Verifying Bit-Manipulations of Floating-Point

Wonyeol Lee Rahul Sharma Alex Aiken
Stanford University

PLDI 2016
This Talk

- Example:

\[e^x \]

(mathematical specification)
This Talk

• Example:

\[e^x \]

mathematical specification

\[... \]

vpslld $20, \ %xmm3, \ %xmm3
vpshufd $114, \ %xmm3, \ %xmm3
vmulpd C1, \ %xmm2, \ %xmm1
vmulpd C2, \ %xmm2, \ %xmm2

...
This Talk

• Example:

\[e^x \]

mathematical specification

≠

floating-point implementation

\[
\begin{align*}
&... \\
vpslld & \, \text{\$20, } \%	ext{xmm3, } \%	ext{xmm3} \\
vpshufd & \, \text{\$114, } \%	ext{xmm3, } \%	ext{xmm3} \\
vmulpd & \, \text{C1, } \%	ext{xmm2, } \%	ext{xmm1} \\
vmulpd & \, \text{C2, } \%	ext{xmm2, } \%	ext{xmm2} \\
&...
\end{align*}
\]
This Talk

- Example:

\[e^x \]

how different?

mathematical specification

\[
\begin{align*}
\text{vpslld} & \quad $20, \quad %xmm3, \quad %xmm3 \\
\text{vpshufd} & \quad $114, \quad %xmm3, \quad %xmm3 \\
\text{vmulpd} & \quad C1, \quad %xmm2, \quad %xmm1 \\
\text{vmulpd} & \quad C2, \quad %xmm2, \quad %xmm2 \\
\end{align*}
\]

floating-point implementation
This Talk

• Example:

\[e^x \]

mathematical specification

how different?

• Goal: Bound the difference between spec and implementation
This Talk

- Example:
 \[e^x \]
 mathematical specification
 \[\text{how different?} \]

- Goal: Bound the **difference** between spec and implementation
- Key contribution: Verify binaries that mix floating-point and **bit-level operations**

```plaintext
... 
vpsslld $20, %xmm3, %xmm3 
vpshufd $114, %xmm3, %xmm3 
vmulpd C1, %xmm2, %xmm1 
vmulpd C2, %xmm2, %xmm2 
... 
```
This Talk

• Example:

\[e^x \]

mathematical specification

how different?

• Goal: Bound the difference between spec and implementation

• Key contribution: Verify binaries that mix floating-point and bit-level operations
 • Intel’s implementations of transcendental functions

...

vpslld $20, %xmm3, %xmm3
vpslfd $114, %xmm3, %xmm3
vmulpd C1, %xmm2, %xmm1
vmulpd C2, %xmm2, %xmm2
...
Floating-Point Numbers

- Example:

 $\begin{align*}
 \text{Example:} & \quad 011111111111 \quad 1100\cdots00 \\
 & \quad = (-1)^1 \cdot 2^{1023-1023} \cdot 1.110\cdots00 \\
 & \quad = (-1)^1 \cdot 2^0 \cdot 1.110\cdots00 \\
 & \quad = (-1) \cdot 1.110\cdots00 \\
 & \quad = -1.110\cdots00 \\
 & \quad = -1.1100\cdots00
 \end{align*}$
Floating-Point Numbers

- Example:

 \[
 \begin{align*}
 &\underbrace{1} 01111111111 1100\ldots00 \\
 &= (-1)^1 \cdot 2^{1023} - 1023 \cdot 1.110\ldots00_{(2)}
 \end{align*}
 \]

- Automatic reasoning about floating-point is not easy
 - have rounding errors
 - don't obey some algebraic rules of real numbers
 - Associativity: \(1 + (10^{30} - 10^{30}) = 1 \neq 0 = (1 + 10^{30}) - 10^{30} \)
Floating-Point Numbers

- Example:
 \[1.01111111111 \times 2^{1023} - 1023 \times 1.1100\cdots00(2) \]

- Automatic reasoning about floating-point is not easy
 - have rounding errors
 - don't obey some algebraic rules of real numbers
 - Associativity: \(1 + (10^{30} - 10^{30}) = 1 \neq 0 = (1 + 10^{30}) - 10^{30} \)

- It becomes much harder if bit-level operations are used
Bit-Level Operations

• Example: Given N (in `int`), compute 2^N (in `double`)
Bit-Level Operations

- Example: Given N (in `int`), compute 2^N (in `double`)

Here $N = 10$

- Bit-shifting by N
- Converting from `int` to `double`
Bit-Level Operations

- Example: Given N (in `int`), compute 2^N (in `double`)

Here $N = 10$

- bit-shifting by N
- converting from `int` to `double`
- expensive

2^N [int]

2^N [double]
Bit-Level Operations

• Example: Given N (in `int`), compute 2^N (in `double`)

Here $N = 10$

- bit-shifting by N
- converting from `int` to `double`

 works only for $0 \leq N \leq 31$
Bit-Level Operations

- Example: Given \(N \) (in \texttt{int}), compute \(2^N \) (in \texttt{double})

Here \(N = 10 \)

- Bit-shifting by \(N \)
- \(2^N \) (in \texttt{int})

- Integer addition
- \(N + 1023 \) (in \texttt{int})

- Bit-shifting by 52
- [12 bits] \(00 \ldots 0 \) (52 bits)

Works only for \(0 \leq N \leq 31 \)

Expensive

Converting from \texttt{int} to \texttt{double}
Bit-Level Operations

• Example: Given \(N \) (in int), compute \(2^N \) (in double)

here \(N = 10 \)

bit-shifting by \(N \)

works only for \(0 \leq N \leq 31 \)

expensive

converting from int to double

integer addition

bit-shifting by 52

works only for \(0 \leq N \leq 31 \)
Bit-Level Operations

- Example: Given \(N \) (in \texttt{int}), compute \(2^N \) (in \texttt{double})

Here \(N = 10 \):

1. \(1 \) [\texttt{int}]
2. \(2^N \) [\texttt{int}]
3. \(2^N \) [\texttt{double}]

This works only for \(0 \leq N \leq 31 \)

Converting from \texttt{int} to \texttt{double} is expensive.

