
Princeton	University *NVIDIA

ASPLOS	2017

Caroline	Trippel,	Yatin A.	Manerkar,	Daniel	Lustig*,	
Michael	Pellauer*,	Margaret	Martonosi

TriCheck: Memory Model Verification at the 
Trisection of Software, Hardware, and ISA

http://check.cs.princeton.edu/



§What	can	go	wrong?
• Ill-specified	HLL	memory	model
• Incorrect	HLLàISA	compilation
• Inadequate	ISA	specification
• Incorrect	hardware	implementation

§Current	techniques	verify	only	
portions	of	stack
• Compiler	mappings	from	HLL	to	ISA
• Validity	of	hardware	implementation

Microarchitecture

Compilation

Hardware	Implementation

High-level	Language	
(HLL)	Memory	Model

ISA
Memory	Model

Memory Models in the Hardware-Software Stack



ISA
Memory	Model OSArMOR [ISCA15]

Compiler	Mappings

TriCheck

PipeCheck [MICRO47]
CCICheck [MICRO48]
COATCheck [ASPLOS16]Hardware

Memory	Model

Software
Memory	Model

Our Work: Memory Consistency Model Verification



Why is TriCheck Necessary?
§Memory	model	bugs	are	real	and	problematic!
• ARM	Read-after-Read	Hazard	[Alglave et	al.	TOPLAS14]	
• RISC-V	ISA	is	currently	incompatible	with	C11
• C11àPOWER/ARMv7	“trailing-sync”	compiler	mapping	[Batty	et	al.	POPL	‘12]
• C11àPOWER/ARMv7	“leading-sync”	compiler	mapping	[Lahav et	al.	PLDI17]

§ ISAs	are	an	important	and	still-fluid	design	point!
• Often,	ISAs	designed	in	light	of	desired	HW	optimizations
• ISA	places	some	constraints	on	hardware	and	some	on	compiler
• Many	industry	memory	models	are	still	evolving:	C11,	ARMv7	vs.	ARMv8
• New	ISAs	are	designed,	e.g.,	RISC-V	CPUs,	specialized	accelerators

§ Correctness	requires	cooperation	of	the	whole	stack

This	work



Outline
§Memory	Consistency	Model	Verification

§ Full-Stack	Verification:	Motivating	Example

§TriCheck	Framework	for	Full-Stack	Memory	Model	Verification

§Bugs	Found	with	TriCheck:	RISC-V	Case	Study	and	Compiler	Mappings

§Ongoing	Work	&	Conclusions



Microarchitecture

ISA
Memory	Model

Software
Memory	Model

Compilation

Hardware	Implementation

ARM	Cortex-A9

ARM Read-Read Hazard



ARM Read-Read Hazard

Microarchitecture

ISA
Memory	Model

Software
Memory	Model

Compilation

Hardware	Implementation

ARM	Cortex-A9

C11/C++11 ARMv7
st(rlx) STR
ld(rlx) LDR
ld(acq) LDR; DMB

… …



ARM Read-Read Hazard

Microarchitecture

ISA
Memory	Model

Software
Memory	Model

Compilation

Hardware	Implementation

ARM	Cortex-A9

T0 T1
st(data,1,rlx) st(data,2,rlx)
r1=ld(ptr,rlx)

r2=ld(data,rlx)

Initial	conditions:	data=0,	*ptr=&data
Forbidden	by	C11:	r1=2,	r2=1

C11/C++11 ARMv7
st(rlx) STR
ld(rlx) LDR
ld(acq) LDR; DMB

… …



T0 T1
st(data,1,rlx) st(data,2,rlx)
r1=ld(ptr,rlx)

r2=ld(data,rlx)

ARM Read-Read Hazard

Microarchitecture

ISA
Memory	Model

Software
Memory	Model

Compilation

Hardware	Implementation

ARM	Cortex-A9

C0 C1
ST [data]ß1 ST [data]ß2
LD [ptr]àr0
LD [r0]àr1

LD [data]àr2

Initial	conditions:	data=0,	*ptr=&data
Forbidden	by	C11:	r1=2,	r2=1

C11/C++11 ARMv7
st(rlx) STR
ld(rlx) LDR
ld(acq) LDR; DMB

… …



ARM Read-Read Hazard

Microarchitecture

ISA
Memory	Model

Software
Memory	Model

Compilation

Hardware	Implementation

T0 T1
st(data,1,rlx) st(data,2,rlx)
r1=ld(ptr,rlx)

r2=ld(data,rlx)

Two	loads	of	the	
same	address

Initial	conditions:	data=0,	*ptr=&data
Forbidden	by	C11:	r1=2,	r2=1

ARM	Cortex-A9

C0 C1
ST [data]ß1 ST [data]ß2
LD [ptr]àr0
LD [r0]àr1

LD [data]àr2

Forbidden	outcome	
observable	on	Cortex-A9

C11/C++11 ARMv7
st(rlx) STR
ld(rlx) LDR
ld(acq) LDR; DMB

… …



Outline
§Memory	Consistency	Model	Verification

§ Full-Stack	Verification:	Motivating	Example

§TriCheck	Framework	for	Full-Stack	Memory	Model	Verification

§Bugs	Found	with	TriCheck:	RISC-V	Case	Study	and	Compiler	Mappings

§Ongoing	Work	&	Conclusions



TriCheck Key Ideas
§ First	tool	capable	of	full	stack	memory	model	verification
• Any	layer	can	introduce	real	bugs

§ Litmus	Tests	+	Auto-generators
• Comprehensive	families	of	tests	across	HLL	ordering	options,	compiler	
mapping	variations,	ISA	options

