
Axiomatic Hardware-Software Contracts for Security
Nicholas Mosier

nmosier@stanford.edu
Stanford University

Stanford, California, USA

Hanna Lachnitt
lachnitt@stanford.edu
Stanford University

Stanford, California, USA

Hamed Nemati
hnnemati@stanford.edu
Stanford University

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

Caroline Trippel
trippel@stanford.edu
Stanford University

Stanford, California, USA

ABSTRACT

We propose leakage containment models (LCMs)—novel axiomatic

security contracts which support formally reasoning about the
security guarantees of programs when they run on particular mi-
croarchitectures. Our core contribution is an axiomatic vocabulary
for formalizing LCMs, derived from the established axiomatic vo-
cabulary for formalizing processor memory consistency models.
Using this vocabulary, we formalize microarchitectural leakage—
focusing on leakage through hardware memory systems—so that
it can be automatically detected in programs and provide a tax-
onomy for classifying said leakage by severity. To illustrate the
efficacy of LCMs, we first demonstrate that our leakage definition
faithfully captures a sampling of (transient and non-transient) mi-
croarchitectural attacks from the literature. Second, we develop a
static analysis tool based on LCMs which automatically identifies
Spectre vulnerabilities in programs and scales to analyze real-world
crypto-libraries.

CCS CONCEPTS

• Computer systems organization→Architectures; • Security
and privacy→ Formal security models; Side-channel analy-
sis and countermeasures; • Software and its engineering→
Formal software verification.

KEYWORDS

hardware security, side-channel attacks, hardware-software con-
tracts, Spectre, memory consistency models

ACM Reference Format:

Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel.
2022. Axiomatic Hardware-Software Contracts for Security. In The 49th

Annual International Symposium on Computer Architecture (ISCA ’22), June

18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3470496.3527412

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527412

1 INTRODUCTION

Microarchitectural attacks [23] are side/covert channel attackswhich
enable leakage/communication as a direct result of hardware op-
timizations. In doing so, they expose a notable deficiency in how
hardware-software contracts have historically defined software-

visible state. Rather than consisting solely of state that can be di-
rectly accessed with committed user-facing instructions (i.e., archi-
tectural state), software-visible state also includes any state that
can be leaked/communicated via hardware side/covert channels.

Writing secure software in the presence of hardware side/covert
channels requires new hardware-software contracts which rem-
edy our inadequate definition of software-visibility. Specifically,
security contracts should be designed which soundly abstract and
expose to software the security implications of particular microar-
chitectures. Such contracts can support the design of automated
tools that detect vulnerabilities in programs, evaluate hardware and
software mitigations, and (optimally) repair vulnerable software to
render it secure.

Hardware-software contracts for security: One established
way to counter microarchitectural attacks that manifest as timing
channels is with constant-time (CT) programming. CT programming
is a paradigm that disallows the processing of secrets by transmit

instructions [34, 79] (i.e., transmitters) which can leak their results,
operands, or even data at rest in architectural structures [69] via
their variable impact on execution time. However, even CT pro-
gramming requires a type of security contract which precisely
identifies transmitters and articulates their leakage implications.
Historically, CT programming disallows secret-dependent branches
and memory accesses [7, 21, 61, 62]. However, these restrictions
are insufficient for modern hardware where secrets can be steered
towards transient transmitters [37, 42, 49, 64, 67]. Also, the scope of
transmitters extends beyond branch and memory instructions [69].

To address the need for security contracts, various proposals
have emerged [6, 15, 16, 19, 22, 25–27, 47, 68, 76, 78, 82]. Some re-
quire hardware enhancements to explicitly track/enforce contract-
level security primitives [6, 76, 78, 82]. Other contracts restrict the
scope of hardware features that they consider, e.g., focusing on in-
order [16, 25, 26] and single-core processor designs [15, 16, 22, 25–
27, 47, 68]. The state-of-the-art security contracts solely expose
transient leakage through microarchitecture to software [15, 16, 22,
25, 26, 47, 68] or highly restrict the non-transient leakage they can

https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1145/3470496.3527412

ISCA ’22, June 18–22, 2022, New York, NY, USA Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel

capture [27]. Moreover, these contracts are typically based on oper-
ational models of processor designs. Verifying operational security
contracts is challenging since a hardware designer must prove that
a given microarchitecture is a sound refinement of some abstract,
simplified processor model. Such proofs are not automatable by ex-
isting verification approaches and would require significant manual
effort.

Our approach: Towards resolving the limitations of prior work,
our first insight is that security contracts should explicitly ac-
count for microarchitectural implementation details that underpin
hardware leakage. In doing so, security contracts can be directly
related to, and eventually synthesized from, the microarchitectures
they represent [30]. Moreover, a generic microarchitectural leakage
definition can be established which encompasses a wider range of
microarchitectural attacks.

Thus, we propose leakage containment models (LCMs)—novel
axiomatic hardware-software contracts designed to support au-
tomatically reasoning about microarchitectural leakage in pro-
grams when they run on particular hardware implementations.
LCMs are designed to model microarchitectural information flow,
a key contributor to microarchitectural leakage. Specifically, for
every architecture-level execution of an instruction, there may be
more than one corresponding microarchitecture-level execution that
achieves the same software-visible effect.1 Furthermore, which
microarchitecture-level execution is realized when a program runs
on a hardware implementation generally depends on the outcome(s)
of dynamic microarchitectural information flow(s). If an attacker
can distinguish one microarchitecture-level execution from another,
it may infer some function of the data involved in these information
flows. As an example, consider a program running on a processor
with core-private L1 caches. Either an L1 cache miss or hit (i.e, one
of two microarchitecture-level execution possibilities) will occur
on behalf of an architecture-level load in the program. Moreover,
whether a miss or hit occurs depends on the outcome of the load
microarchitecturally reading the cache state that was microarchi-

tecturally written by the last access to the same cache line (i.e.,
the outcome of a microarchitectural information flow). It is well
known that a software-based attacker can distinguish these two
microarchitecture-level execution scenarios by timing the load’s
execution latency [23], thereby leaking a function of the address
bits involved in the culprit information flow.

Given the ingredients for hardware leakage above, our second
insight is that LCMs can define and directly compare an architec-

tural semantics and a microarchitectural semantics for a program to
pinpoint potential hardware-induced program leaks. A program’s
architectural semantics encodes the software-visible ways in which
it can execute; each execution possibility differs according to the
architectural information flows it exhibits. A program’s microarchi-
tectural semantics encodes its distinct microarchitectural execution
possibilities which differ according to their microarchitectural infor-
mation flows. To define microarchitectural leakage based on LCMs,
we first identify which microarchitectural execution of a program
is implied by each architectural execution possibility in the absence
of interference. Then, a program is examined to determine if its

1In this paper, software-visibility is used in the traditional sense to refer to observable
program behavior in the absence of hardware side/covert channels.

microarchitectural semantics can ever deviate from what is archi-
tecturally implied. If so, the program is susceptible to hardware
leakage. LCMs also leverage a program’s speculative semantics to
reason about transient leakage [27].

In designing LCMs, we leverage our third insight—that mem-

ory consistency models (MCMs) [4, 39] define the same sort of ar-
chitectural program semantics that LCMs require. To summarize,
MCMs articulate which architecture-level information flows be-
tween shared memory operations in a parallel program are legal;
distinct flows constitute distinct architecture-level (i.e., software-
visible) program executions. Since well-established and formally
specified MCMs already provide a key building block of LCMs—an
architectural semantics for programs—we elect to derive LCMs from
MCMs. A key benefit of this design choice is that security analyses
built on LCMs can leverage a rich literature in MCM analysis and
verification [1–4, 14, 44, 46, 75]. Moreover, recent work proposes
an automated approach for synthesizing axiomatic MCM speci-
fications directly from RTL with minimal user intervention [30].
Thus, we believe axiomatic security contracts are more amenable
to automated verification approaches than their operational peers.

Overall, this paper makes the following contributions:

• Axiomatic security contracts:We propose LCMs—novel
security contracts—and an axiomatic vocabulary for defin-
ing them, derived from axiomatic MCMs. Our formal LCM
vocabulary supports advanced processor features like out-of-
order and multi-core execution and captures both transient
and non-transient leakage.
• Leakage formalization: Using our axiomatic LCM vocabu-
lary, we formalize microarchitectural leakage—focusing on
leakage through hardware memory systems—so that it can
be automatically detected in programs.
• Transmitter taxonomy:We present a new taxonomy for
classifying transmitters according to their severity, focusing
on transmitters which facilitate cache-based leakage.
• Leakage detection: First, we demonstrate that our leak-
age definition captures a sampling of (transient and non-
transient) microarchitectural attacks from the literature [15,
29, 35, 37, 69, 79]. Second, we develop a static analysis tool,
Clou, based on LCMs which automatically identifies and re-

pairs (via fence insertion) Spectre v1 [37], Spectre v1.1 [35],
and Spectre v4 [31] vulnerabilities in programs. Clou offers
better scalability than all state-of-the-art static analysis tools
for detecting these vulnerabilities and finds new Spectre leak-
age in the libsodium [21] and OpenSSL [56] crypto-libraries.

2 BACKGROUND AND MOTIVATION

LCMs define both an architectural semantics and a microarchitec-

tural semantics for programs. A program’s architectural semantics
encodes the distinct software-visible ways in which it can execute;
such a semantics is ISA-specific. A program’s microarchitectural
semantics encodes the distinct ways in which it can microarchitec-

turally execute; such a semantics is implementation-specific. Thus,
LCMs are defined per-microarchitecture.