\(N + 1023 \) [\texttt{int}]

1. Integer addition
2. Bit-shifting by 52
3. \(2^N \) [\texttt{double}]

This works for \(-1022 \leq N \leq 1023 \)
Bit-Level Operations

• Example: Given N (in `int`), compute 2^N (in `double`)

here $N = 10$

bit-shifting by N

expensive

converting from `int` to `double`

works only for $0 \leq N \leq 31$

1 [int]

2^N [int]

N [int]

$N + 1023$ [int]

integer addition

bit-shifting by 52

2^N [double]

2^N [double]

works for $-1022 \leq N \leq 1023$

• Such bit-manipulations are **ubiquitous** in highly optimized floating-point implementations

• If a code **mixes** floating-point and bit-level operations, reasoning about the code is difficult
Problem Statement

• Goal: Find a small $\Theta > 0$ such that $f(x) - P(x) f(x) \leq \Theta$ for all $x \in X$.

• i.e., prove a bound on the maximum precision loss.

e^x

mathematical specification

$f: \mathbb{R} \rightarrow \mathbb{R}$
Problem Statement

e^x

mathematical specification

$f: \mathbb{R} \rightarrow \mathbb{R}$

binary P that mixes floating-point and bit-level operations
Problem Statement

\[e^x \]

mathematical specification

\(f : \mathbb{R} \rightarrow \mathbb{R} \)

input range \(X \subseteq \mathbb{R} \)

...

\[
\begin{align*}
 \text{vpslld} & \quad 20, \quad %\text{xmm3}, \quad %\text{xmm3} \\
 \text{vpshufd} & \quad 114, \quad %\text{xmm3}, \quad %\text{xmm3} \\
 \text{vmulpd} & \quad \text{C1}, \quad %\text{xmm2}, \quad %\text{xmm1} \\
 \text{vmulpd} & \quad \text{C2}, \quad %\text{xmm2}, \quad %\text{xmm2}
\end{align*}
\]

binary \(P \) that mixes floating-point and bit-level operations
Problem Statement

- **Goal:** Find a small $\Theta > 0$ such that
 \[
 \left| \frac{f(x) - P(x)}{f(x)} \right| \leq \Theta \quad \text{for all } x \in X
 \]
 - i.e., prove a bound on the maximum precision loss

e^x

mathematical specification

$f : \mathbb{R} \rightarrow \mathbb{R}$

input range $X \subseteq \mathbb{R}$

... $vpslld$ 20, %xmm3, %xmm3
$vphufd$ 114, %xmm3, %xmm3
$vmulpd$ $C1$, %xmm2, %xmm1
$vmulpd$ $C2$, %xmm2, %xmm2
...

binary P that mixes floating-point and bit-level operations
Possible Alternatives

- Exhaustive testing
 - feasible for 32-bit float: \(\sim 30\) seconds (with 1 core for \(\sin f\))
 - infeasible for 64-bit double: \(> 4000\) years (\(= 30\) seconds \(\times 2^{32}\))

\[\because\quad (\text{# of doubles between } -1 \text{ and } 1) = \frac{1}{2} (\text{# of all doubles})\]
Possible Alternatives

- Exhaustive testing
 - feasible for 32-bit float: ~30 seconds (with 1 core for \(\text{sinf} \))
 - infeasible for 64-bit double: >4000 years (= 30 seconds \(\times 2^{32} \))
 - infeasible even for input range \(X = [-1, 1] \)
 \[\therefore \text{(# of doubles between } -1 \text{ and } 1) = \frac{1}{2} \text{(# of all doubles)} \]
Possible Alternatives

• Exhaustive testing
 • feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)
 • infeasible for 64-bit double: > 4000 years ($= 30$ seconds $\times 2^{32}$)
 • infeasible even for input range $X = [-1, 1]$
 \therefore (# of doubles between -1 and 1) $= \frac{1}{2}$ (# of all doubles)

• Machine-checkable proofs
 • Harrison used HOL Light to prove Intel’s transcendental functions are very accurate [FMCAD’00]
Possible Alternatives

• Exhaustive testing
 • feasible for 32-bit float: \(\sim 30\) seconds (with 1 core for \(\text{sinf}\))
 • infeasible for 64-bit double: \(> 4000\) years \((= 30\) seconds \(\times 2^{32})\)
 • infeasible even for input range \(X = [-1, 1]\)
 \[\cdot (#\text{ of doubles between } -1 \text{ and } 1) = \frac{1}{2} (#\text{ of all doubles})\]

• Machine-checkable proofs
 • Harrison used HOL Light to prove Intel’s transcendental functions are very accurate [FMCAD’00]
 • “The construction of these proofs often requires considerable persistence.” [FMSD’00]
Possible Automatic Alternatives

• If only floating-point operations are used, various automatic techniques can be applied
 • e.g., Astree [PLDI’03], Fluctuat [FMICS’09], RO SA [POPL’14], FPTaylor [FM’15]

• Several commercial tools (e.g., Astree, Fluctuat) can handle certain bit-trick routines
Possible Automatic Alternatives

- If only floating-point operations are used, various automatic techniques can be applied
 - e.g., Astree [PLDI’03], Fluctuat [FMICS’09], RO SA [POPL’14], FPTaylor [FM’15]

- Several commercial tools (e.g., Astree, Fluctuat) can handle certain bit-trick routines

- We are unaware of a general technique for verifying mixed floating-point and bit-level code
Our Method
\[e^x \text{ Explained} \]

