

Representation Formalisms for Uncertain Data

Jennifer Widom

with

Anish Das Sarma Omar Benjelloun Alon Halevy and other participants in the Trio Project

!! Warning !!

This work is preliminary and in flux Ditto for these slides Luckily I'm among friends...

Some Context

Trio Project

We're building a new kind of DBMS in which:

Data
Accuracy

3. Lineage

are all first-class interrelated concepts

Potential applications

- Scientific and sensor databases
- Data cleaning and integration
- Approximate query processing
- And others...

We began by investigating the accuracy component = uncertainty (more on terminology coming)

Recently we've made progress tying together uncertainty + lineage

Approaching a New Problem

- 1) Work in a void for a while
- 2) Then see what others have done
- 3) Adjust and proceed

Defined initial Trio Data Model (TDM) [CIDR '05] Based primarily on applications and intuition

Accuracy component of initial TDM A sub-trio:

- 1. Attribute-level approximation
- 2. Tuple-level (or relation-level) confidence
- 3. Relation-level coverage

Terminology Wars

Carminology for the accu	uracy component o	of TDM - TrioWiki - Mozi	illa Firefox			
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> oo	okmarks <u>T</u> ools <u>H</u> e	lp				0
🗘 • 🏟 • 🔂 😣	🕥 🎦 http:/	/hydrocoral.stanford.edu:	8011/wiki/index.php/Termi	nology_for_the_accura	acy_component_of_T 🗾 🔘	Go G, ad screen capture
🗋 Customize Links 📘 Free	Hotmail 📄 Window:	s 📋 Windows Media				
1000	article discus	sion edit histor	V	<u>♣</u> 65	.249.10.100 talk for this ip c	reate an account or log in
EA CAL	Terminol	oay for the :		mponent c		
E	Terminor	ogy for the a	accuracy co	inponent c		
	The goal of this	page is to decide wha	t terminology we shou	ld use to speak ab	out notions that are centra	al to Trio. The following
with.	table lists sever	al proposals. Feel free	to add your own, or c	omment on the exi	sting ones below.	
avigation Main Page Community portal	Who/where	Whole shebang	Attribute-level	With Values in Sets	Tuple-level	Missing tuples
Current events Recent changes	Trio paper	accuracy	approximation	?	precision	recall
- Recont changes	500 C					
Random page Help	Alon	uncertainty	attribute-level uncertainty	?	tuple-level uncertainty	relation-level uncertainty
a Random page Help Help Go Search	Alon Omar	uncertainty for x in {uncertainy or lineage}	attribute-level uncertainty α-x	?	tuple-level uncertainty	relation-level uncertainty θ-x
Go Search	Alon Omar Evan	uncertainty for x in {uncertainy or lineage} uncertainty	attribute-level uncertainty α-x approximation	?	tuple-level uncertainty T-x confidence	relation-level uncertainty θ-x completeness
Go Search Go Search What links here Related changes	Alon Omar Evan Utkarsh	uncertainty for x in {uncertainy or lineage} uncertainty accuracy	attribute-level uncertainty α-x approximation uncertainty	? ? ? ?	tuple-level uncertainty T-X confidence confidence	relation-level uncertainty θ-x completeness completeness

7

Broadly, an approximate value is a set of possible values along with a probability distribution over them

Specifically, each Trio attribute value is either:

- 1) Exact value (default)
- 2) Set of values, each with $prob \in [0,1]$ ($\Sigma=1$)
- 3) Min + Max for a range (uniform distribution)
- 4) Mean + Deviation for Gaussian distribution

Type 2 sets may include "unknown" (⊥)

Independence of approximate values within a tuple

Each tuple t has confidence $\in [0,1]$

- Informally: chance of t correctly belonging in relation
- Default: confidence=1
- Can also define at relation level

Each relation **R** has coverage \in [0,1]

- Informally: percentage of correct R that is present
- Default: coverage=1

Started fiddling around with TDM accuracy

- Suitability for applications
- Expressiveness in general
- Operations on data

Immediately encountered interesting issues

- Modeling is nontrivial
- Operation behavior is nonobvious
- Completeness and closure

End Void

Time to...