§Happens-before,	graph-based	analysis
• Nodes	are	memory	accesses	&	ordering	primitives
• Edges	are	event	orders	discerned	via	memory	model	relations

§Efficient	top-to-bottom	analysis:	Runtime	in	seconds	or	minutes
• Fast	enough	to	find	real	bugs;	Interactive	design	process



TriCheck Methodology
§User-defined	TriCheck	inputs
• HLL	memory	model	(Herd	[Alglave et	al.	
TOPLAS14])
• HLLàISA	compiler	mappings
• Hardware	model	(μspec DSL)	

§ Auto-generated	TriCheck	inputs
• HLL	litmus	test	suite	from	templates

§ Each	iteration:	bugs	analyzed	to	
identify	cause
• Compiler	bug,	hardware	implementation	
bug,	ISA	bug
• Blame	may	be	debated
• Blame	!=	Fix

User-defined	 inputs

HLL
memory	model

HLL	litmus	tests

HLLàISA
compiler	mappings

Microarchitecture	
model

TriCheck

Bugs? Strict?

Yes

No

Yes

Yes/No

Done



Outline
§Memory	Consistency	Model	Verification

§ Full-Stack	Verification:	Motivating	Example

§TriCheck	Framework	for	Full-Stack	Memory	Model	Verification

§Bugs	Found	with	TriCheck:	RISC-V	Case	Study	and	Compiler	Mappings

§Ongoing	Work	&	Conclusions



RISC-V Case Study
§ Create	μspec models	for	7	distinct	RISC-V	implementation	possibilities:	
• All	abide	by	current	RISC-V	spec
• Vary	in	preserved	program	order	and	store	atomicity

§ Started	with	stricter-than-spec	microarchitecture:	RISC-V	Rocket	Chip
• TriCheck detects	bugs:	refine	for	correctness
• TriCheck detects	over-strictness:	Performed	legal	(per	RISC-V	spec)	
microarchitectural relaxations

§ Impossible	to	compile	C11	for	RISC-V	as	specified.	

§Out	of	1,701	tested	C11	programs:
• RISC-V-Base-compliant	design	allows	144	buggy	outcomes
• RISC-V-Base+A-compliant design	allows	221	buggy	outcomes



0
50
100
150
200
250

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

riscv-curr riscv-ours

wrc

RISC-V	Baseline	(Base)

Te
st
	Va

ria
tio

ns
Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:

Litmus	test:	

ISA:

RISC-V Base: Lack of 
Cumulative Fences
C11	acquire/release	synchronization	is	transitive:	accesses	before	a	
release	write	in	program	order,	and	observed	by	the	releasing	core	prior	
to	the	release	write must	be	ordered	before	the	release	from	the	
viewpoint	of	an	acquire	read	that	reads	from	the	release	write

C2C1C0

Main	Memory

STB STB

C0 C1 C2
ST flag1ß1 if (LD flag1==1) if (LD flag2==1)

FENCE[LD.ST,ST] FENCE[LD,LD.ST]

ST flag2ß1 LD flag1àtest

flag1=0 flag2=1

Setting	flag1	causes	
setting	flag2



0
50
100
150
200
250

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

riscv-curr riscv-ours

wrc

RISC-V	Baseline	(Base)

Te
st
	Va

ria
tio

ns
Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:

Litmus	test:	

ISA:

RISC-V Base: Lack of 
Cumulative Fences
C/C++	acquire/release	synchronization	is	transitive:	accesses	before	a	
release	write	in	program	order,	and	observed	by	the	releasing	core	prior	
to	the	release	write must	be	ordered	before	the	release	from	the	
viewpoint	of	an	acquire	read	that	reads	from	the	release	write

Base	RISC-V	ISA	lacks	cumulative	fences
• Cumulative	fence	needed	to	enforce	order	between	different-thread	accesses
• Cannot	fix	bugs	by modifying	compiler

Our	solution: add	cumulative	fences	to	the	Base	RISC-V	ISA



More results in the paper:

Takeaway:	Current	RISC-V	cannot	
serve	as	a	compiler	target	for	C11

Next	Steps:	We	are	members	of	
RISC-V	memory	model	working	
group,	working	to	formalize	a	
memory	model	for	RISC-V	that	
meets	the	needs	of	RISC-V	users	

and	supports	C11.

§Both	Base	and	Base+A:
• Lack	of	cumulative	lightweight	
fences
• Lack	of	cumulative	heavyweight	
fences
• Re-ordering	of	same-address	loads
• No	dependency	ordering,	but	
Linux	port	assumes	it

§Base+A only:
• Lack	of	cumulative	releases;	no	
acquire-release	synchronization
• No	roach-motel	movement



Evaluating Compiler Mappings with TriCheck
§During	RISC-V	analysis,	we	discovered	two	counter-examples	
while	using	the	“proven-correct”	trailing-syncmappings	for	
compiling	C11	to	POWER/ARMv7

§Also	incorrect:	the	proof for	the	C11	to	POWER/ARMv7	trailing-
sync	compiler	mappings	[Manerkar	et	al.,	CoRR ‘16]



Conclusions
§Memory	model	design	choices	are	complicated	=>
• Verification	calls	for	automated	analysis	to	comprehensively	
tackle	subtle	interplay	between	many	diverse	features.

§TriCheck uncovered	flaws	in	the	RISC-V	memory	model…
• But	more	generally,	TriCheck can	be	used	on	any	ISA.

§Languages	and	Compilers	matter	too…
• TriCheck	uncovered	bugs	in	the	trailing-sync	compiler	
mapping	from	C11	to	POWER/ARMv7



ctrippel@princeton.edu
http://check.cs.princeton.edu/