<table>
<thead>
<tr>
<th></th>
<th>Instruction</th>
<th>Operands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vmovddup</td>
<td>%xmm0, %xmm0</td>
</tr>
<tr>
<td>2</td>
<td>vmulpd</td>
<td>L2E, %xmm0, %xmm2</td>
</tr>
<tr>
<td>3</td>
<td>vroundpd</td>
<td>$0, %xmm2, %xmm2</td>
</tr>
<tr>
<td>4</td>
<td>vcvtpd2dqx</td>
<td>%xmm2, %xmm3</td>
</tr>
<tr>
<td>5</td>
<td>vpaddb</td>
<td>B, %xmm3, %xmm3</td>
</tr>
<tr>
<td>6</td>
<td>vpslld</td>
<td>$20, %xmm3, %xmm3</td>
</tr>
<tr>
<td>7</td>
<td>vpshufd</td>
<td>$114, %xmm3, %xmm3</td>
</tr>
<tr>
<td>8</td>
<td>vmulpd</td>
<td>C1, %xmm2, %xmm1</td>
</tr>
<tr>
<td>9</td>
<td>vmulpd</td>
<td>C2, %xmm2, %xmm2</td>
</tr>
<tr>
<td>10</td>
<td>vaddpd</td>
<td>%xmm1, %xmm0, %xmm1</td>
</tr>
<tr>
<td>11</td>
<td>vaddpd</td>
<td>%xmm2, %xmm1, %xmm1</td>
</tr>
<tr>
<td>12</td>
<td>vmovapd</td>
<td>T1, %xmm0</td>
</tr>
<tr>
<td>13</td>
<td>vmulpd</td>
<td>T12, %xmm1, %xmm2</td>
</tr>
<tr>
<td>14</td>
<td>vaddpd</td>
<td>T11, %xmm2, %xmm2</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>vaddpd</td>
<td>%xmm0, %xmm1, %xmm0</td>
</tr>
<tr>
<td>37</td>
<td>vmulpd</td>
<td>%xmm3, %xmm0, %xmm0</td>
</tr>
<tr>
<td>38</td>
<td>retq</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instruction</td>
<td>Operands</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>movddup</td>
<td>%xmm0, %xmm0</td>
</tr>
<tr>
<td>2</td>
<td>vmulpd</td>
<td>L2E, %xmm0, %xmm2</td>
</tr>
<tr>
<td>3</td>
<td>vroundpd</td>
<td>$0, %xmm2, %xmm2</td>
</tr>
<tr>
<td>4</td>
<td>vcvtpd2dqx</td>
<td>%xmm2, %xmm3</td>
</tr>
<tr>
<td>5</td>
<td>vpaddd</td>
<td>B, %xmm3, %xmm3</td>
</tr>
<tr>
<td>6</td>
<td>vpslld</td>
<td>$20, %xmm3, %xmm3</td>
</tr>
<tr>
<td>7</td>
<td>vpshufd</td>
<td>$114, %xmm3, %xmm3</td>
</tr>
<tr>
<td>8</td>
<td>vmulpd</td>
<td>C1, %xmm2, %xmm1</td>
</tr>
<tr>
<td>9</td>
<td>vmulpd</td>
<td>C2, %xmm2, %xmm2</td>
</tr>
<tr>
<td>10</td>
<td>vaddpd</td>
<td>%xmm1, %xmm0, %xmm1</td>
</tr>
<tr>
<td>11</td>
<td>vaddpd</td>
<td>%xmm2, %xmm1, %xmm1</td>
</tr>
<tr>
<td>12</td>
<td>movapd</td>
<td>T1, %xmm0</td>
</tr>
<tr>
<td>13</td>
<td>vmulpd</td>
<td>T12, %xmm1, %xmm2</td>
</tr>
<tr>
<td>14</td>
<td>vaddpd</td>
<td>T11, %xmm2, %xmm2</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>vaddpd</td>
<td>%xmm0, %xmm1, %xmm0</td>
</tr>
<tr>
<td>37</td>
<td>vmulpd</td>
<td>%xmm3, %xmm0, %xmm0</td>
</tr>
<tr>
<td>38</td>
<td>retq</td>
<td></td>
</tr>
</tbody>
</table>

\[N = \text{round}(x \cdot \log_2 e) \]
\(e^x \) Explained

\[
N = \text{round}(x \cdot \log_2 e)
\]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>vmovdudp</code></td>
<td><code>%xmm0</code>, <code>%xmm0</code></td>
</tr>
<tr>
<td>2</td>
<td><code>vmulpd</code></td>
<td><code>L2E</code>, <code>%xmm0</code>, <code>%xmm2</code></td>
</tr>
<tr>
<td>3</td>
<td><code>vroundpd</code></td>
<td><code>0, </code>%xmm2<code>, </code>%xmm2`</td>
</tr>
<tr>
<td>4</td>
<td><code>vcvtpd2dqx</code></td>
<td><code>%xmm2</code>, <code>%xmm3</code></td>
</tr>
<tr>
<td>5</td>
<td><code>vpadddd</code></td>
<td><code>B</code>, <code>%xmm3</code>, <code>%xmm3</code></td>
</tr>
<tr>
<td>6</td>
<td><code>vpslld</code></td>
<td><code>20, </code>%xmm3<code>, </code>%xmm3`</td>
</tr>
<tr>
<td>7</td>
<td><code>vpshufd</code></td>
<td><code>114, </code>%xmm3<code>, </code>%xmm3`</td>
</tr>
<tr>
<td>8</td>
<td><code>vmulpd</code></td>
<td><code>C1</code>, <code>%xmm2</code>, <code>%xmm1</code></td>
</tr>
<tr>
<td>9</td>
<td><code>vmulpd</code></td>
<td><code>C2</code>, <code>%xmm2</code>, <code>%xmm2</code></td>
</tr>
<tr>
<td>10</td>
<td><code>vaddpd</code></td>
<td><code>%xmm1</code>, <code>%xmm0</code>, <code>%xmm1</code></td>
</tr>
<tr>
<td>11</td>
<td><code>vaddpd</code></td>
<td><code>%xmm2</code>, <code>%xmm1</code>, <code>%xmm1</code></td>
</tr>
<tr>
<td>12</td>
<td><code>vmovapd</code></td>
<td><code>T1</code>, <code>%xmm0</code></td>
</tr>
<tr>
<td>13</td>
<td><code>vmulpd</code></td>
<td><code>T12</code>, <code>%xmm1</code>, <code>%xmm2</code></td>
</tr>
<tr>
<td>14</td>
<td><code>vaddpd</code></td>
<td><code>T11</code>, <code>%xmm2</code>, <code>%xmm2</code></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td><code>vaddpd</code></td>
<td><code>%xmm0</code>, <code>%xmm1</code>, <code>%xmm0</code></td>
</tr>
<tr>
<td>37</td>
<td><code>vmulpd</code></td>
<td><code>%xmm3</code>, <code>%xmm0</code>, <code>%xmm0</code></td>
</tr>
<tr>
<td>38</td>
<td><code>retq</code></td>
<td></td>
</tr>
</tbody>
</table>
e^x Explained

\[N = \text{round}(x \cdot \log_2 e) \]

\[2^N \]

\[r = x - N \cdot \ln 2 \]

\[e^r \approx \sum_{i=0}^{12} \frac{r^i}{i!} \]

\[e^x = e^{N \cdot \ln 2} \cdot e^r \approx 2^N \cdot e^r \]
\[e^x \text{ Explained} \]

