous

for a.e. $x \in \mathbb{R}$.

Counterexample $f(x) = 0$ and $g(y) = \text{ReLU}(y)$.

$$
(g \circ f)'(x) = g'(f(x)) \cdot f'(x)
$$

well-defined?

$$
dg(y) = \begin{cases}
7 & \text{for } y = 0 \\
g'(y) & \text{for } y \neq 0
\end{cases}
$$
Subtleties in Chain Rule (2)

Claim 2 For any \(f, g : \mathbb{R} \rightarrow \mathbb{R} \),
and \(g \circ f \)
\(f, g \): a.e.-differentiable and continuous
\((g \circ f)'(x) = g'(f(x)) \cdot f'(x) \)

well-defined? for a.e. \(x \in \mathbb{R} \).

Counterexample \(f(x) = 0 \) and \(g(y) = \text{ReLU}(y) \).
\(\Rightarrow \) \((g \circ f)'(x) = dg(f(x)) \cdot f'(x) \) for all \(x \in \mathbb{R} \).
\[dg(y) = \begin{cases} 7 & \text{for } y = 0 \\ g'(y) & \text{for } y \neq 0 \end{cases} \]
Subtleties in Chain Rule (3)

Claim 3 For any $f, g : \mathbb{R} \rightarrow \mathbb{R}$, and $g \circ f$:

- f, g: a.e.-differentiable and continuous
- $g \circ f$: a.e.-differentiable and continuous

\[(g \circ f)'(x) = dg(f(x)) \cdot df(x) \quad \text{for a.e. } x \in \mathbb{R}. \]

\[\exists df, dg : \mathbb{R} \rightarrow \mathbb{R} \text{ such that } df \equiv f', dg \equiv g', \text{ and} \]
Subtleties in Chain Rule (3)

Claim 3 For any $f, g : \mathbb{R} \to \mathbb{R}$, and $g \circ f$ are a.e.-differentiable and continuous. Therefore,

$$ \exists df, dg : \mathbb{R} \to \mathbb{R} \text{ such that } df \mathbin{\overset{\text{a.e.}}{=}} f', dg \mathbin{\overset{\text{a.e.}}{=}} g', \text{ and }$$

$$\left(g \circ f \right)'(x) \mathbin{\not=} dg(f(x)) \cdot df(x) \text{ for a.e. } x \in \mathbb{R}. $$

Counterexample Involves the Cantor function again.
Our Results

Problem: For $F : \mathbb{R}^N \rightarrow \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Theorem: F_l’s are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla F(x)$ almost-everywhere.

Our Result: Disprove this and related claims.

Chain Rule: For $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $g : \mathbb{R}^m \rightarrow \mathbb{R}^l$ differentiable everywhere, $D(g \circ f)(x) = Dg(f(x)) \cdot Df(x)$ almost-everywhere for every $x \in \mathbb{R}^n$.
Our Results

Problem For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Question How to recover this claim?

Theorem F_i’s are differentiable everywhere \Rightarrow autodiff correctly computes $\nabla F(x)$.

Our Result Disprove this and related claims.

Chain Rule For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$, differentiable everywhere,

$$D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \quad \text{for every } x \in \mathbb{R}^n.$$
Our Results

Problem For $F : \mathbb{R}^N \to \mathbb{R}$ given by $F(x) = (F_L \circ \cdots \circ F_1)(x)$, how to compute $\nabla F(x)$ correctly and efficiently?

Our Result Prove this claim for a wide class of F_l's.

Theorem F_l's are differentiable everywhere \implies autodiff correctly computes $\nabla F(x)$ almost-everywhere.

Almost-called “PAP”

Our Result Disprove this and related claims.