A key insight of this paper is that axiomatic MCM specifica-
tions [4] lay the foundation for axiomatic LCMs. First, axiomatic
MCMs define an architectural semantics for programs which LCMs

Axiomatic Hardware-Software Contracts for Security ISCA ’22, June 18–22, 2022, New York, NY, USA

use out-of-the-box. Second, axiomatic MCM primitives can be di-
rectly adapted to encode a microarchitectural semantics for pro-
grams. We provide an overview of axiomatic MCMs in this section
and refer the reader to existing literature for more details [1, 4].

2.1 Axiomatic Memory Consistency Models

MCMs define the value(s) that can be legally returned by shared-
memory loads in a parallel program. MCMs are central to reasoning
about parallel program correctness; thus a large body of work is
devoted to formalizing them [4, 9, 10, 13, 45, 52–54, 58, 60, 63, 72, 74].

An axiomatically formalized MCM is encoded as a consistency
predicate which may be applied to candidate executions of programs.
In a nutshell, candidate executions (2.1.2) are the result of taking a
program and instantiating for it a particular control flow path and a
particular set of data-flow relationships between shared memory
instructions. Candidate executions which are consistent (resp. in-
consistent) with an MCM’s consistency predicate (2.1.3) are allowed
(resp. disallowed) by the MCM.

2.1.1 Event Structures. A candidate execution of a program is
derived from an event structure [1], which describes a particular
control-flow path of the program where all branches have been re-
solved. For example, a programwith a single conditional branchwill
produce two event structures: one which corresponds to the taken
control-flow path and another which corresponds to the not-taken
path. Precisely, an event structure 𝐸 ≜ (MemoryEvent, Location,
address, po) is defined by the following:
• MemoryEvent: a set of all program instructions in a particular
control-flow path of the program that read or write mem-
ory. MemoryEvent is a subset of Event—a set of all program
instructions in a particular control-flow path of the program.
• Location: a set of all architectural memory locations which
are accessed by program Read/Write events—Read and Write
are disjoint subsets of MemoryEvent.
• address: a binary relation that maps each MemoryEvent to
the single shared memory Location it accesses; address is
a set of (MemoryEvent, Location) tuples.
• po: a transitive binary relation that maps each Event to all
committed Events that follow it in program order; po is a
set of (Event, Event) tuples which constructs a per-thread
total order on committed instructions.

2.1.2 Candidate Executions. An event structure for a program can
be extended to a set of candidate executions. Each candidate execu-
tion in the set differs with respect to the sharedmemory interactions
that are realized between instructions. Concretely, we can extend
an event structure with an execution witness 𝑋 ≜ (rf, co, fr) to
produce a candidate execution. An execution witness is defined by
the following relations involving same-address MemoryEvents:
• rf (reads-from): a binary relation that maps each Write to all
same-address Reads that read from it; rf is a set of (Write,
Read) tuples.
• co (coherence-order): a transitive binary relation that maps
each Write to all same-address Writes that follow it in co-
herence order; co is a set of (Write, Write) tuples, which
constructs a per-Location total order on all Writes to said
Location.

• fr (from-reads): a binary relation that maps each Read to all
co-successors of the Write that it read from; fr is a set of
(Read, Write) tuples, and it is derived from rf and co as
follows: fr=∼rf.co, where ∼ is relational transpose and . is
relational join.

Collectively, rf, co, and fr comprise the com (communication)
relation—com = rf + co + fr, where + is set union.

2.1.3 Consistency Predicates. A candidate execution is uniquely
defined by an event structure 𝐸 and an execution witness 𝑋 . An
MCM is then defined by a consistency predicate which renders
candidate executions consistent or inconsistent with respect to
it. Consistent candidate executions of a program (i.e., those for
which the consistency predicate evaluates to True) are allowed
according to the MCM, while inconsistent candidate executions
are disallowed. In constructing a consistency predicate, axiomatic
MCM specifications often consider a wider range of events and
relations, such as:
• ppo: a binary relation that maps an Event to a po-later Event
if the ISA guarantees they will be executed in order from the

perspective of all cores in the shared memory system; ppo is
a set of (Event, Event) tuples and a subset of po.
• fence: a binary relation that maps an Event 𝑒0 to another
Event 𝑒1 if 𝑒0 is ordered before 𝑒1 by an explicit synchro-
nization event (e.g., a fence/barrier); fence is a set of (Event,
Event) tuples.

ForMCMswhich do not order Readswith po-later MemoryEvents
by default (i.e., via ppo), a dep (dependency) relation is used to se-
lectively enforce these orders. dep encodes syntactic dependencies
between shared memory instructions through registers, and is com-
prised of the following three sub-relations:
• addr (address dependency): a binary relation that maps a
Read to po-subsequent MemoryEvent when the Location
accessed by the MemoryEvent depends syntactically on the
value returned by the Read; addr is a set of (Read, Memory-
Event) tuples.
• data (data dependency): a binary relation that maps a Read
to a po-subsequent Write when the written value depends
syntactically on the value read; data is a set of (Read, Write)
tuples.
• ctrl (control dependency): a binary relation that maps a
Read to a po-subsequent MemoryEvent when the control
flow decision of whether to execute the MemoryEvent de-
pends syntactically on the value read; ctrl is a set of (Read,
MemoryEvent) tuples.

An example consistency predicate is that which defines the Total
Store Order (TSO) MCM used by Intel x86 processors [32]. It is com-
posed of the conjunction of three auxiliary predicates—sc_per_loc,
rmw_atomicity, and causality [4]. Belowwe define themost relevant
two for the ideas presented in this paper:
• sc_per_loc ≜ acyclic({rf + co + fr + po_loc}), where po_loc
is the subset of po that relates same-address MemoryEvents.
• causality ≜ acyclic({rfe + co + fr + ppo + fence}). For x86-
TSO, ppo includes all (Write, Write) and (Read, Memory-
Event) tuples in po, and rfe (reads-from external) is the
subset of rf that relates Events on different threads.

ISCA ’22, June 18–22, 2022, New York, NY, USA Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel

2.2 An Architectural Semantics for LCMs

Recall that LCMs define an ISA-specific architectural semantics,
which encodes the various software-visible ways in which pro-
grams can execute; each execution possibility differs according to
the architectural information flows it exhibits. Now consider an
ISA MCM, defined axiomatically with the help of a consistency
predicate. Notably, the com relation (§2.1.2) encodes architectural
information flows through shared memory for a specific candidate
execution. Thus, for a given program, its set of consistent candidate
executions—i.e., those candidate executions which are consistent
with the consistency predicate—constitute its architectural seman-
tics as required by LCMs.

More precisely, consistent candidate executions comprise a pro-
gram’s architectural semantics restricted to memory instructions. In
this paper, we use LCMs to model leakage on behalf of hardware
memory systems optimizations, particularly cache optimizations.
Hence, this restriction is appropriate.

3 LEAKAGE CONTAINMENT MODELS

3.1 What Memory Models are Missing

Recent work identifies similarities between MCMs and the sorts
of security contracts that software and hardware designers would
benefit from [19, 22, 66]. However, MCMs themselves do not offer a
complete security contract solution. To demonstrate why, consider
the classic Spectre v1 [37] program in Fig. 1a and its corresponding
assembly pseudo-code in Fig. 1b. Due to the branch, axiomaticMCM
definitions would consider two distinct event structures for this
program—one which corresponds to the not-taken branch outcome
(Fig. 1c) and the other which corresponds to the taken outcome
(Fig. 1d). Note that axiomatic MCM definitions facilitate modeling
both event structures and candidate executions as directed graphs.
Nodes are MemoryEvents labeled with the Location they access, as
encoded in the address relation; edges denote types of “happens-
before” [38] (i.e., sequencing) relationships, as encoded in relations
like po, com, and dep.

Each event structure in Fig. 1 can be extended to exactly one

candidate execution. Thus, there are two possible candidate ex-
ecutions for Spectre v1. This is because every memory access
in the Spectre v1 program touches a distinct memory location;
thus, only one instantiation of the com relation is possible for each
event structure. Specifically, all Read events read from the initial
state of memory—by convention, no rf edges are explicitly drawn
since initialization writes are not explicitly modeled. Further, the
sole Write event is coherence-ordered after the last initialization
write to the same memory location—by convention, no co edges
are drawn. Without rf and co edges, there are no fr edges (§2.1.2).
Figs. 1c and 1d thus also constitute candidate executions. Moreover,
they constitute consistent candidate executions according to TSO
(§2.1.3) making them valid architectural execution possibilities on
Intel processors. Fig. 1d uses gray edges to depict instances of the
dep relation, although it is not a distinguishing feature of event
structures or candidate executions.