- Read up on other work
- Study a simplified accuracy model
- Get formal
- Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminology
 Change terminolog

Definition: An uncertain database represents a set of possible (certain) databases

a.k.a. "possible worlds" "possible instances"

Example: Jennifer attends workshop on Monday; Mike attends on Monday, Tuesday, or not at all

Restricted TDM Accuracy

- 1. Approximation: or-sets
- 2. Confidence: maybe-tuples (denoted "?")
- 3. Coverage: omit

Straightforward mapping to possible-instances

	day	person	
	Monday	Jennifer	
?	{Monday,Tuesday}	Mike	

maps to the three possible-instances on previous slide

Properties of Repsentations

- Restricted-TDM is one possible representation for uncertain databases
- A representation is well-defined if we know how to map any database in the representation to its set of possible instances
- A representation is complete if every set of possible instances can be represented
- Unfortunately, TDM (restricted or not) is incomplete

generates 4th instance: empty relation

Completeness vs. Closure

Proposition: An incomplete representation is still interesting if it's expressive enough and closed under all required operations

Easy and natural (re)definition for any standard database operation (call it **Op**)

Closure: up-arrow always exists

Note: Completeness \Rightarrow Closure

Unfortunately, TDM (restricted or not) is not closed under many standard operations

Next:

- 1. Examples of non-closure in TDM
- 2. Suggest possible extensions to the representation (hereafter "model")
- 3. Hierarchy of models based on expressiveness

person	day	food	person	day	food
Mike	Monday	chicken	Mike	Tuesday	fish
Instance1				Instance2	

Not representable with or-sets and ?

person	day	food	person	day	food
Mike	Monday	chicken	Mike	Tuesday	fish
Instance1				Instance2	

Representable with Xor constraint

person	day	food	
Mike	Monday	chicken	t1
Mike	Tuesday	fish	t2

Constraint: t1 XOR t2

Instance1

Not representable with or-sets and ?

Representable with \equiv (Iff) constraint

person	day	food	
Mike	Monday	chicken	t1
Mike	Monday	pie	t2

Constraint: t1 ≡ t2

- Full propositional logic: YES
- Xor and Iff: NO
- General 2-clauses: NO
- How about "vertical or" (tuple-sets)? NOPE

Hierarchy of Incomplete Models

R	relations
A	or-sets
?	maybe-tuples
2	2-clauses
sets	tuple-sets

But remember:

- Completeness may not be necessary
- Closure may be good enough

Are any of these models closed under standard relational operations?

Closure Table

Closure-Model	\mathcal{R}^{A}	$\mathcal{R}_{?}$	$\mathcal{R}^A_?$	$\mathcal{R}_{\oplus\equiv}, \mathcal{R}_2, \mathcal{R}_2^A, \mathcal{R}_{sets}$
Union	Y	Y	Y	Y
$Select_{ee}$	Y	Y	Y	Y
$Select_{es}$	N	Y	Y	Y
Select _{ss}	N	Y	N	Y
Intersection	N	Y	N	N
Cross Product	Y	N	Ν	N
Join	N	N	Ν	N
Difference	N	Y	Ν	N
Projection	Y	Y	Y	Y
Duplicate Elimination	N	Y	N	N
Aggregation	N	Ν	Ν	N

Closure Diagram

Omitted: – Self-loops – Subsumed

arrows to root

Instance membership: Given instance *I* and uncertain relation *R*, is *I* an instance of *R*?

Instance certainty: Given instance *I* and uncertain relation *R*, is *I R*'s only instance?

Tuple membership: Given tuple *t* and uncertain relation *R*, is *t* in any of *R*'s instances?

Tuple certainty: Given tuple *t* and uncertain relation *R*, is *t* in all of *R*'s instances?

Many of these problems are NP-Hard in complete models but polynomial in our incomplete models

What does all of this mean for the Trio project?

- Fundamental dilemma:
 - Restricted-TDM: intuitive, understandable, incomplete
 - Unrestricted-TDM: more complex, still incomplete
 - Complete models: even more complex, nonintuitive

Sufficient for some applications

- Incomplete model can represent data
- Closed under required operations

Two-layer approach

- Underlying complete model
- Incomplete "working" model for users (recall Mike's chicken and fish)
- Challenge: approximate approximation

Trio: Data + Accuracy + Lineage

Surprise: Restricted-TDM (v2) + Lineage is complete and (therefore) closed

Pursue uncertainty+lineage

Remainder of accuracy model

- Probability distributions
- Intervals, Gaussians
- Confidence values
- Coverage

Querying uncerrtainty

Ex: Find all people with \geq 3 alternate days

Can we generalize the possible-instances semantics?

Search term: stanford trio