<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
<th>Source Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vmovddup</td>
<td>%xmm0, %xmm0</td>
</tr>
<tr>
<td>2</td>
<td>vmulpd</td>
<td>L2E, %xmm0, %xmm2</td>
</tr>
<tr>
<td>3</td>
<td>vroundpd</td>
<td>$0, %xmm2, %xmm2</td>
</tr>
<tr>
<td>4</td>
<td>vcvtfd2dq</td>
<td>%xmm2, %xmm3</td>
</tr>
<tr>
<td>5</td>
<td>vpadd</td>
<td>B, %xmm3, %xmm3</td>
</tr>
<tr>
<td>6</td>
<td>vpslld</td>
<td>$20, %xmm3, %xmm3</td>
</tr>
<tr>
<td>7</td>
<td>vpshufd</td>
<td>$114, %xmm3, %xmm3</td>
</tr>
<tr>
<td>8</td>
<td>vmulpd</td>
<td>C1, %xmm2, %xmm1</td>
</tr>
<tr>
<td>9</td>
<td>vmulpd</td>
<td>C2, %xmm2, %xmm2</td>
</tr>
<tr>
<td>10</td>
<td>vaddpd</td>
<td>%xmm1, %xmm0, %xmm1</td>
</tr>
<tr>
<td>11</td>
<td>vaddpd</td>
<td>%xmm2, %xmm1, %xmm1</td>
</tr>
<tr>
<td>12</td>
<td>vmovapd</td>
<td>T1, %xmm0</td>
</tr>
<tr>
<td>13</td>
<td>vmulpd</td>
<td>T12, %xmm1, %xmm2</td>
</tr>
<tr>
<td>14</td>
<td>vaddpd</td>
<td>T11, %xmm2, %xmm2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>36</td>
<td>vaddpd</td>
<td>%xmm0, %xmm1, %xmm0</td>
</tr>
<tr>
<td>37</td>
<td>vmulpd</td>
<td>%xmm3, %xmm0, %xmm0</td>
</tr>
<tr>
<td>38</td>
<td>retq</td>
<td></td>
</tr>
</tbody>
</table>

\[x = N = \text{round}(x \cdot \log_2 e) \]

\[2^N \]

\[r = x - N \cdot \ln 2 \]

\[e^r \approx \sum_{i=0}^{12} \frac{r^i}{i!} \]

\[e^x = e^{N \cdot \ln 2} \cdot e^r \approx 2^N \cdot e^r \]

Goal: Find a small \(\Theta > 0 \) such that

\[
\left| \frac{e^x - 2^N e^r}{e^x} \right| \leq \Theta \text{ for all } x \in X
\]
1) Abstract Floating-Point Operations

• Assume only floating-point operations are used
1) Abstract Floating-Point Operations

• Assume only floating-point operations are used
• \((1 + \epsilon)\) property
 • A standard way to model rounding errors
1) Abstract Floating-Point Operations

- Assume only floating-point operations are used
- $(1 + \varepsilon)$ property
 - A standard way to model rounding errors

\[x \otimes_f y \in \{(x \otimes y)(1 + \delta) : |\delta| < \varepsilon\} \]
1) Abstract Floating-Point Operations

- Assume only floating-point operations are used
- \((1 + \epsilon)\) property
 - A standard way to model rounding errors

\[
x \otimes_f y \in \{(x \otimes y)(1 + \delta) : |\delta| < \epsilon\}
\]
1) Abstract Floating-Point Operations

• Assume only floating-point operations are used
• \((1 + \epsilon)\) property
 • A standard way to model rounding errors

\[x \otimes_f y \in \{(x \otimes y)(1 + \delta) : |\delta| < \epsilon\} \]
1) Abstract Floating-Point Operations

- Assume only floating-point operations are used
- \((1 + \epsilon)\) property
 - A standard way to model rounding errors

\[x \otimes_f y \in \{(x \otimes y)(1 + \delta) : |\delta| < \epsilon\} \]
1) Abstract Floating-Point Operations

- Assume only floating-point operations are used
- \((1 + \varepsilon)\) property
 - A standard way to model rounding errors

\[x \otimes_f y \in \{(x \otimes y)(1 + \delta) : |\delta| < \varepsilon\} \]

- For 64-bit doubles, \(\varepsilon = 2^{-53}\)
1) Abstract Floating-Point Operations

- Assume only floating-point operations are used
- \((1 + \epsilon)\) property
 - A standard way to model rounding errors

\[x \otimes_f y \in \{(x \otimes y)(1 + \delta) : |\delta| < \epsilon\} \]

- For 64-bit doubles, \(\epsilon = 2^{-53}\)
- This property has been used in previous automatic techniques (FPTaylor, ROSA, ...) for verifying floating-point programs
1) Abstract Floating-Point Operations

- Compute a symbolic abstraction $A_\delta(x)$ of a program P.
1) Abstract Floating-Point Operations

• Compute a symbolic abstraction $\mathcal{A}_{\delta}(x)$ of a program P
 • Example:

 $$P(x) = ((2 \times_f x) +_f 3)$$
1) Abstract Floating-Point Operations

- Compute a symbolic abstraction $A_{\delta}(x)$ of a program P
 - Example:
 $$A_{\delta}(x) = ((2 \times_f x) +_f 3)$$
1) Abstract Floating-Point Operations

- Compute a symbolic abstraction $A_{\delta}(x)$ of a program P
 - Example:

 $A_{\delta}(x) = ((2 \times x) + 3)$
1) Abstract Floating-Point Operations

- Compute a **symbolic abstraction** $A_\delta(x)$ of a program P
 - Example:
 $$A_\delta(x) = ((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2)$$
1) Abstract Floating-Point Operations

- Compute a symbolic abstraction $A_{\delta}(x)$ of a program P
 - Example:
 $$A_{\delta}(x) = ((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2)$$