As is known, the program in Fig. 1a exhibits a variety of hardware-
induced leakage when run on modern processors. First, the ad-

dresses accessed by instructions 1 and 2 in Fig. 1c and instructions

1 if (y < size_A)
2 x = A[y];
3 tmp &= B[x];

(a) Spectre v1

1 R size → r1
2 R y → r2
3 r3 ← (r2<r1)
4 BEQZ r3, 8
5 R A+r2 → r4
6 R B+r4 → r5
7 W tmp ← tmp&r5
8 skip

(b) Spectre v1 assembly

pseudo-code

1: R size→ r1

2: R y→ r2
po

(c) Not-Taken event structure and can-

didate execution

1: R size→ r1

2: R y→ r2

5: R A+r2→ r4

6: R B+r4→ r5

7:W tmp← tmp & r5

po

po

po

po

ctrl

ctrl

ctrl

ctrl

ctrl

ctrl

addr

addr

data

(d)Taken event structure and candidate

execution

Figure 1: Spectre v1 in (a), produces two event structures

(§2.1.1)—(c) and (d). Each event structure can be completed

with a single execution witness (§2.1.2). The resulting two

candidate executions look identical to the event structures,

since no explicit com edges are instantiated (§3).

1, 2, 5, 6, and 7 in Fig. 1d may be leaked to an attacker via a sim-
ple cache side-channel attack. Second, the data returned by read
instructions 2 and 5 in Fig. 1d can be leaked. This is because the
addr dependency from instruction 2 (resp. 5) to 5 (resp. 6) indi-
cates that the data returned by 2 (resp. 5) is supplied as the address
operand of 5 (resp. 6), an instruction which we established can
leak its address operand. Third, the outcome of the branch can
be leaked. Moreover, the program in Fig. 1a exhibits speculative
leakage. None of this leakage potential can be discerned directly
from Figs. 1c and 1d. In summary, MCMs cannot directly capture
microarchitectural leakage out-of-the-box.

3.2 A Microarchitectural Semantics for LCMs

LCMs facilitate reasoning about hardware-induced leakage in pro-
grams by augmenting the architectural semantics provided by ax-
iomaticMCMswith amicroarchitectural semantics that describes the
various ways in which a program can microarchitecturally execute.
Each execution possibility differs according to microarchitectural
information flows it exhibits.

In defining a microarchitectural semantics for LCMs we leverage
two key building blocks, featured in Fig. 2a. Fig. 2a effectively merges
together the two Spectre v1 candidate executions (Figs. 1c and 1d)
into a single graph and adds some new nodes and edges. Some
instructions are also omitted for clarity, but numeric instruction
labels are retained.

In Fig. 2a, ⊤ represents explicitly the set of architectural/microar-
chitectural writes that initialize relevant architectural/microarchi-
tectural state. ⊥ represents a set of observer accesses that observe
aspects of final architectural/microarchitectural state after the pro-
gram runs to completion. In this paper, we assume that the observer
(⊥) does not share memory with the executing program, and thus
it cannot interact with the program architecturally (i.e. via com).
⊥ may only be involved in a com relation with ⊤. However, ⊥ can

interact with the program microarchitecturally, such as by probing

Axiomatic Hardware-Software Contracts for Security ISCA ’22, June 18–22, 2022, New York, NY, USA

⊤

2: R y (RW 𝑠0)→ r2

5: R A+r2 (RW 𝑠1)→ r4

6: R B+r4 (RW 𝑠2)→ r5

⊥

⊥

po

po

po

po poaddr

addr

rf, rfx

rf, rfx

rf, rfx

rfxrfx

rfx

rfx

rf

rf

(a) Themicroarchitectural semantics of LCMs captures communication be-

tween instructions via xstate (𝑠0, 𝑠1, and 𝑠2).

⊤

2: R y (RW 𝑠0)→ r2

⊥𝑆

5: R A+r2 (RW 𝑠1)→ r4

6: R B+r4 (RW 𝑠2)→ r5

⊥

5𝑆 : R𝑆 A+r2 (RW 𝑠1)→ r4

6𝑆 : R𝑆 B+r4 (RW 𝑠2)→ r5

⊥

po,tfo

tfo tfo

tfo

po,tfo

po,tfo

po

tfo

tfopo

rf, rfx

addr

addr

addr

addr

rf, rfx

rfx

rfx

rf, rfx

rfx
rfx

rfxrfx rf

rf
(b) The speculative semantics of LCMs demonstrates that leakage can involve

speculatively-executed source instructions, denoted with subscript 𝑆 .

Figure 2: LCMs extend MCMs with amicroarchitectural se-

mantics, as in (a)—to modeling microarchitectural leakage—

and a speculative semantics, as in (b), to model transient

leakage.

cache sate. Thus, ⊤ can be involved in comx (§3.2.2) relations with
program instructions. Each straight-line path through po edges
from ⊤ to ⊥, together with the com relation (restricted to those
instructions involved in the po path in question), denotes a distinct
candidate execution. In Fig. 2a, the com relation has been explicitly
drawn—i.e., note the presence of rf edges involving ⊤ in contrast
to Figs. 1c and 1d which do not model initialization writes. Edges
missing a source node are implicitly related to ⊤.

3.2.1 Modeling Microarchitectural State. The microarchitectural
semantics defined by LCMs explicitly considers microarchitectural

state, effectively denoting which state elements in a processor are
accessed on behalf of architectural program instructions and how

they are accessed. We refer to said state as extra-architectural state
(or xstate), meaning that it can consist of any non-architectural

state in a microarchitecture.2 Fig. 2a illustrates that xstate ele-
ments s0, s1, and s2 are accessed on behalf of Read instructions
2, 5, and 6, respectively. Furthermore, all three xstate accesses
are microarchitectural read-modify-write operations, denoted by
“RW” before the xstate identifier in the figure. In other words,
R y (RW 𝑠0)→ r2 means that architectural Read event 𝑅, which
accesses architectural Location 𝑦, induces a microarchitectural
read-modify-write of xstate element 𝑠0.

2The term extra-architectural state was coined in prior work [43]; however, we assign
it a different meaning in this paper.

The xstate identifiers used by LCMs, such as those featured
in Fig. 2a, may represent a set of hardware state elements in a mi-
croarchitecture. Furthermore, an instruction can access a vector of
xstate rather than a single xstate element. The key idea is that
instructions which access common xstate elements are capable of
communicating microarchitecturally—modeled by a new communi-
cation relation, comx (§3.2.2). In fact, the sole reason for modeling
xstate is to establish comx for a given candidate execution. Instruc-
tions may also access different xstate elements in different ways
depending on execution context, as described below.

In this paper, we seek to model hardware leakage due to mem-
ory systems optimizations, particularly cache optimizations. Thus,
we consider xstate accessed on behalf of architectural memory

instructions only. In particular, the xstate elements we model in
this paper are intended to capture the ways in which same-core

memory instructions can communicate microarchitecturally—said
xstate then effectively represents the core-private cache lines and
load-store queue (LSQ) entries that are accessed on behalf of archi-
tectural memory instructions.

To understand what the above xstate modeling choice means
for howmemory instructions access these abstract xstate elements,
consider the following. In general, (cacheable) architectural read
instructions either microarchitecturally read a cache line (a cache
hit) or microarchitecturally read-modify-write a cache line (a cache
miss). With respect to a local LSQ, architectural reads may mi-
croarchitecturally read (i.e., forward) data from a pending store.
Similarly, (cacheable) architectural writes always behave as cache
line read-modify-writes, unless they are executing on a microar-
chitecture with a no-write-allocate cache policy. With respect to
LSQ state, architectural writes always behave as microarchitectural
writes. Given xstate elements which collectively represent the
core-private cache line and LSQ entries accessed on behalf of an
architectural memory instruction: read hits read xstate (from the
cache or from a pending store in the LSQ), read misses read-modify-
write xstate (namely a cache line), and writes read-modify-write
xstate (namely a cache line which subsumes the LSQ write).

3.2.2 Modeling Microarchitectural Information Flow. Fig. 2a shows
that LCMs define a comx relation which lifts com [4] to xstate
accesses; com relates same-address operations, while comx relates
same-xstate operations. Recall that LCMs use the com relation to
encode the architectural information flows that distinguish program
executions according to their architectural semantics. Likewise,
LCMs use the comx relation to encode microarchitectural informa-
tion flows that distinguish program executions according to their
microarchitectural semantics. Just as a consistency predicate was
used to rule out illegal instantiations of com, a similar confidentiality
predicate must be defined to rule out illegal instantiations of comx
according to a specific hardware implementation. §4.2 discusses
features of confidentiality predicates that are required to capture
different sorts of known hardware optimizations.

3.2.3 Modeling Microarchitectural Leakage. LCMs formalize mi-

croarchitectural leakage by (1) determining which microarchitec-
tural semantics (comx edges) are implied by a given architectural se-
mantics (com edges) when microarchitectural non-interference [24]
holds, and (2) detecting when a program’s microarchitectural se-
mantics deviates from architectural expectation.

ISCA ’22, June 18–22, 2022, New York, NY, USA Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel

As an example, consider an rf edge which relates a write to a
same-core read that it sources—called rf-internal or rfi [4]. Con-
sider also our xstate of interest which corresponds to core-private
processor cache lines or LSQ entries. In the absence of interfer-
ence, an rfi edge which relates some Write 𝑤 to some Read 𝑟 ,
implies a consistent rfx edge—an rfx edge which relates𝑤 to 𝑟 . In
other words, if microarchitectural non-interference holds, a read 𝑟
which architecturally reads from a same-core write𝑤 will further
microarchitecturally read from the core-private cache line or LSQ
entry populated by 𝑤 . If 𝑟 reads from a cache line populated by
a different instruction, this means that the cache line was evicted
by an interfering access in between𝑤 ’s and 𝑟 ’s cache accesses. If
𝑟 forwards data from an interfering store residing in the LSQ or
the most recent write to memory rather than reading from𝑤 , then
it exhibits memory address mis-speculation (§3.3) which will be
eventually rolled back.