Chain Rule For $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^l$, differentiable everywhere,

\[D(g \circ f)(x) = Dg(f(x)) \cdot Df(x) \]

for every $x \in \mathbb{R}^n$. Almost-everywhere
PAP Functions

Definition $f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (= Piecewise Analytic under Analytic Partition) roughly iff f can be “decomposed” into $f_1|_{A_1}, f_2|_{A_2}, \cdots$ such that

$$f_i : \mathbb{R}^n \to \mathbb{R}^m$$

is analytic and $A_i \subseteq \mathbb{R}^n$ is “analytic”.
PAP Functions

Definition \(f : \mathbb{R}^n \to \mathbb{R}^m \) is PAP (= Piecewise Analytic under Analytic Partition) roughly iff \(f \) can be “decomposed” into \(f_1|_{A_1}, f_2|_{A_2}, \ldots \) such that

\[
f_i : \mathbb{R}^n \to \mathbb{R}^m \text{ is analytic and } A_i \subseteq \mathbb{R}^n \text{ is “analytic”}.
\]

Example \(f(x) = \text{ReLU}(x) \).

![Graph of ReLU function](image)
Definition \(f : \mathbb{R}^n \to \mathbb{R}^m \) is PAP (Piecewise Analytic under Analytic Partition) roughly iff \(f \) can be “decomposed” into \(f_1|_{A_1}, f_2|_{A_2}, \ldots \) such that

\[
f_i : \mathbb{R}^n \to \mathbb{R}^m \text{ is analytic and } A_i \subseteq \mathbb{R}^n \text{ is “analytic”}.
\]

Example \(f(x) = \text{ReLU}(x) \).

- \((f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}) \),
- \((f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}) \).
PAP Functions

Definition \(f : \mathbb{R}^n \to \mathbb{R}^m \) is PAP (= Piecewise Analytic under Analytic Partition) roughly iff \(f \) can be “decomposed” into \(f_1|_{A_1}, f_2|_{A_2}, \ldots \) such that

\[
f_i : \mathbb{R}^n \to \mathbb{R}^m \text{ is analytic and } A_i \subseteq \mathbb{R}^n \text{ is “analytic”}.
\]

Example \(f(x) = \text{ReLU}(x) \).

- \((f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}) \), \(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\} \).

analytic functions
Definition
$f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (= Piecewise Analytic under Analytic Partition) roughly iff f can be “decomposed” into $f_1\big|_{A_1}, f_2\big|_{A_2}, \ldots$ such that $f_i : \mathbb{R}^n \to \mathbb{R}^m$ is analytic and $A_i \subseteq \mathbb{R}^n$ is “analytic”.

Example
$f(x) = \text{ReLU}(x)$.

- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}),$
 $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}).$

- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x < 0\}),$
 $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\}),$
 $(f_3(x) = 7x, A_3 = \{x \in \mathbb{R} : x = 0\}).$
PAP Functions

Definition $f : \mathbb{R}^n \to \mathbb{R}^m$ is PAP (\textit{Piecewise Analytic under Analytic Partition}) roughly iff f can be “decomposed” into $f_1|_{A_1}, f_2|_{A_2}, \cdots$ such that $f_i : \mathbb{R}^n \to \mathbb{R}^m$ is analytic and $A_i \subseteq \mathbb{R}^n$ is “analytic”.

Example $f(x) = \text{ReLU}(x)$.

- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\})$
- $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\})$

Proposition PAP implies a.e.-differentiability.

Observation Virtually all functions used in practice are PAP.
Intensional Derivatives

Example \(f(x) = \text{ReLU}(x) \).

- \(\begin{cases} f_1(x) = 0, & A_1 = \{x \in \mathbb{R} : x \leq 0\}, \\ f_2(x) = x, & A_2 = \{x \in \mathbb{R} : x > 0\} \end{cases} \)
- \(\begin{cases} f_1(x) = 0, & A_1 = \{x \in \mathbb{R} : x < 0\}, \\ f_2(x) = x, & A_2 = \{x \in \mathbb{R} : x > 0\}, \\ f_3(x) = 7x, & A_3 = \{x \in \mathbb{R} : x = 0\} \end{cases} \)
Example \(f(x) = \text{ReLU}(x) \).