- From $(1 + \epsilon)$ property, $A_{\delta}(x)$ satisfies
 $$P(x) \in \{A_{\delta}(x) : |\delta_i| < \epsilon\} \text{ for all } x$$
1) Abstract Floating-Point Operations

- Compute a symbolic abstraction $A_{\delta}(x)$ of a program P
 - Example:
 $$A_{\delta}(x) = ((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2)$$

- From $(1 + \epsilon)$ property, $A_{\delta}(x)$ satisfies
 $$P(x) \in \{A_{\delta}(x) : |\delta_i| < \epsilon\} \text{ for all } x$$

 - Example:
 $$P(x) = ((2 \times_f x) +_f 3)$$
1) Abstract Floating-Point Operations

- Compute a **symbolic abstraction** $A_\delta(x)$ of a program P
 - Example:
 $$A_\delta(x) = ((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2)$$

- From $(1 + \epsilon)$ property, $A_\delta(x)$ satisfies
 $$P(x) \in \{A_\delta(x) : |\delta_i| < \epsilon\} \text{ for all } x$$
 - Example:
 $$P(x) \subseteq \{(2 \times x)(1 + \delta_1) + 3)(1 + \delta_2) : |\delta_1|, |\delta_2| < \epsilon\}$$
1) Abstract Floating-Point Operations

- Compute a symbolic abstraction $A_{\delta}(x)$ of a program P
 - Example:
 $A_{\delta}(x) = ((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2)$

- From $(1 + \epsilon)$ property, $A_{\delta}(x)$ satisfies
 $P(x) \in \{A_{\delta}(x) : |\delta_i| < \epsilon\}$ for all x

 - Example:
 $P(x) \in \{((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2) : |\delta_1|, |\delta_2| < \epsilon\}$
Our Method: Overview

\[P(x) \]

\[X \]

\[-1 \quad 1 \]

\[
\begin{align*}
\text{vpslld} & \quad \$20, & \ldots \\
\text{vpshufd} & \quad \$114, & \ldots \\
\text{vmulpd} & \quad \text{C1,} & \ldots \\
\text{vmulpd} & \quad \text{C2,} & \ldots \\
\ldots
\end{align*}
\]
Our Method: Overview

\[P(x) \]

\[X \]

\[-1 \quad 1 \]

\[
\begin{align*}
\text{\texttt{vpslld}} & \quad \$20, \quad \ldots \\
\text{\texttt{vpshufd}} & \quad $114, \quad \ldots \\
\text{\texttt{vmulpd}} & \quad C1, \quad \ldots \\
\text{\texttt{vmulpd}} & \quad C2, \quad \ldots \\
\ldots &
\end{align*}
\]
Our Method: Overview

\[P(x) \]

\[\cdots \]
\[
\begin{array}{c}
\text{vpslld} & \$20, \ \cdots \\
\text{vpshufd} & \$114, \ \cdots \\
\text{vmulpd} & C1, \ \cdots \\
\text{vmulpd} & C2, \ \cdots \\
\end{array}
\]
Our Method: Overview

\[P(x) \]

hard to find

\[-1 \quad 1 \]

\[X \]

...

\texttt{vpslld} $20, \ldots$

\texttt{vpshufd} $114, \ldots$

\texttt{vmulpd} C1, \ldots

\texttt{vmulpd} C2, \ldots

...
Our Method: Overview

\[P(x) \]

hard to find

\[-1 \quad X \quad 1 \]

not “smooth”

abstract using “smooth” functions

\[\begin{align*}
\text{vpslld} & \quad $20, \quad \ldots \\
\text{vpshufd} & \quad $114, \quad \ldots \\
\text{vmulpd} & \quad C1, \quad \ldots \\
\text{vmulpd} & \quad C2, \quad \ldots
\end{align*} \]
Our Method: Overview

$P(x)$

hard to find

not “smooth”

abstract using “smooth” functions

$vpslld$ $20,$...
$vpslld$ $114,$...
$vmulpd$ $C1,$...
$vmulpd$ $C2,$...

abstract using “smooth” functions

I_1 I_2 ... I_n
Our Method: Overview

$P(x)$

hard to find

not “smooth”

abstract using “smooth” functions

$-1 \quad 1$

\[x \]

\[
\begin{array}{l}
\ldots \\
vpslld \; \$20, \; \ldots \\
vpshufd \; \$114, \; \ldots \\
vmulpd \; C1, \; \ldots \\
vmulpd \; C2, \; \ldots \\
\ldots
\end{array}
\]

\[
\begin{array}{l}
\ldots \\
vpslld \; \$20, \; \ldots \\
vpshufd \; \$114, \; \ldots \\
vmulpd \; C1, \; \ldots \\
vmulpd \; C2, \; \ldots \\
\ldots
\end{array}
\]

\[
\begin{array}{l}
\ldots \\
vpslld \; \$20, \; \ldots \\
vpshufd \; \$114, \; \ldots \\
vmulpd \; C1, \; \ldots \\
vmulpd \; C2, \; \ldots \\
\ldots
\end{array}
\]

\[
\begin{array}{l}
\ldots \\
vpslld \; \$20, \; \ldots \\
vpshufd \; \$114, \; \ldots \\
vmulpd \; C1, \; \ldots \\
vmulpd \; C2, \; \ldots \\
\ldots
\end{array}
\]
Our Method: Overview

\[P(x) \]

hard to find

not “smooth”

abstract using “smooth” functions

partial evaluation of bit-level operations

\[-1 \quad X \quad 1 \]

\[
\begin{align*}
&vpslld \quad \text{\$20, \ldots} \\
vphufd \quad \text{\$114, \ldots} \\
vmulpd \quad \text{C1, \ldots} \\
vmulpd \quad \text{C2, \ldots}
\end{align*}
\]

\[1 \quad 3 \quad 2n + 1 \]

\[n \]

\[l_1 \quad l_2 \quad \ldots \quad l_n \]

hard to find
Our Method: Overview

\[P(x) \]

Hard to find

-1 \[\rightarrow \] 1

\[X \]

Not "smooth"