Fig. 2a contains two instances of the program’s microarchitec-
tural semantics deviating from what is architecturally implied—the
two dashed rf edges are lacking consistent rfx edges. The end-
points of these culprit com edges—⊥ for both—constitute receivers
of microarchitectural leakage.

3.2.4 A Taxonomy for Cache xstate Transmitters. In this paper,
we define three classes of transmitters that can microarchitec-
turally convey information to a receiver, described as follows and
summarized in Table 1.

First, xstate transmitters are instructions which source (i.e.,
convey information to) a receiver via an rfx edge. In other words,
xstate transmitters communicate some function of their accessed
xstate to a receiver via microarchitectural information flows. In
this paper, where xstate consists of core-private cache lines or LSQ
state which facilitate microarchitectural communication between
same-address memory accesses, xstate transmitters are in reality
address transmitters. Address transmitters transmit a function of
their address operand.

Second, data transmitters (resp. control-flow transmitters)
are address transmitters which are the target of an addr (resp. ctrl)
dependency, originating at a Read 𝑟 . Both data transmitters and
control transmitters leak a function of the data returned by 𝑟 , where
𝑟 is referred to as the access instruction. However, we consider
data transmitters more dangerous since control transmitters leak
the outcome of a branch condition involving 𝑟 ’s return value rather
than the return value itself.

Third, universal data transmitters (resp. universal control-
flow transmitters) are data transmitters (resp. control-flow trans-
mitters) whose access instruction is the target of an addr depen-
dency, originating at some Read 𝑟 ′, called the index instruction.
For example, the relevant transmitter patterns in Table 1 indicate
that the memory location accessed by 𝑎𝑐𝑐𝑒𝑠𝑠 depends on the data
returned by 𝑖𝑛𝑑𝑒𝑥 . If an adversary can control the contents of the
memory location referenced by 𝑖𝑛𝑑𝑒𝑥 , it can possibly leak arbitrary
memory [47]. In Fig. 2a, instructions 2, 5, and 6 are address trans-
mitters, 5 and 6 are data transmitters, and 6 is a candidate universal
data transmitter. The execution semantics of the program in Fig. 2a,
which features a bounds check on index y restricts the leakage scope
of instruction 6. However, §4.2 explains how transient execution of
instruction 6 unlocks true universal data leakage.

Transmitter Type Leakage Pattern

address 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡
rfx−−−→ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

data 𝑎𝑐𝑐𝑒𝑠𝑠
addr−−−−→ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡

rfx−−−→ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

control 𝑎𝑐𝑐𝑒𝑠𝑠
ctrl−−−−→ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡

rfx−−−→ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

universal data 𝑖𝑛𝑑𝑒𝑥
addr−−−−→𝑎𝑐𝑐𝑒𝑠𝑠

addr−−−−→ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡
rfx−−−→ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

universal control 𝑖𝑛𝑑𝑒𝑥
addr−−−−→𝑎𝑐𝑐𝑒𝑠𝑠

ctrl−−−−→ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡
rfx−−−→ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

Table 1: Transmitter taxonomy for xstate considered in this

paper (§3.2.1). The partial order on transmitter severity is

AT < CT < {DT,UCT} < UDT.

3.3 A Speculative Semantics for LCMs

It is crucial that LCMs account for all instructions capable of ac-
cessing xstate—and thus all instructions capable of impacting the
comx relation—including those that transiently execute. Thus, LCMs
extend MCMs with a speculative semantics [15, 26, 55], as illustrated
in Fig. 2b.

The speculative semantics of LCMs leverages a new transient

fetch order (tfo) relation to construct a per-thread total order on
all instructions that are fetched from instruction memory. po is a
subset of tfo, and instructions ordered by tfo but not po are con-

sidered transient; po relates committed instructions only. Transient
instructions can interact with other transient or committed instruc-
tions via xstate and ultimately construct new opportunities for
program-level information leakage by impacting a program’s mi-
croarchitectural semantics. We consider two types of hardware
speculation in this paper—control-flow speculation and address

speculation.
To model control-flow speculation, at each control-flow instruc-

tion where the architectural semantics considers both possible
committed branch paths (i.e., both possible event structures), the
speculative semantics additionally considers a window of specula-
tive instructions along each branch path according to a user-defined
speculation depth. In this way, formal analyses that leverage LCMs
consider the worst-case attacker who can poison the prediction of
any branch [26, 27]. Fig. 2b demonstrates this idea with a specula-
tion depth of two. The left (i.e., taken) branch speculatively jumps
to the end of the program (⊥𝑆) before rolling back speculation and
executing the body of the branch. The right (i.e., not-taken) branch
speculatively executes the body of the branch (5𝑆 and 6𝑆) before
rolling back speculation and jumping to the end of the program.

To model address speculation, we consider two types—store
forwarding and alias prediction. Both enable an architectural
Read instruction to induce a window of speculation. Furthermore,
they relax the placement of rfx edges, and thus the derived frx
edges, in legal candidate executions. Figs. 4a and 4b in §4 give
examples of data leakage which results from store forwarding and
alias prediction, respectively.

Store forwarding permits a read to forward data from the most-
recent older store to the same address among stores whose ad-
dresses have been resolved. However, all older stores need not
resolve their addresses before forwarding can occur. Thus, while a
load will always read from the correct address, it may be forwarded
stale data speculatively. Alias prediction permits a load to forward

Axiomatic Hardware-Software Contracts for Security ISCA ’22, June 18–22, 2022, New York, NY, USA

⊤

2: R y (RW 𝑠0)→ r1

5: R A+r1 (RW 𝑠1)→ r2

⊥𝑆

6: R B+r1 (RW 𝑠2)→ r3

⊥

6𝑆 : R𝑆 B+r1 (RW 𝑠2)→ r3

⊥

po, tfo

po, tfo

rf, rfx

tfo tfo

tfo

po,tfo

po, tfo

tfo

po, tfo

addr

addr

addr

rf, rfx

rfx

rf, rfx

rfx

rf

rf

rfx

rfx

Figure 3: Spectre v1 variant [27, 79]. LCMs detect a transient

transmitter and non-transient access.

from a store with a potentiallymismatching address—i.e., a load may
forward data from a store even if its own address has not resolved.

3.4 The subrosa Toolkit

We mechanize the LCM vocabulary in a toolkit built in Alloy [33],
called subrosa,3 which supports the design and formal analysis of
custom LCM specifications using our axiomatic vocabulary.We plan
to leverage subrosa as a starting point for automatically comparing
LCMs across microarchitectures and evaluating the effectiveness
of microarchitectural attack mitigations in future work.

4 DETECTING LEAKAGE IN REAL-WORLD

EXAMPLES

In this section, we use §3’s axiomatic LCM vocabulary to formalize
microarchitectural leakage. Our leakage definition is extensible, but
focuses on formalizing hardware leakage on behalf of processor
memory systems optimizations.

4.1 Formalizing Microarchitectural Leakage

To construct our leakage definition, we define three non-interference
predicates (based on rf, co, and fr, respectively) which can be used
to detect violations of microarchitectural non-interference in pro-
grams. We say that given state machine M, and subjects S and S’, S is
microarchitecturally non-interfering with S’ if the actions of S do not
affect the microarchitectural observations (via comx) of S’ [83]. Our
non-interference predicates are based on mappings from the build-
ing blocks of an LCMs’s architectural semantics—rf, co, and fr—to
the building blocks of its microarchitectural semantics—rfx, cox,
and frx. Our mappings assume that architectural memory events
access a single xstate location which collectively represents a
core-local cache line and LSQ entry. While we could model these
state elements as a pair of xstate locations, we choose to merge
them since they both facilitate microarchitectural information flow
between architectural memory instructions. We also limit our map-
pings below to a single-core execution setting where caches are
direct-mapped (see §5.2) and feature a write-allocate cache policy.

If two writes are ordered by co, 𝑤0
co−−→ 𝑤1, they should be

similarly ordered by cox and frx. This is because two same-address
writes behave as microarchitectural read-modify-writes (§3.2.1)
with respect to the same xstate. Their writes to the LSQ (which

3https://github.com/ctrippel/subrosa

initially populate queue entries4) and cache will be ordered, and
𝑤0’s cache read will precede 𝑤1’s cache write. If 𝑤0 immediately
precedes𝑤1 in co, the two writes should also be ordered by rfx in
the absence of interference (co-non-interference)—i.e.,𝑤1’s cache
line read should be microarchitecturally-sourced by𝑤0’s cache line
write, a cache hit for𝑤1. As explained in §3.2.3, if a write and read

are ordered by rf,𝑤
rf−−→ 𝑟 , they should be similarly ordered by rfx

in the absence of interference (rf-non-interference). If a read and
a write are ordered by fr, 𝑟

fr−−→ 𝑤 , then they should be similarly
ordered by frx—𝑟 will microarchitecturally read its cache line or
LSQ entry before𝑤 microarchitecturally writes. If 𝑟 writes xstate
(a cache miss), then 𝑟 will precede𝑤 in cox. Furthermore, consider

the write𝑤 ′ that sourced 𝑟 ,𝑤 ′
rf−−→ 𝑟 . If𝑤 immediately follows𝑤 ′

in co and 𝑟 writes xstate, 𝑟 should microarchitecturally source𝑤
via rfx in the absence of interference (fr-non-interference), a
cache hit for𝑤 .