- \(f_1(x) = 0 \) \(A_1 = \{ x \in \mathbb{R} : x \leq 0 \} \),
- \(f_2(x) = x \) \(A_2 = \{ x \in \mathbb{R} : x > 0 \} \).

- \(f_1(x) = 0 \), \(A_1 = \{ x \in \mathbb{R} : x < 0 \} \),
- \(f_2(x) = x \), \(A_2 = \{ x \in \mathbb{R} : x > 0 \} \),
- \(f_3(x) = 7x \), \(A_3 = \{ x \in \mathbb{R} : x = 0 \} \).
Example \(f(x) = \text{ReLU}(x) \).

- \(\begin{cases} f_1(x) = 0 \quad A_1 = \{x \in \mathbb{R} : x \leq 0\} \\ f_2(x) = x \quad A_2 = \{x \in \mathbb{R} : x > 0\} \end{cases} \)

- \(\begin{cases} f_1(x) = 0 \quad A_1 = \{x \in \mathbb{R} : x < 0\} \\ f_2(x) = x \quad A_2 = \{x \in \mathbb{R} : x > 0\} \\ f_3(x) = 7x \quad A_3 = \{x \in \mathbb{R} : x = 0\} \end{cases} \)

\((f'_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}), (f'_2(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}) \).

\[df(x) = \begin{cases} 0 & \text{for } x \leq 0 \\ 1 & \text{for } x > 0 \end{cases} \]
Intensional Derivatives

Example \(f(x) = \text{ReLU}(x) \).

- \(\begin{align*}
 f_1(x) &= 0, \quad A_1 = \{x \in \mathbb{R} : x \leq 0\}, \\
 f_2(x) &= x, \quad A_2 = \{x \in \mathbb{R} : x > 0\}.
\end{align*} \)

- \(\begin{align*}
 f_1(x) &= 0, \quad A_1 = \{x \in \mathbb{R} : x < 0\}, \\
 f_2(x) &= x, \quad A_2 = \{x \in \mathbb{R} : x > 0\}, \\
 f_3(x) &= 7x, \quad A_3 = \{x \in \mathbb{R} : x = 0\}.
\end{align*} \)

\[
\begin{align*}
 (f'_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\}), \\
 (f'_2(x) = 1, A_2 = \{x \in \mathbb{R} : x > 0\}), \\
 (f'_3(x) = 7, A_3 = \{x \in \mathbb{R} : x = 0\}).
\end{align*}
\]
Intensional Derivatives

Proposition Intensional derivatives satisfy the chain rule.

Proposition Any intensional derivative \(a.e. \) standard derivative.

Example \(f(x) = \text{ReLU}(x) \).

\[
\begin{align*}
(f'_1(x) = 0, A_1 &= \{x \in \mathbb{R} : x < 0\}), \\
(f'_2(x) = 1, A_2 &= \{x \in \mathbb{R} : x > 0\}), \\
(f'_3(x) = 7, A_3 &= \{x \in \mathbb{R} : x = 0\}).
\end{align*}
\]
Intensional Derivatives

Proposition Intensional derivatives satisfy the chain rule.

Proposition Any intensional derivative a.e. standard derivative.

Example $f(x) = \text{ReLU}(x)$.

- $(f_1(x) = 0, A_1 = \{x \in \mathbb{R} : x \leq 0\})$
- $(f_2(x) = x, A_2 = \{x \in \mathbb{R} : x > 0\})$
- $(f_3(x) = 7, A_3 = \{x \in \mathbb{R} : x = 0\})$

Theorem For PAP functions, what autodiff computes is an intensional derivative, and thus autodiff correctly computes gradients a.e.
High-Level Messages

- Measure-zero non-differentiabilities often bring us unexpected subtleties, when we try to establish formal correctness of ML algorithms (e.g., autodiff).
High-Level Messages

• Measure-zero non-differentiabilities often bring us unexpected subtleties, when we try to establish formal correctness of ML algorithms (e.g., autodiff).

• PAP functions and intensional derivatives would play an important role, when we try to deal with such subtleties (e.g., arising from other ML algorithms).