CT-IC: Continuously activated and Time-restricted Independent Cascade Model for Viral Marketing

Wonyeol Lee Jinha Kim Hwanjo Yu

Department of Computer Science & Engineering

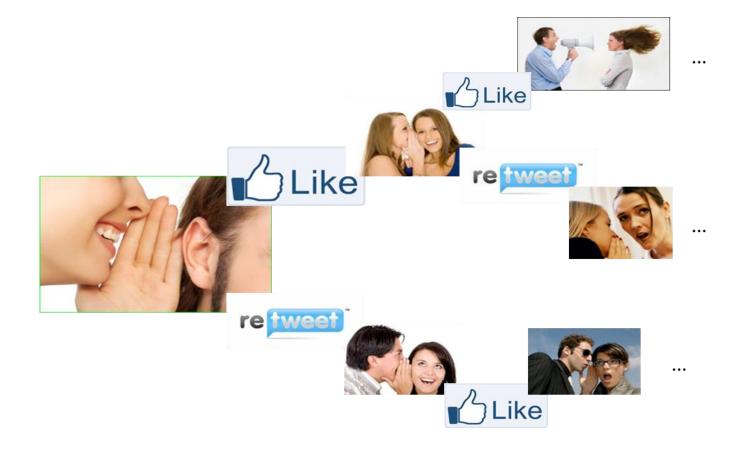
ICDM 2012

Viral Marketing Influence Maximization Problem Influence Diffusion Models Limitations of Existing Models

Introduction & Motivation

Viral Marketing

• Word of mouth effect > TV advertising



Influence Maximization Problem [KDD'03]

 $\sigma(S)$

the expected number of people influenced by a seed set ${\cal S}$

$$\arg \max_{S \subseteq V, |S|=k} \sigma(S)$$

Given a network G = (V, E), and a budget k, find the k most influential people in a social network

$\sigma(S)$ Depends On ...

How influence is propagated through a graph = Influence Diffusion Model

- We need a "realistic" diffusion model to apply influence maximization problem to a "real-world" marketing.
- Existing diffusion models
 - IC (Independent Cascade) model [KDD'03]
 - LT (Linear Threshold) model [KDD'03]

 $u \xrightarrow{pp(u,v)} u$ (newly activated) activation try

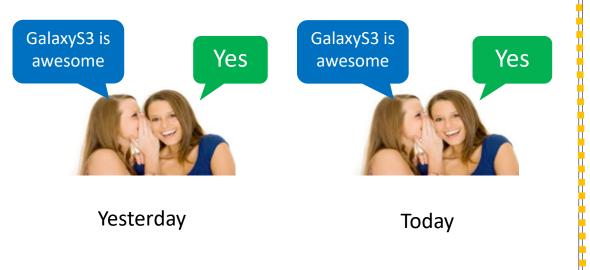
Existing Models Ignore ... (1)

• An individual can affect others *multiple* times.

NOT contained in "IC model."

Existing Models Ignore ... (2)

• Marketing usually has a *deadline*.



NOT contained in "all previous models."

CT-IC model Properties of CT-IC model CT-IPA algorithm

Our Contributions

1) CT-IC model

- <u>We propose a new influence diffusion model "CT-IC"</u> for viral marketing, which generalizes previous models such that
 - An individual can affect others *multiple* times.
 - Marketing has a *deadline*.

$$pp_t(u, v) = pp_0(u, v) f_{uv}(t)$$

arg
$$\max_{S \subseteq V, |S|=k} \sigma(S, T)$$

• An efficient algorithm for influence maximization problem under CT-IC model?

Greedy Algorithm [KDD'03]

- Influence maximization even under IC model is NP-Hard.
- Greedy algorithm:
 - Repeatedly select the node which gives the most marginal gain of $\sigma(S)$

Algorithm 1 Greedy(G, k)1: $S = \phi$ 2: for i = 1 to k do3: $u = \arg \max_{v \in V \setminus S} \sigma(S \cup \{v\}) - \sigma(S)$ 4: $S = S \cup \{u\}$ 5: end for6: return S

• <u>Theorem:</u>

 $\sigma(S)$ satisfies non-negativity, monotonicity, submodularity

- \Rightarrow Greedy guarantees approximation ratio (1 1/e).
- CT-IC model satisfies these properties?

2) Properties of CT-IC model

- <u>We prove the *Theorem*</u>: In CT-IC model, $\sigma(\cdot, t)$ satisfies non-negativity, monotonicity, and submodularity.
 - Non-negativity:
 - Monotonicity:
 - Submodularity:

 $\begin{aligned} \sigma(S,t) &\geq 0\\ \sigma(S,t) &\leq \sigma(S',t) \text{ for any } S \subseteq S'\\ \sigma(S \cup \{v\},t) - \sigma(S,t) &\geq \\ \sigma(S' \cup \{v\},t) - \sigma(S',t) \text{ for any } S \subseteq S' \end{aligned}$

- Thus, Greedy guarantees approximation ratio (1 1/e) even under CT-IC model.
- An efficient method for computing $\sigma(S,T)$ under CT-IC model?