Amicroarchitectural leak is detectedwhen a consistent candidate
execution violates a non-interference predicate.

4.2 LCMs by Example

We show that the LCM vocabulary faithfully detects leakage in
a sampling of (transient and non-transient) microarchitectural at-
tacks form the literature. In all examples, dashed edges in figures
denote com relations with comx inconsistencies—they “point to” (via
a directed edge) receivers, which are used to identify transmitters
according to the rules in §4.1. All numerical instruction identifiers
in our explanations refer to candidate execution graphs. Note that
some edges are omitted in figures for clarity when they are not
central to the exemplified leakage.

Spectre v1: Fig. 2b summarizes the candidate executions of
vanilla Spectre v1 [37] (Fig. 1a). The program features a specula-
tion primitive [48]—a conditional branch which induces a window
of speculation in each event structure instantiated by the branch
(i.e, each fork of the graph). Dashed rf edges point towards both
receivers—both ⊥ nodes. Instruction 2 is an address transmitter; 5
and 5𝑆 are data transmitters with access instruction 2; 6 and 6𝑆 are
candidate universal data transmitters with access instructions 5 and
5𝑆 , respectively. Notably, some transmitters are transient (denoted
with the subscript 𝑆) while others are non-transient. As mentioned
in §3.2.4, the bounds check on index y restricts the leakage scope
of 6. However, 6𝑆 (a transient transmitter) is a true universal data
transmitter which can be steered by an attacker to access arbitrary
memory.

Fig. 3 shows another variant of Spectre v1 [27, 79] (code below)
featuring the same speculation primitive—a conditional branch—
and the same candidate universal data transmitters—6 and 6𝑆 .

1 x = A[y];
2 if(y < size_A)
3 temp &= B[x];

However, this time the access instruction corresponding to both
instructions 6 and 6𝑆 , namely instruction 5, is non-transient. Alter-
nately, in Fig 2b, the access instruction corresponding to instruction

4Note that although writes may create entries in the LSQ in co-order, the reality that
writes produce data/addresses in execution order is modeled by relaxing rfx (§3.3).

https://github.com/ctrippel/subrosa

ISCA ’22, June 18–22, 2022, New York, NY, USA Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel

⊤

1: R size (RW 𝑠0)→ r1

2: R y (RW 𝑠1)→ r2

3: W y (RW 𝑠1)← r1 & (r0-1)

4𝑆 : R𝑆 y (R 𝑠1)→ r3

5𝑆 : R𝑆 A+r3 (RW 𝑠2)→ r4

6𝑆 : R𝑆 B+r4 (RW 𝑠3)→ r5

⊥

po,tfo

po,tfo

po,tfo

tfo

tfo

tfo

tfo

rf

frx

rf, rfx

rfx

rfx

rf, rfx

rfx

addr

addr

(a) Spectre v4

⊤

1: R y (RW 𝑠0)→ r1

2: W C+0 (RW 𝑠1)← 64

3𝑆 : R𝑆 C+r1 (R 𝑠1)→ r2

4𝑆 : R𝑆 A+r1*r2 (RW 𝑠2)→ r3

5𝑆 : R𝑆 B+r4 (RW 𝑠3)→ r4

⊥

rf, rfxpo,tfo
rf, rfx

po,tfo

tfo

tfo

tfo

tfo

rfx

rfx

rfx

rfx

rf

addr

addr

rfx

(b) Spectre-PSF

Figure 4: Spectre v4 [29, 31] and Spectre-PSF [15, 25]. LCMs

detect a transient transmitter and transient access.

6 is non-transient (instruction 5) while the access instruction corre-
sponding to instruction 6𝑆 is transient (instruction 5𝑆). As in vanilla
Spectre v1, the leakage scope of 6 is restricted by the bounds check
on y. While the leakage scope of 6𝑆 is significantly increased by
comparison, it is still somewhat limited due to the fact that the
access instruction (instruction 5) commits. Notably, STT [79] de-
clared preventing the leakage of non-transiently accessed data as
out of scope, although other related work captures leakage of this
sort [15, 26].

Spectre v4: Fig. 4a is representative of Spectre v4, described
by the code below.

1 y = y & (size_A - 1);
2 x = A[y];
3 temp &= B[x];

The speculation primitive is store forwarding (§3.3)—instruction 4𝑆
reads from a stale same-address write. The frx relation between
instructions 4𝑆 and 3 illustrates this behavior; frx edges can also be
understood as reads-before. In other words, 4𝑆 reads from xstate
element s1 before s1 is overwritten by 3. The figure also illustrates
that instruction 4𝑆 is microarchitecturally sourced from the first
read of y, namely instruction 2, via an rfx relation. Ultimately, this
behavior leads a true universal data transmitter (6𝑆) with a transient
access instruction (5𝑆). Also, 5𝑆 is a transient data transmitter, with
transient access instruction 4𝑆 .

We note that Spectre v4 exhibits particularly interesting mi-
croarchitectural behavior that is relevant for developing LCMs
for Intel x86 microarchitectures (given that Spectre v4 has been
observed on Intel processors [29, 31]). In particular, formally speci-
fying an LCM for a particular ISA requires defining a confidentiality
predicate (§3.2.2). Consider the consistency predicate for TSO from
§2.1.3 which is the conjunction of the sc_per_loc, rmw_atomicity,
and causality auxiliary predicates. Naively lifting sc_per_loc to con-
strain comx results in sc_per_loc_x = acyclic({rfx + cox + frx
+ tfo_loc}), where tfo_loc is defined as po_loc by substitut-
ing tfo for po. This straightforward predicate derivation would
rule out the execution in Fig. 4a, which is in fact possible on x86

microarchitectures. An LCM, for Intel x86 processors (which per-
mits Spectre v4) must clearly permit frx + tfo_loc cycles in its
confidentiality predicate.

Spectre-PSF: Fig. 4b features a variant of Spectre v4 [15, 25],
coined Spectre-PSF [19] (code listing below).

1 uint8_t A [16];
2 uint8_t C[2] = {0, 0};
3 if (y < size_C)
4 C [0] = 64;
5 temp &= B[A[C[y] * y]];

The speculation primitive is alias prediction. In particular, instruc-
tion 3𝑆 reads from an incorrect memory location—illustrated by
the rfx edge between instructions 2 and 3𝑆 . This behavior leads
to a true universal data transmitter (5𝑆) with a transient access
instruction (4𝑆).

Spectre-PSF also features interesting execution behavior that
can influence the placement of rfx edges in LCM candidate execu-
tions. Namely, read instructions can mis-predict the xstate they
access such that they can microarchitecturally read data written by
prior stores to different addresses.

Non-Spectre Attacks: Recent work shows that various microar-
chitectural optimizations can be leveraged to leak program data in
a manner as severe as Spectre attacks [69]. Fig. 5 features programs
that exercise two such optimizations.

Fig. 5a features leakage on hardware that implements silent

stores [41], which avoid explicitly writing to memory when a store’s
data operand matches the current contents at its effective address.
In a processor that implements silent stores, a store may behave mi-
croarchitecturally as a read (store is “silent”) or a read-modify-write
(store is not “silent”)—more execution options than were possible
on the microarchitecture of §4.1. In a processor that implements
silent stores, twowrites ordered by co,𝑤0

co−−→ 𝑤1, must be similarly
ordered by cox in the absence of microarchitectural interference. If
𝑤0 and𝑤1 are not related by cox, there was either an interfering
write in between𝑤0’s and𝑤1’s cache accesses that wrote the same
data as 𝑤1, or 𝑤0 and 𝑤1 themselves wrote the same data. Here,
instruction 2 is an xstate transmitter (due to a co/cox inconsis-
tency). Unlike most xstate transmitters in this paper, instruction
2 transmits the data field of its accessed xstate 𝑠0 rather than the
address field. This is because the silent store optimization triggers
based on the result of a data comparison while a cache hit/miss is
triggered based on the result of an address comparison.

Fig. 5b features leakage on hardware implementing an indi-

rect memory prefetcher (IMP) [80] (patented by Intel [81]). Such
a prefetcher tries to detect programs of the form for(i = 0...N)

X[Y[Z[i]]] and prefetch the cache line corresponding to &X[Y[Z[i +

Δ]]]. The security implications of this optimization are discussed
in recent work [69]. Notably, the authors point out that an IMP can
construct a universal read gadget [47], and Fig. 5b indeed indicates
that prefetch instruction 3𝑃 is a universal data transmitter.

Note that Fig. 5b contains non-architectural prefetch instructions—
similar in vein to transient instructions, they are not involved in
architectural relations like com/po. To detect IMP-related leakage
in programs, an enhanced version of LCMs could extend user-
level programs with prefetch operations based on the presence
of prefetch primitives—instruction sequences which can initiate
hardware prefetches.

Axiomatic Hardware-Software Contracts for Security ISCA ’22, June 18–22, 2022, New York, NY, USA

⊤

1: W x (s1)← 1

2: W x (s1)← 1

⊥

po,tfo

po,tfo

po,tfo

co
co

co

cox, rfx, frx

rfx

rf

rfx

(a) Silent Stores

⊤

1𝑃 : R𝑃 Z (s1)→ r1

2𝑃 : R𝑃 Y (s2)← r2

3𝑃 : R𝑃 X (s3)← r3

⊥

tfo

tfo

tfo

tfo rfx

rfx

rf

addr

addr

rfx

(b) Indirect Mem. Prefetch

Figure 5: Non-Spectre [69]. In (a), LCMs detect a non-

transient transmitter of a non-transiently accessed xstate.
In (b), IMPs can construct a universal data transmitter of

prefetched data.