Abstract using "smooth" functions

Only floating-point operations

Partial evaluation of bit-level operations

\[n \]

\[2n + 1 \]
Our Method: Overview

- $P(x)$ hard to find
- $A_1,\delta(x)$, $A_2,\delta(x)$, ..., $A_n,\delta(x)$
- $-1 \leq x \leq 1$
- not "smooth"
- abstract using "smooth" functions
- only floating-point operations

abstract using "smooth" functions

partial evaluation of bit-level operations

\cdots
$vpslld \ 20, \ \cdots$
$vpslld \ 114, \ \cdots$
$vmulpd \ C1, \ \cdots$
$vmulpd \ C2, \ \cdots$
\cdots

1
3
n

$2n + 1$
Our Method: Overview

\[A_{1, \bar{\delta}}(x) \rightarrow A_{2, \bar{\delta}}(x) \rightarrow A_{n, \bar{\delta}}(x) \]

\[I_1, I_2, \ldots, I_n \]

- \text{vpslld} $20, \ldots$
- \text{vpshufd} $114, \ldots$
- \text{vmulpd} C1, \ldots
- \text{vmulpd} C2, \ldots

Partial evaluation of bit-level operations

1. \text{vpslld} $20, \ldots$
2. \text{vpshufd} $114, \ldots$
3. \text{vmulpd} C1, \ldots
4. \text{vmulpd} C2, \ldots

1. \text{vpslld} $20, \ldots$
2. \text{vpshufd} $114, \ldots$
3. \text{vmulpd} C1, \ldots
4. \text{vmulpd} C2, \ldots

\(n \)

\(2n + 1 \)
Our Method: Overview

\[f(x) - A_{1,\delta}(x) \]
\[f(x) - A_{n,\delta}(x) \]

\[\frac{f(x) - A_{1,\delta}(x)}{f(x)} \]
\[\frac{f(x) - A_{n,\delta}(x)}{f(x)} \]

partial evaluation of bit-level operations
Our Method: Overview

\[A_{1,\bar{\delta}}(x) \quad A_{2,\bar{\delta}}(x) \quad \ldots \quad A_{n,\bar{\delta}}(x) \]

\[f(x) - A_{1,\delta}(x) \quad f(x) - A_{n,\delta}(x) \]

\[\text{solve optimization problems} \]

\[
\max \left| \frac{f(x) - A_{1,\delta}(x)}{f(x)} \right| \quad \max \left| \frac{f(x) - A_{n,\delta}(x)}{f(x)} \right|
\]

\[l_1 \quad l_2 \quad \ldots \quad l_n \]

\[
\text{...}
\text{vpadd} \quad \text{vpadd} \quad \text{vpadd} \quad \text{vpadd} \quad \ldots
\]

\[
\text{vpslld} \quad 20, \quad \text{vpshufd} \quad 114, \quad \text{vmulpd} \quad C_1, \quad \text{vmulpd} \quad C_2, \quad \ldots
\]

\[
\text{partial evaluation of bit-level operations}
\]

\[\max 1 \quad \max 3 \quad \max n \quad \max 2n + 1 \]
Our Method: Overview

\[A_{1,\delta}(x) \quad A_{2,\delta}(x) \quad \ldots \quad A_{n,\delta}(x) \]

\[f(x) - A_1(x) \quad \delta x \quad f(x) - A_n(x) \]

\[\max \left| \frac{f(x) - A_{1,\delta}(x)}{f(x)} \right| \]

\[\max \left| \frac{f(x) - A_{n,\delta}(x)}{f(x)} \right| \]

solve optimization problems

\[I_1 \quad I_2 \quad \ldots \quad I_n \]

\[\text{partial evaluation of bit-level operations} \]

\[\text{answer!} \]
2) Divide the Input Range

• Assume bit-level operations are used as well
2) Divide the Input Range

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_k,
 so that, on each I_k, we can statically know the result of each bit-level operation
2) Divide the Input Range

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_k, so that, on each I_k, we can **statically** know the result of each bit-level operation

- Example:

```
input x
y ← x × f C
   (C=0x3ff71547652b82fe)
N ← round(y)
z ← int(N) + i 0x3ff
w ← z << 52
...
```
2) Divide the Input Range

- Assume bit-level operations are used as well
- To handle bit-level operations, divide X into intervals I_k,
 so that, on each I_k, we can statically know the result of each bit-level operation

- Example:

```python
input x
y ← x ×_f C  
   (C=0x3ff71547652b82fe)
N ← round(y)
z ← int(N) +i 0x3ff
w ← z << 52
...
```
2) Divide the Input Range

• Assume bit-level operations are used as well
• To handle bit-level operations, divide X into intervals I_k, so that, on each I_k, we can statically know the result of each bit-level operation

Example:

```
input x
y ← x ×_f C
    (C=0x3ff71547652b82fe)
N ← round(y)
z ← int(N) +_i 0x3ff
w ← z << 52
...
```
2) Divide the Input Range

- Assume bit-level operations are used as well
- To handle bit-level operations, divide \(X \) into intervals \(I_k \), so that, on each \(I_k \), we can **statically** know the result of each bit-level operation

Example:

```
input x
y ← x \times f \; C  
(C=0x3ff71547652b82fe)
N ← \text{round}(y)  
z ← \text{int}(N) + 0x3ff
w ← z \ll 52
...  
```
2) Divide the Input Range

- Assume bit-level operations are used as well
- To handle bit-level operations, divide \(X \) into intervals \(I_k \), so that, on each \(I_k \), we can statically know the result of each bit-level operation

Example:

```
input x
y ← x ×_f C  
  (C=0x3ff71547652b82fe)
N ← round(y)  
  -1
z ← int(N) +i 0x3ff
w ← z << 52
...
```

```
input x
y ← x ×_f C  
  (C=0x3ff71547652b82fe)
N ← -1
z ← 1022
w ← 0.5
...
```
2) Divide the Input Range

• Assume bit-level operations are used as well
• To handle bit-level operations, divide X into intervals I_k, so that, on each I_k, we can statically know the result of each bit-level operation

• Example:

```
<table>
<thead>
<tr>
<th>input x</th>
<th>y ← x \times_f C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C=0x3ff71547652b82fe)</td>
</tr>
</tbody>
</table>
N ← round(y)  | 1                  |
```

Only floating-point operations are left
→ Can compute $A_{\delta}(x)$ on each I_k
2) Divide the Input Range

• How to find such intervals?

\[N = \text{round} \times f_C \]

\[(\text{symbolic abstraction of } x \times f_C) = x \times C_1 + \delta \]

• Let \(I_k = \text{largest interval contained in } x \in X : S_x \subset k - 0.5, k + 0.5 \).