3) CT-IPA algorithm

- Difficulties for computing $\sigma(S,T)$ under CT-IC model
 - Monte Carlo simulation is not scalable. [KDD'10]
 - Evaluating $\sigma(S)$ is **#P-Hard** even under IC model. ^[KDD'10]
 - We show that it is difficult to extend *PMIA* (the state-of-the-art algorithm for IC model) to CT-IC model!
- <u>We propose "*CT-IPA*"</u> algorithm (an extension of *IPA* ^[ICDE'13]) for calculating $\sigma(S,T)$ under CT-IC model.

Lemma 3: The probability that $u \in S$ activates $v \in V \setminus S$ only through a path $p = (u = u_0, u_1, \dots, u_{l-1}, u_l = v)$ is

$$inf_{p}(u,v) = [1 \ 0 \ \cdots \ 0] \left(\prod_{i=0}^{l-1} \mathbf{C}_{u_{i}u_{i+1}}\right) [1 \ 1 \ \cdots \ 1]^{\mathrm{Tr}}, \quad (2)$$

where $u_i \in V \setminus S$ for all $i = 1, \dots, l$, and the order of matrix multiplication is from i = 0 to l - 1.

Characteristic of CT-IC model

Algorithm Comparison

Experiments

Dataset

• We use four real networks:

Dataset	HEP	PHY	EPINION	AMAZON
Directedness	Undir Undir		Dir	Dir
# of Nodes	15K	37K	76K	262K
# of Edges	59K	232K	509K	1235K
# of Connected Components	1781	3883	2	1
Average Size of Components	8.6	9.6	38K	262K
θ for CT-IPA	1/32	1/64	1/64	1/16

Table IBASIC INFORMATION OF FOUR REAL DATASET.

Table II TOP-20 SEED NODES OF IC MODEL AND CT-IC MODEL SOLUTION.

Characteristic of CT-IC model (1)

• Model comparison between IC & CT-IC models:

(a) On PHY									
IC model		4840	1568	5192	5120	7387			
		12081	2356	10653	4115	23571			
solution	solution		3808	969	809	5567			
		2443	3566	5312	6342	3673			
CT-IC model solution		4840	5192	5120	1568	809			
		4115	2356	3460	23571	12081			
		7132	3842	10653	4109	3673			
		6342	3712	2928	3982	2289			
(b) On AMAZON									
	1		222839	25699	18076	168039			
IC model	1	8337	232448	7266	11129	45391			
solution	176067 59541		9657	64815	183084	27562			
			14461	238375	114241	1385			
	17747		176067	56415	51234	200657			
CT-IC model	238375		18076	236670	259011	222839			
solution	6290		205434	143531	199539	59541			
	2	5699	178335	82533	114241	95315			

Characteristic of CT-IC model (2)

• Effect of marketing time constraint *T*:

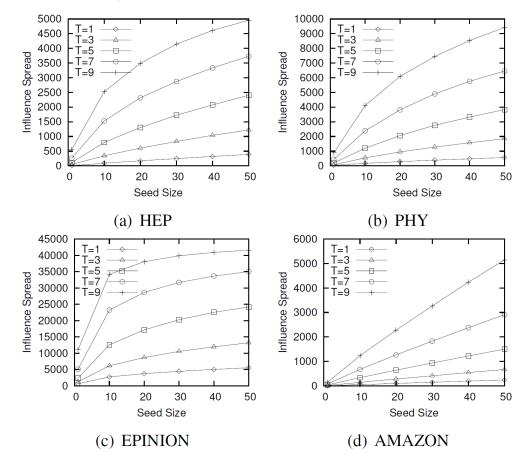


Figure 3. The change of influence spread with respect to T.

Algorithm Comparison (1)

• Comparison of influence spread:

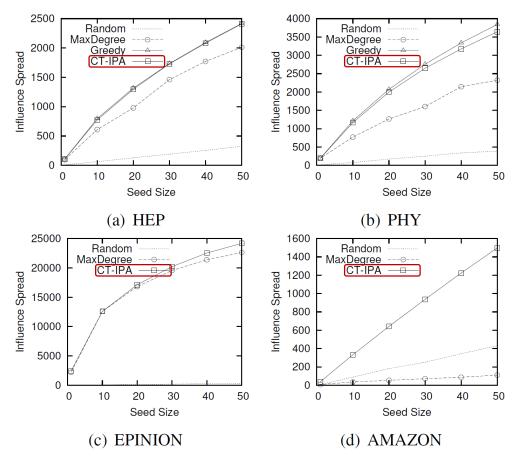


Figure 4. Influence spread of various algorithms.