5 CLOU: DETECTING LEAKAGEWITH LCMS

We develop a static analysis tool, Clou,5 based on LCMs which
automatically identifies and repairs Spectre vulnerabilities in pro-
grams. Our approach is inspired by a tool which restores sequential
consistency via automated fence insertion for programs running
on hardware implementing weak MCMs [1]. Clou is implemented
as a custom IR pass in LLVM [40]. It takes a C source file as input,
compiles it to LLVM IR using Clang v12.0.0 -O0, and analyzes each
defined public function one-by-one. Eventually, Clou outputs a

list of transmitters and a set of consistent candidate executions

(in graph form) which give witness to detected software vulner-
abilities. Clou can also automatically insert mitigations (e.g.,
fences, like Intel’s lfence) to repair vulnerable programs. Fig. 6
summarizes Clou’s architecture, which we detail in this section.
Clou is most optimized for detecting universal data and univer-
sal control transmitters, but it can identify the other transmitter
variants as well (§3.2.4).

5.1 Constructing an Abstract CFG (A-CFG)

Clou first transforms a function’s LLVM IR control-flow graph
(CFG) into a loop- and call-free Abstract CFG (A-CFG)—our name
for a CFG that has undergone loop/function summarization and
function inlining.

Loop Summarization: To eliminate a loop from a function’s
CFG, Clou summarizes all of the ways in which it could be involved
in hardware-induced leakage using a finite (and minimal) number
of instructions as follows. First, recall that LCMs detect microar-
chitectural leakage by comparing architecture-level (via com) and
microarchitecture-level (via comx) instruction interactions. This
suggests a loop summarization approach which accounts for (1)
how instructions in any loop instance can interact with instructions
outside of the loop, and (2) how instructions in two arbitrary loop
instances can interact with each other. Second, consider a memory
alias analysis procedure (§5.2) that can summarize for all mem-
ory accesses in the loop the set of virtual memory locations they
may access across all iterations. We conclude that with memory
alias analysis, all relevant com/comx interactions involving loop
instructions can be modeled with just two loop unrollings.

5https://github.com/nmosier/clou

Function Inlining: With loops summarized, Clou inlines all
function calls. Recursive calls are inlined twice via similar logic to
that which enables loop summarization. For a call whose target
function is not defined, Clou interprets it as a load or store to one
of its pointer operands—e.g., memcmp(void *dst, const void
*src, size_t n) can behave as a load or store to *dst or *src.
An SMT solver considers all possible options when searching for a
way to construct a candidate execution featuring leakage.

5.2 Constructing a Symbolic Abstract Event

Graph (S-AEG)

Clou extends an A-CFG to produce a Symbolic Abstract Event Graph

(S-AEG)—an over-approximation of all of the corresponding func-
tion’s possible candidate executions.6 An S-AEG features exactly
the same set of nodes as the A-CFG from which it is derived. How-
ever, four categories of symbolic edges are added: control-flow (po
and tfo), dep, com, and comx. Moreover, symbolic variables are
associated with each S-AEG node and edge. Fig. 7 shows an exam-
ple with node variables omitted for clarity. Legal assignments to
these variables are constrained by a set of first-order logic formulas
that describe what constitutes a consistent candidate execution,
namely a consistency predicate (i.e., an MCM) and a confidentiality
predicate (i.e., an LCM). Deriving a concrete candidate execution
from an S-AEG may then be achieved by searching for a variable
assignment which satisfies said formulas.

Specifying an MCM and LCM: Future versions of Clou will
be parameterizable, requiring an MCM and LCM to be provided as
inputs alongside a C program. In its current form, Clou hard-codes
these inputs as follows. Other than the assumptions that the target
hardware features write-allocate caches and does not implement
silent stores [41] or alias prediction, we conservatively leave comx
unconstrained; com is constrained by the TSO consistency predicate
(§2.1.3).

Design decisions: We currently make a few key design deci-
sions regarding S-AEG construction.

First, we assume LCMs where only memory instructions induce
xstate accesses, under the assumptions outlined in §3.2.1.

Second, we assume a one-to-one correspondence between ar-
chitectural addresses and modeled xstate locations, effectively
modeling an infinitely-sized direct mapped cache. This assumption
ensures that there will be no false negatives when searching an
application for transmitters (although false positives are possible),
regardless of the underlying cache implementation.

Third, given our empirical observations, Clou specially con-
siders a specific type of addr dependency, called addr_gep (get-
element-pointer address dependency). addr_gep maps a Read to a
MemoryEvent, where the Read’s return value (i.e., an index) is added
to a base address to compute the MemoryEvent’s effective address.7
Distinguishing addr_gep from other addr dependencies—which
indicate the source instruction supplies a base address—enables
Clou to filter out benign Spectre v1 leaks (see 5.3).

6Compared to AEGs in prior work [1], S-AEGs are encoded more compactly as a set
of first-order logic formulas, rather than as explicit graph data structures.
7LLVM IR features a pointer-only arithmetic instruction, called getelementptr, which
signifies such behavior.

https://github.com/nmosier/clou

ISCA ’22, June 18–22, 2022, New York, NY, USA Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel

C source LLVM-IR
abstract CFG

(§5.1)

symbolic
AEG
(§5.2)

configuration
parameters

MCM + LCM
(hard-coded)

leakage
detection
engine
(§5.3)

SMT solver

witness
executions

transmitters

fence
insertion

repaired
LLVM-IR executable

clang clang

Figure 6: Clou accepts as input C source code and configuration parameters—ROB, LSQ, and window sizes (§5) for the S-AEG,

and the desired transmitter class (§3.2.4) for the leakage detection engine. Clou currently considers hard-coded MCM and LCM

inputs (§5.2). Clou produces a set of witness executions featuring leakage, a set of detected transmitters, and repaired LLVM-IR.

⊤

2: R y (RW 𝑠0)→ r2

3: BEQZ r3, 8

5: R A+r2 (RW 𝑠1)→ r4

6: R B+r4 (RW 𝑠2)→ r5

⊥

po, tfo

po[𝑥1]
tfo[𝑥2]

po[𝑥1]
tfo[𝑥2]

po

po[𝑥1]
tfo[𝑥2] po[¬𝑥1]

tfo[𝑥3]

addr[𝑥2]

addr[𝑥2]

rf, rfx

rf[𝑥1]
rfx[𝑥2]

rf[𝑥1]
rfx[𝑥2]

rfx[𝑥2]

rfx[𝑥2] rfx

rf

Figure 7: Clou produced this (simplified) S-AEG (§5.2) for

the Spectre v1 program in Fig. 1a. Edges are labeled with

SMT formulas that constrain their presence in a particu-

lar execution; edges without labels are present in all exe-

cutions. Formulas 𝑥1 and 𝑥2 encode whether the if-body is

non-speculatively or speculatively executed, respectively—

the if-body is mis-speculatively executed if ¬𝑥1 ∧ 𝑥2. Clou
generates a set of constraints restricting S-AEG solutions,

such as 𝑥1 =⇒ 𝑥2 and ¬𝑥1 =⇒ 𝑥3 (i.e., po implies tfo).

Alias Analysis: Clou uses an alias analysis procedure to re-
duce the search space when looking for transmitters. First, Clou
selectively applies LLVM’s built-in alias analysis [40] to the S-AEG,
only including constraints (that assert particular address pairs are
unequal) when they are valid under Clou’s CFG-to-A-CFG trans-
formation. Next, Clou assumes that (1) all S-AEG stack allocations
have distinct addresses and (2) alias analysis results do not hold
during transient execution. Under these assumptions, Clou does
not miss any true positive transmitters.

5.3 Leakage Detection Engines

Once an S-AEG has been constructed, Clou is ready to search the
graph for potential transmitters. Clou initiates this procedure by
adding all constraints encoded in the S-AEG to a Z3 SMT solver
instance [20]. The next intuitive step is to directly encode as a con-
straint the expected behaviors of a leakage-free program (according
to the non-interference predicates of §4.1), so that Z3 can search

for violations of this constraint. Unsurprisingly, this approach pro-
duces a large number of transmitters, all of which are not equally
interesting or dangerous. Thus, we develop specialized backends
for Clou, called leakage detection engines, which are parameterized
by transmitter type (Table 1) and which perform a directed search
for a particular type of microarchitectural leakage.

We build two leakage detection engines for Clou, Clou-pht
and Clou-stl, which are designed to search for Spectre v1 and
Spectre v4 style vulnerabilities, respectively. §4 shows that Spectre
attacks violate the rf-non-interference predicate of our leakage
definition in §4.1. Thus, Clou-pht and Clou-stl both directly look
for candidate executions which violate this condition—the result
is a set of candidate transmitters. Clou iterates over the candidate
transmitters to find those which are also data/control transmitters
or universal transmitters (§3.2.4) according to the user’s preference.
In reality, an addr edge in the transmitter definitions of §3.2.4 can
be realized as zero or more data.rf edges followed by an addr
edge—i.e., (data.rf)∗.addr. This means the value returned by a
Read can be stored (data) and re-loaded (rf) any number of times
before use in an addr-dependent access.