• Then \(N \) is evaluated to \(k \) for every input in \(I_k \).
2) Divide the Input Range

- How to find such intervals?

\[N = \text{round } x \times f_C \]

\[(\text{symbolic abstraction of } x \times f_C) = x \times C_1 + \delta \]

Let \(I_k = \text{largest interval contained in } x \in X : S_x \subset k - 0.5, k + 0.5. \]

Then \(N \) is evaluated to \(k \) for every input in \(I_{k-1} I_0 I_1 \).
2) Divide the Input Range

• How to find such intervals?

\[N = \text{round } x \times f \]

\[(\text{symbolic abstraction of } x \times f) = x \times C_1 + \delta \]

Let \(I_k = \text{largest interval contained in } x \in X : S_x \subset k - 0.5, k + 0.5 \).

Then \(N \) is evaluated to \(k \) for every input in \(I_k \).
2) Divide the Input Range

• How to find such intervals?
 • Use symbolic abstractions

\[
\text{Example: } N = \text{round} \ x \times f_C \quad \text{(symbolic abstraction of } x \times f_C) = x \times c_1 + \delta
\]

Let \(I_k = \text{largest interval contained in } x \in X : S_x \subset k - 0.5, k + 0.5. \)

Then \(N \) is evaluated to \(k \) for every input in \(I_k \).
2) Divide the Input Range

• How to find such intervals?
 • Use symbolic abstractions

• Example:
 • \(N = \text{round}(x \times_f C) \)

\[\begin{align*}
\mathcal{N} &= -1 \\
\mathcal{I}_-1 &\quad \mathcal{I}_0 \quad \mathcal{I}_1 \\
N &= -1 \quad N = 0 \quad N = 1
\end{align*}\]
2) Divide the Input Range

• How to find such intervals?
 • Use symbolic abstractions

• Example:
 • $N = \text{round}(x \times_f C)$
 • (symbolic abstraction of $x \times_f C) = (x \times C)(1 + \delta)$
2) Divide the Input Range

• How to find such intervals?
 • Use symbolic abstractions

• Example:
 • $N = \text{round}(x \times_f C)$
 • (symbolic abstraction of $x \times_f C) = (x \times C)(1 + \delta)$
2) Divide the Input Range

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - \(N = \text{round}(x \times_f C) \)
 - (symbolic abstraction of \(x \times_f C \)) = \((x \times C)(1 + \delta)\)

\[
\begin{align*}
N &= -1 \\
N &= 0 \\
N &= 1
\end{align*}
\]
2) Divide the Input Range

• How to find such intervals?
 • Use symbolic abstractions

• Example:
 • \(N = \text{round}(x \times f \ C) \)
 • (symbolic abstraction of \(x \times f \ C \)) = \((x \times C)(1 + \delta) \)

\[
\begin{align*}
N &= -1 \\
N &= 0 \\
N &= 1
\end{align*}
\]
2) Divide the Input Range

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - \(N = \text{round}(x \times_f C) \)
 - (symbolic abstraction of \(x \times_f C \)) = \((x \times C)(1 + \delta)\)

- Let \(I_k = \) largest interval contained in
 \[\{x \in X : S(x) \subset (k - 0.5, k + 0.5)\} \]
2) Divide the Input Range

• How to find such intervals?
 • Use symbolic abstractions

• Example:
 • \(N = \text{round}(x \times_f C) \)
 • (symbolic abstraction of \(x \times_f C \)) = \((x \times C)(1 + \delta)\)

\[S(x) = \{(x \times C)(1 + \delta): |\delta| < \epsilon\} \]

• Let \(I_k = \) largest interval contained in
 \[\{x \in X : S(x) \subset (k - 0.5, k + 0.5)\} \]

• Then \(N \) is evaluated to \(k \) for every input in \(I_k \)
3) Compute a Bound on Precision Loss

- Precision loss on each interval I_k
 - Let $A_{\delta}(x)$ be a symbolic abstraction on I_k
3) Compute a Bound on Precision Loss

• Precision loss on each interval I_k
 • Let $A_\delta(x)$ be a symbolic abstraction on I_k
 • Analytical optimization:
 \[
 \max_{x \in I_k, |\delta_i| < \epsilon} \left| \frac{e^x - A_\delta(x)}{e^x} \right|
 \]
 • Use Mathematica to solve optimization problems analytically
Are We Done?

- No. The constructed intervals do not cover X in general.
Are We Done?

• No. The constructed intervals do not cover X in general.
Are We Done?

- No. The constructed intervals do not cover X in general
Are We Done?

No. The constructed intervals do not cover X in general

- Because we made sound approximations
Are We Done?

- Example: \(N = \text{round}(x \times_f C) \)

\[\{ \} : \text{abstraction of } x \times_f C \]

0 \[\longrightarrow \] 0.5 \[\longrightarrow \] 1
Are We Done?

- Example: $N = \text{round}(x \times_f C)$

\[
\{ \}: \text{abstraction of } x \times_f C
\]

\[
x = \frac{1}{3C}
\]

\[
x = \frac{1}{1.5C}
\]

\[
x = \frac{1}{0.5C}
\]
Are We Done?

- Example: \(N = \text{round}(x \times_f C) \)

\[
\begin{align*}
\{ \} & : \text{abstraction of } x \times_f C \\
\begin{cases}
0 & \text{if } x = 1/(3C) \\
0.5 & \text{if } x = 1/(1.5C) \\
1 & \text{otherwise}
\end{cases}
\end{align*}
\]
Are We Done?

- Example: $N = \text{round}(x \times_f C)$

\[
\begin{aligned}
&\left\{ \right. \text{abstraction of } x \times_f C \\
&x = 1/(3C) \quad 0 \quad \left\{ \right. \\
&x = 1/(2C) \quad 0.5 \quad N = 0 \\
&x = 1/(1.5C) \quad 1 \quad N = 1
\end{aligned}
\]
Are We Done?