Algorithm Comparison (2)

• Comparison of processing time:

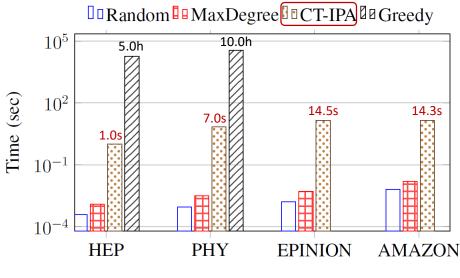


Figure 5. Processing time of various algorithms.

CT-IPA is four orders of magnitude faster than *Greedy* while providing similar influence spread to *Greedy*.

Conclusion

Conclusion

Existing diffusion models ignore important aspects of real marketing.

- Propose a *realistic* influence diffusion model "CT-IC" for viral marketing.
- 2) Prove that CT-IC model satisfies non-negativity, monotonicity, and submodularity.
- 3) Propose a scalable algorithm "*CT-IPA*" for CT-IC model.

CT-IC model for Viral Marketing

Thank You!

Supplements

CT-IC model & Other Diffusion models

• Relationship between influence diffusion models:

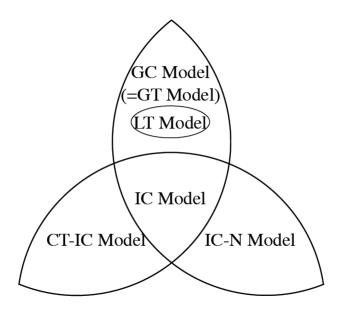


Figure 1. Relationship between influence diffusion models.

Properties of CT-IC model (1)

Difference between IC & CT-IC models:

Lemma 1: For any positive k, N, T such that k < N/4, T < (N/4k) - 1 = O(N/k), there exists a graph G = (V, E) such that |V| = N and $dr(G, k, T) = \Omega(N/kT)$.

- Here, given G = (V, E), k, T, difference ratio dr(G, k, T) is defined by $dr(G, k, T) = \frac{\sigma(S_T^*, T)}{\max\{\sigma(S_I^*, T) | S_I^* \in \mathfrak{S}_I^*\}} \ge 1,$ where $\mathfrak{S}^*(G, k)$ common $\{\sigma(S) | S \in V | S| = k\}$

where $\mathfrak{S}_I^*(G,k) = \arg \max\{\sigma_I(S)|S \subseteq V, |S| = k\},\$ $\mathfrak{S}_T^*(G,k) = \arg \max\{\sigma(S,T)| \ S \subseteq V, |S| = k\}, \ S_T^* \in \mathfrak{S}_T^*.$

 The Lemma tells us that "For some graphs, CT-IC model is largely different from IC model."

Properties of CT-IC model (2)

• Maximum probability path:

Lemma 4: For some graph $G = (V, E), u, v \in V, S \subseteq V$, and T, there exists a path $p = (u = u_0, u_1, \dots, u_l = v)$ and $i \in \{0, \dots, l-1\}$ such that while p is a maximum probability path, (u_0, \dots, u_i) or (u_{i+1}, \dots, u_l) is not a maximum probability path.

- Here, p^* is called a *maximum probability path* from u to v if $p^* \in \operatorname{arg\,max}_p\{inf_p(u,v)|p: a \text{ simple path from } u \text{ to } v\}.$
- The Lemma tells us that "It is difficult to generalize PMIA algorithm into CT-IC model."

Characteristic of CT-IC model

• Model comparison between IC & CT-IC models:

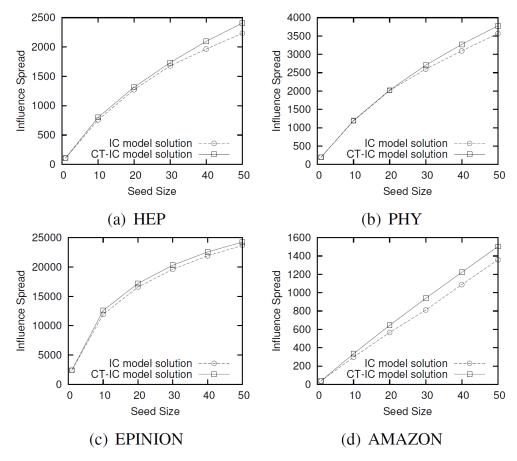


Figure 2. Comparison between IC and CT-IC models.