To filter benign leaks (§7), Clou-pht requires the first addr de-
pendency of a universal transmitter pattern to be of type addr_gep.
In doing so, Clou-pht assumes that all base pointers (architec-
turally) stored in memory are not attacker-controlled. addr_gep
cannot be used to filter Spectre v4 leaks, however, since an attacker
may also control a pointer’s base address if mis-speculatively load-
ing it from memory returns a stale attacker-controlled value.

Related to the above optimizations, both Clou-pht and Clou-
stl conduct taint-tracking of attacker-controlled data. The goal
is to filter out candidate universal transmitters involving access
instructions which cannot be steered towards arbitrary memory
locations by an attacker. All top-level function inputs and non-
pointer data in memory are initially assumed attacker-controlled.

In summary, Clou-pht and Clou-stl differ only with regard to
the speculation primitives they consider—control-flow speculation

versus store forwarding, respectively. This design choice is intended
to help the user understand which speculation primitives can be
exploited to construct transmitters, an approach common to all
state-of-the-art static analysis tools that detect transient execution
vulnerabilities in programs [15, 17].

Axiomatic Hardware-Software Contracts for Security ISCA ’22, June 18–22, 2022, New York, NY, USA

6 RESULTS

We run Clou on 36 Spectre benchmarks and 4 crypto-libraries. The
only other tools that support both PHT- and STL-style leakage de-
tection are Pitchfork [15] and Binsec/Haunted (BH) [17]. Pitchfork
scales poorly (see Table IV in [17]) for the workloads of interest,
so we compare Clou to BH. However, unlike Clou, BH does not
distinguish between the different classes of transmitters we define
(Table 1). Unless otherwise stated, all Clou experiments assume
realistic ROB/LSQ capacities of 250/50. For BH, we use ROB/LSQ
capacities of 200/20 from the original paper [17]. All experiments
are run on an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz server
featuring 4 processors, 16 cores per processor, and 512 GB of RAM.

6.1 Analyzing Spectre Benchmarks with Clou

We run Clou on 15 Spectre v1 (PHT) [36], 5 Spectre v1.1 (FWD),
and 14 Spectre v4 (STL) [18] benchmarks from prior work plus 2
Spectre v1.1-style benchmarks of our own (NEW). We run Clou
on each program and record the type(s) of transmitters it detects—
data transmitters (DTs), universal data transmitters (UDTs), control
(CTs), and universal control transmitters (UCTs). We also manu-
ally inspect each program and record the type of transmitter it is
intended to feature, using annotations from the benchmark authors.

Clou identifies all intended transmitters in the PHT programs.
Clou also identifies a new attack variant in all PHT programs—a DT
involving a transient instruction prefetching a cache line for a non-
transient tfo-prior instruction. Speculative interference attacks [11]
exhibit a similar phenomenon.

For the STL programs, Clou identifies more transmitters than
intended by the authors that are in some casesmore severe. For exam-
ple, in STL01 (below), Clou identifies the intended transmitter—the
access to pub_array in line 5. The benchmark authors’ comments
discuss its implications as a DT.

1 void case_1(uint32_t idx) {
2 uint32_t ridx=idx&(ary_size-1);
3 uint8_t **pp=&sec_ary; uint8_t ***ppp=&pp;
4 (**ppp)[ridx]=0;
5 tmp &= pub_ary[sec_ary[ridx]];} // transmitter

Specifically, line 5’s access to sec_ary[ridx] may transiently read
stale data before it is overwritten in line 4. However, Clou also finds
a candidate execution where the same transmitter facilitates univer-
sal data leakage. Namely, if line 5’s stack read of idx computes its
address before line 2’s stack write of idx does, it can access stale
data left on the stack. The authors of the STL benchmarks consider
this sort of speculative behavior valid—in fact it is central to STL02.

Clou also finds that STL13 is incorrectly labeled as “secure” in
the benchmark and flagged as secure by the benchmark authors’
static analysis tool, BH [17]. It features data leakage when a return
instruction bypasses a store to the stack.

Clou detects false positive leakage for 7 STL programs for two
reasons. First, Clou does not perform semantic analysis and thus
cannot reason about the implications of index masking, a mitiga-
tion technique used by many STL programs. Also, Clou does not
consider the impact of loops on speculation depth when summariz-
ing them. Therefore, false positive leakage involving instructions
which cannot exist in the processor simultaneously (e.g., due to
ROB size) may be flagged.

Some STL benchmarks are intended to be safe due to their use
of C’s register keyword to prevent storing an array index (to the
stack). We find that Clang -O0 disregards the register keyword
and stores the index to memory anyway, enabling it to be bypassed.
We manually repair the LLVM IR output to create the effect of
register.

Clou finds all intended leakage in the FWD and NEW bench-
marks. Notably, Pitchfork fails to detect leakage in both NEW tests,
although BH succeeds. We crafted NEW01 (below) to showcase
novel form of Spectre v1.1 leakage which involves an attacker-
controlled speculative write to a pointer/index in memory with a
secret returned by an attacker-controlled access instruction. The
overwritten pointer/index is then used to access memory (in line
4), transmitting the secret returned by the access instruction.

1 void new_1(size_t idx1, size_t idx2) {
2 if (idx1 < sec_ary1_size && idx2 < sec_ary2_size)
3 sec_ary2[idx2] += sec_ary1[idx1] * 512;
4 *ptr = 0; }

A key feature of Clou is its ability to insert a minimal number
of fences to repair Spectre v1 and Spectre v4 leaks. Clou can
repair Spectre v1.1 leaks as well, but not minimally. We direct
Clou to perform fence insertion in all benchmarks and confirm
that all initially-detected leakage is mitigated—with 1 (resp. 2) fence
per vulnerable program for PHT and STL (resp. FWD and NEW)
benchmarks.

6.2 Analyzing Crypto-Libraries with Clou

We use Clou to analyze the crypto-libraries tea [73], donna [12],
libsodium [21], and OpenSSL [56]. Table 2 summarizes our find-
ings. Each row represents a distinct application, for which Clou
analyzes each public function individually. Fig. 8 shows per public
function runtimes for libsodium specifically. Table 2 denotes for
each application the number of public functions (PFun), the num-
ber of unique functions after inlining (Fun), and the static lines
of code (LoC). BH [17] specifically analyzed the secretbox func-
tion in libsodium and the ssl13-digest and mee-cbc functions
in OpenSSL. Thus, Table 2 presents isolated performance results
for these functions using the same source code versions that BH
originally analyzed [17]. Other results use new libsodium v1.0.18
and OpenSSL v3.1.0-dev.

6.2.1 Completeness Guarantees. In analyzing large codebases,Clou
sacrifices completeness for performance by: (1) leveraging a “slid-
ing window” approach, in which for each candidate transmitter
Clou only considers the set of instructions in the S-AEG that can
reach the transmitter in𝑊𝑠𝑖𝑧𝑒 instructions, (2) allowing at most
one speculative write (excluding the transmitter instruction itself)
in any detected transmitter pattern (§5.3), and (3) disallowing non-
speculative writes in any detected transmitter pattern. Furthermore,
we direct Clou to ignore universal transmitter patterns involving
non-transient access instructions when searching for UDTs/UCTs,
instead classifying them as DTs/CTs. While greater than a pure
DT/CT, the leakage scope of a universal transmitter involving a
non-transient access instruction is still somewhat limited since the
access instruction must commit.

Restriction (1) may result in Clou missing or mis-classifying
some universal transmitters. As long as addr dependencies span

ISCA ’22, June 18–22, 2022, New York, NY, USA Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel

App. Tool Time (s) Bugs

(PFun/Fun/LoC) (DT/CT/UDT/UCT) (DT/CT/UDT/UCT)

litmus-pht Clou-pht 3.2/3.4/2.8/2.6 29/86/14/3
(15/15/200) bh-pht 20.9 22
litmus-stl Clou-stl 7.3/2.4/4.3/2.4 33/4/17(14)/0
(14/16/312) bh-stl 6.1 13

Clou-pht 2.4/1.5/1.8/1.4 9/17/2/0
litmus-fwd Clou-stl 4.2/2.0/2.3/1.4 11/24/2/0
(5/9/129) bh-pht 0.4 3

bh-stl 588.9 12
Clou-pht 0.5/0.4/0.5/0.4 6/4/2/0

litmus-new Clou-stl 0.9/0.5/0.5/0.4 7/4/2/0
(2/2/100) bh-pht 0.5 2

bh-stl 32.0 3
Clou-pht 0.25/0.17 0/0

tea Clou-stl 0.79/0.51 0/0
(2/4/102) bh-pht 0.37 0

bh-stl 18.4 4
Clou-pht 3252.8/3670 0/0

donna Clou-stl1 27683/21853 514(0)/0
(1/21/874) bh-pht 3600 0

bh-stl 3600 15
Clou-pht 495.8/495.2 0/0

secretbox Clou-stl 512.0/507.2 0/0
(1/12/142) bh-pht 2611.4 17

bh-stl 21600 26
Clou-pht 80.7/90.8 0/0

ssl13-digest Clou-stl 1237.8/7989.8 98(0)/53(0)
(1/23/1563) bh-pht 4375 13

bh-stl 21600 1
Clou-pht 443735/595650 7(0)/85(0)

mee-cbc Clou-stl 47606/646215 17(0)/6(0)
(1/6/1157) bh-pht 21600 17

bh-stl 21600 2
libsodium Clou-pht 995/1078 7(0)/20(0)

(646/733/7078) Clou-stl2 49453.6/13046 1266(1)/275(89)
OpenSSL Clou-pht 171997/– 755(60)/–

(3307/5408/161552) Clou-stl 779209/– 11531(3383)/–
Table 2: For each public function, Clou is run once per trans-

mitter type of interest. For crypto-libraries, Clou looks for

UDTs and UCTs only. The serial runtime of Clou and BH

are presented in the “Time” column. Both Clou and BH are

run with BH’s original timeouts (runtimes in bold)—6 hours

wall runtime for libsodium/OpenSSL functions and 1 hour

for all others [17]. For the OpenSSL library (not analyzed by

BH), Clou imposes a timeout of 1 hour per C source file.