- Example: \(N = \text{round}(x \times_f C) \)

\[\{ \}: \text{abstraction of } x \times_f C \]

\[
\begin{align*}
N &= 0 \\
0 &\quad \{ \} \quad 0.5 \quad \{ \} \quad 1 \\
x &= 1/(3C) & \quad x = 1/(2C) & \quad x = 1/(1.5C)
\end{align*}
\]
Are We Done?

- Example: $N = \text{round}(x \times_f C)$

For $x = \frac{1}{2C}$, we can't statically know if N would be 0 or 1.
Are We Done?

• Example: \(N = \text{round}(x \times_f C) \)

\[
\begin{cases}
0 & \text{if } N = 0 \\
0.5 & \text{if } x = 1/(3C) \\
1 & \text{if } x = 1/(2C) \\
\text{else} & \text{if } x = 1/(1.5C) \\
\end{cases}
\]

For \(x = \frac{1}{2C} \), we can’t statically know if \(N \) would be 0 or 1

• Let \(H = \{\text{floating-point numbers in the “gaps”}\} \)
 • We observe that \(|H|\) is small in experiment
3) Compute a Bound on Precision Loss

- Precision loss on each interval I_k
 - Let $A_\delta(x)$ be a symbolic abstraction on I_k
 - Analytical optimization:
 \[
 \max_{x \in I_k, \left|\delta_i\right| < \epsilon} \left| \frac{e^x - A_\delta(x)}{e^x} \right|
 \]
 - Use Mathematica to solve optimization problems analytically

- Precision loss on H
 - For each $x \in H$, obtain $P(x)$ by executing the binary
 - Brute force:
 \[
 \max_{x \in H} \left| \frac{e^x - P(x)}{e^x} \right|
 \]
 - Use Mathematica to compute e^x and precision loss exactly
3) Compute a Bound on Precision Loss

- Precision loss on each interval I_k
 - Let $A_\delta(x)$ be a symbolic abstraction on I_k
 - Analytical optimization:
 $$\max_{x \in I_k, |\delta_i| < \epsilon} \left| \frac{e^x - A_\delta(x)}{e^x} \right|$$
 - Use Mathematica to solve optimization problems analytically

- Precision loss on H
 - For each $x \in H$, obtain $P(x)$ by executing the binary
 - Brute force:
 $$\max_{x \in H} \left| \frac{e^x - P(x)}{e^x} \right|$$
 - Use Mathematica to compute e^x and precision loss exactly
Case Studies
Settings

• Benchmarks
 • \(\exp \): from S3D (a combustion simulation engine)
 • \(\sin, \log \): from Intel’s <math.h>

• Measures of precision loss
 • Relative error: \(\text{RelErr}(a, b) = \left| \frac{a-b}{a} \right| \)
 • ULP error:
 • Rounding errors of numeric libraries are typically measured by ULPs
• **Benchmarks**
 - exp: from S3D (a combustion simulation engine)
 - sin, log: from Intel’s `<math.h>`

• **Measures of precision loss**
 - Relative error: \(\text{RelErr}(a, b) = \left| \frac{a-b}{a} \right| \)
 - ULP error:
 - Rounding errors of numeric libraries are typically measured by ULPs
 - \(\text{ULPErr}(a, b) = (\text{# of floating-point numbers between } a \text{ and } b) \)
 - Example:
 ![Diagram](image)
 - \(\text{ULPErr}(a, b) \leq 2 \cdot \text{RelErr}(a, b)/\epsilon \)
Results

<table>
<thead>
<tr>
<th></th>
<th>Interval</th>
<th>Bound on ULP error</th>
<th># of intervals</th>
<th># of δ's</th>
<th>Size of “gaps”</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp</td>
<td>[−4, 4]</td>
<td>14</td>
<td>13</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>sin</td>
<td>$\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$</td>
<td>9</td>
<td>33</td>
<td>53</td>
<td>110</td>
</tr>
<tr>
<td>log</td>
<td>$(0, 4) \setminus \left[\frac{4095}{4096}, 1 \right)$</td>
<td>1×10^{14}</td>
<td>2^{21}</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\left[\frac{4095}{4096}, 1 \right)$</td>
<td></td>
<td>1</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Function</td>
<td>Interval</td>
<td>Bound on ULP error</td>
<td># of intervals</td>
<td># of δ's</td>
<td>Size of “gaps”</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\exp</td>
<td>$[-4,4]$</td>
<td>14</td>
<td>13</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>\sin</td>
<td>$[-\frac{\pi}{2}, \frac{\pi}{2}]$</td>
<td>9</td>
<td>33</td>
<td>53</td>
<td>110</td>
</tr>
<tr>
<td>\log</td>
<td>$(0,4) \setminus \left[\frac{4095}{4096}, 1\right]$</td>
<td>21</td>
<td>2^{21}</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\left[\frac{4095}{4096}, 1\right)$</td>
<td>1×10^{14}</td>
<td>1</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

best illustrates the power of our method
Results: \sin, \log

- **sin**
 - **y-axis:** ULP error
 - **x-axis:** input value
 - **Orange line:** bounds on the intervals
 - **Blue dots:** errors on the “gaps”

- **log**
 - **y-axis:** value
 - **x-axis:** input value
 - **Orange line:** bounds on the intervals
 - **10^{14}:** value
Results: \sin, \log
Limitations of Our Method

• May construct a large number of intervals
 • Example: \(0x5fe6eb50c7b537a9 \rightarrow (x >> 1)\)
 • For this example, our method constructs \(2^{63}\) intervals
Limitations of Our Method

- May construct a large number of intervals
 - Example: $0x5fe6eb50c7b537a9 - (x \gg 1)$
 - For this example, our method constructs 2^{63} intervals

- May produce loose error bounds
 - Example: 10^{14} ULPs for \log on $[\frac{4095}{4096}, 1)$
 - Sometimes $(1 + \epsilon)$ property provides an imprecise abstraction
 - Proving a precise error bound requires more sophisticated error analysis beyond $(1 + \epsilon)$ property
 - Our recent result: 6 ULPs for for \log on $(0,4)$
Summary

- First systematic method for verifying binaries that mix floating-point and bit-level operations

- Use abstraction, analytical optimization, and testing

- Directly applicable to highly optimized binaries of transcendental functions
Questions?