Exact Computation of Influence Spread (1)

• Case of an arborescence:

Lemma 2: For any $v \in V \setminus S$ and $0 < t \leq T$,

$$ap_{S}(v,t) = \prod_{u \in N_{in}(v)} \left[1 - \sum_{i=0}^{t-2} ap_{S}(u,i)g_{uv}(t-2-i) - \prod_{u \in N_{in}(v)} \left[1 - \sum_{i=0}^{t-1} ap_{S}(u,i)g_{uv}(t-1-i) - \frac{1}{2} \right] \right]$$

holds, where $g_{uv}(t) = 1 - \prod_{i=0}^{t} [1 - pp_i(u, v)]$.

where $ap_S(v, t)$ is the probability that v is activated *exactly at* time t by S.

Exact Computation of Influence Spread (2)

• Case of a simple path:

Lemma 3: The probability that $u \in S$ activates $v \in V \setminus S$ only through a path $p = (u = u_0, u_1, \dots, u_{l-1}, u_l = v)$ is

$$inf_p(u,v) = [1 \ 0 \ \cdots \ 0] \left(\prod_{i=0}^{l-1} \mathbf{C}_{u_i u_{i+1}} \right) [1 \ 1 \ \cdots \ 1]^{\mathrm{Tr}}, \quad (2)$$

where $u_i \in V \setminus S$ for all $i = 1, \dots, l$, and the order of matrix multiplication is from i = 0 to l - 1.

where $inf_p(u, v)$ is the probability that u activates v in time T along a path p,

$$\mathbf{C}_{uv} = \begin{bmatrix} 0 & c_{uv}^{(1)} & \cdots & c_{uv}^{(T)} \\ 0 & 0 & \cdots & c_{uv}^{(T-1)} \\ 0 & 0 & \cdots & c_{uv}^{(T-2)} \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \quad c_{uv}^{(t-i)} = pp_{t-i-1}(u,v) \prod_{j=0}^{t-i-2} (1 - pp_j(u,v)).$$

Exact Computation of Influence Spread (3)

Case of a simple path: (proof)

By Lemma 2, $ap(v,t) = \sum_{i=0}^{t-1} c_{uv}^{(t-i)} ap(u,i)$ $= \begin{bmatrix} ap(u,0) \\ ap(u,1) \\ \vdots \\ ap(u,t-1) \end{bmatrix}^{\text{Tr}} \begin{bmatrix} c_{uv}^{(t)} \\ c_{uv}^{(t-1)} \\ \vdots \\ c_{uv}^{(1)} \end{bmatrix},$ $c_{uv}^{(t-i)} = pp_{t-i-1}(u,v) \prod_{j=0}^{t-i-2} (1 - pp_j(u,v)).$

By gathering in a matrix,

$$\begin{bmatrix} ap(v,0) \\ ap(v,1) \\ ap(v,2) \\ \vdots \\ ap(v,T) \end{bmatrix}^{\mathrm{Tr}} = \begin{bmatrix} ap(u,0) \\ ap(u,1) \\ ap(u,2) \\ \vdots \\ ap(u,T) \end{bmatrix}^{\mathrm{Tr}} \begin{bmatrix} 0 & c_{uv}^{(1)} & \cdots & c_{uv}^{(T)} \\ 0 & 0 & \cdots & c_{uv}^{(T-1)} \\ 0 & 0 & \cdots & c_{uv}^{(T-2)} \\ \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
$$\mathbf{AP}(v) = \mathbf{AP}(u)\mathbf{C}_{uv}$$

IPA Algorithm (1)

• Influence spread of a single node *u*:

$$\hat{ap}_{\{u\},T}(v) = 1 - \prod_{p \in P_{u \to v}} \left(1 - \inf_{p}(u, v) \right)$$
$$\hat{\sigma}(\{u\}, T) = 1 + \sum_{v \in O_{u}} \hat{ap}_{\{u\},T}(v)$$

where $P_{u \to v} = \{p = (u, ..., v) | inf_p(u, v) \ge \theta\}, O_u = \{w | P_{u \to w} \neq \phi\}.$ Here, θ is a threshold for IPA algorithm.

IPA Algorithm (2)

• Influence spread of a seed set *S*:

$$\hat{ap}_{S,T}(v) = 1 - \prod_{p \in P_{S \to v}} \left(1 - \inf_{p}(u, v) \right)$$
$$\hat{\sigma}(S, T) = |S| + \sum_{v \in O_S} \hat{ap}_{S,T}(v)$$

where $P_{S \to v} = \{p = (u, ..., v) | u \in S, inf_p(u, v) \ge \theta\}, O_S = \{w | P_{S \to w} \neq \phi\}.$ Here, θ is a threshold for IPA algorithm.