Clou is highly parallel, so total serial runtime greatly ex-

ceeds wall runtime.
1𝑊𝑠𝑖𝑧𝑒 = 350; 2𝑊𝑠𝑖𝑧𝑒 = 350 (UDT) and

𝑅𝑂𝐵 = 200,𝑊𝑠𝑖𝑧𝑒 = 250 (UCT).

less than𝑊𝑠𝑖𝑧𝑒 instructions, Clou is only at risk of mis-classifing
some universal transmitters as vanilla DTs/CTs; it will not miss
them entirely. Clou is also guaranteed to correctly classify all
universal transmitters which leak transiently accessed secrets, if

addr dependencies with committed sources do not span more than
𝑊𝑠𝑖𝑧𝑒 − 𝑅𝑂𝐵𝑠𝑖𝑧𝑒 instructions. One could devise a static analysis
pass to confirm that programs adhere to these requirements.

Restriction (2) enables Clou to conduct a directed search for
universal transmitters that are more likely to be a true positives.
Multiple speculative writes imply multiple rf edges that compound
the imprecision of alias analysis.

Finally, the implication of Restriction (3) is subsumed by our de-
cision to have Clou ignore universal transmitter patterns involving
non-transient access instructions when searching for UDTs/UCTs.

6.2.2 Crypto-Library Analysis Post-Processing. We inspect all uni-
versal transmitters flagged in Table 2 to filter out false positive (§6.1)
and low priority transmitters. In evaluating larger code bases, we ob-
serve one class of data leakage (resembling our NEW benchmarks)
that Clou misclassifies as universal. This special case involves an
addr.data.rf.addr pattern where the transmitter leaks a pointer
value which it reads (via rf) from a speculative write. In short, for
such a transmitter to facilitate a universal data leakage, the source
and destination of data must access different addresses. Further-
more, we consider transmitters to be low priority if they require
more than one read to speculatively accesses stale data. While we
manually filtered out these false-positive and low-priority cases, it
is possible to build a post-processing mechanism that performs this
step automatically. The results of post-processing filtering are not
reflected in Table 2; they were used in our qualitative transmitter
analysis only (§6.2.3).

In general, most false positives flagged by Clou are due to impre-
cise alias analysis. Thus, we include a second transmitter count in
parentheses in Table 2 that gives the number of universal transmit-
ters under worst-case alias analysis, where all data.rf edges are
assumed to be erroneous. In other words, this statistic only counts
UDTs/UCTs of the form addr_gep.(addr/ctrl) (for Clou-pht)
and addr.(addr/ctrl) (for Clou-stl). There are comparatively
few of these restricted patterns, but they are much more likely
to represent true-positive leakage. Note, however, that many of
the true-positive crypto-library vulnerabilities Clou uncovered do

involve speculative writes of intermediate values, e.g., Listing 1.

6.2.3 Crypto-Library Analysis Results. In tea, BH flags four in-
stances of leakage; Clou flags none for two reasons. First, all four
leaks involve DTs (not UDTs). Second, they involve stores of re-
turn addresses to the stack which are not present at the LLVM-IR
level. In secretbox, BH flags 43 instances of leakage that Clou
misses since it analyzes a x86 binary compiled with stack protector
checks. Clou analyzes the LLVM-IR before any stack protectors are
added. All vulnerabilities reported by BH are within the function
__libc_message, which is called on stack protector check failure.
In donna, ssl13-digest, and mee-cbc, Clou finds considerably
more transmitters than BH. BH does report 13 and 17 distinct PHT
leaks in ssl3-digest and mee-cbc, respectively. However, these
are all (non-universal) DTs/CTs, and BH times out before finding
any of the universal leakage discovered by Clou.

Clou is the first tool to search all public libsodium functions
for PHT and STL leakage. Large codebases, like OpenSSL, are gen-
erally considered outside the scope of formal program analysis
tools. However, we successfully run Clou-pht (resp. Clou-stl)
in UDT detection mode on 90%/58% (resp. 81%/60%) of OpenSSL’s

Axiomatic Hardware-Software Contracts for Security ISCA ’22, June 18–22, 2022, New York, NY, USA

functions8/LoC. Clou evaluates more of OpenSSL than any prior
work.

Clou uncovers many novel Spectre gadgets in libsodium (3

UDTs and 4 UCTs) and OpenSSL (6 UDTs and 2 UCTs).
9 A less se-

vere type of UDT, which combines Spectre v1.1 and Spectre v4, is
also found in 116 libsodium functions. Note that many transmitters
uncovered by Clou can be grouped into equivalence classes, where
each class of transmitters can be mitigated by preventing a single
culprit speculative access. We report one gadget per equivalence
class. A novel PHT gadget in OpenSSL’s SSL_get_shared_sigalgs
function [57, 65], shown below, appears to be most severe vulnerability

uncovered by Clou.

Listing 1: OpenSSL SSL_get_shared_sigalgs Vulnerability

1 int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign,
2 int *phash, int *psignhash,
3 uint8_t *rsig, uint8_t *rhash) {
4 const SIGALG_LOOKUP *shsigalgs;
5 if (s→ shared_sigalgs == NULL
6 || idx < 0 || idx >= (int)s->shared_sigalgslen
7 || s→ shared_sigalgslen > INT_MAX)
8 return 0;
9 shsigalgs = s->shared_sigalgs[idx];
10 if (phash != NULL) *phash = shsigalgs->hash;
11 if (psign != NULL) *psign = shsigalgs→ sig;
12 if (psignhash != NULL) *psignhash = shsigalgs→ sigandhash;
13 if (rsig != NULL) *rsig = (uint8_t)(shsigalgs→ sigalg & 0xff);
14 if (rhash != NULL)
15 *rhash = (uint8_t)((shsigalgs→ sigalg >> 8) & 0xff);
16 return (int)s→ shared_sigalgslen; }

Line 6 performs a bounds check on an attacker-controlled index
parameter idx. If the load of s->shared_sigalgslen experiences
a cachemiss, the bounds check will take a long time to resolve. Thus,
a processor with branch prediction may guess that idx is in bounds
and speculatively execute the lines following the if-statement. Such
mis-speculation can enable a speculative out-of-bounds load of
an arbitrary secret from s->shared_sigalgs[idx], speculatively
writing it into pointer variable shsigalgs on line 9. The struct
member access shsigalgs->hash on line 10 dereferences the secret
as a pointer, directly leaking the secret’s value into the cache.

6.2.4 Clou Performance. We observed that for most functions,
Clou spends nearly all its runtime solving SMT queries in Z3 [20],
and the total solving time is dominated by a small subset of challeng-
ing queries.10 The abnormally long libsodium function runtimes
in Fig. 8 and the timeouts in Table 2 generally occur when Z3 has
gotten “stuck” while solving such a query. We leave it to future
work to optimize Clou’s usage of the SMT solver to reduce the
number of difficult-to-solve queries.

7 RELATEDWORK

Detecting Transient Leakage: Researchers have proposed tools to
detect Spectre-style vulnerabilities at the binary [15, 17, 26, 55, 71]
and LLVM-IR levels [28, 70, 77]. However, all existing tools either
scale poorly or face qualitative limitations. Spectector [26] detects

8Specifically, all functions which are callable from public functions.
9Clou’s libsodium/OpenSSL vulnerability repository [51]. We have responsibly dis-
closed these gadgets to the library developers.
10In many cases, the reasons why this particular query is challenging is not apparent
at the source level of the function being analyzed.

10 100 1,000 10,000 100,000

1

0.001
0.01
0.1

10
100

1,000
10,000

S-AEG function size (node count)

r
u
n
t
i
m
e
(
s
)

Clou-PHT
Clou-STL

Figure 8: Serial CPU runtime vs. function size for Clou’s

libsodium analysis. No functions time out.

Spectre v1 gadgets in code using symbolic execution. Besides be-
ing limited to Spectre v1, Spectector [26] does not scale well to
large codebases and is also based on the program-counter security
model [50] which disallows branching on secrets. Pitchfork [15]
uses symbolic execution to detect Spectre v1/v1.1/v4 violations;
but, its implementation is unsound [8], and its Spectre v4 detec-
tion scales poorly [17]. BH [17] also uses symbolic execution and
supports detection of Spectre v1/v1.1/v4 violations; it scales bet-
ter than Pitchfork by symbolically reasoning about transient/non-
transient program behaviors simultaneously.

Clou is not based on symbolic execution; it uses axiomatic LCM
definitions to holistically represent legal program executions as
directed graphs which can be systematically checked for leakage.
Clou is currently restricted to detecting Spectre v1/v1.1/v4 leak-
age but scales better than all prior approaches finding new vulnera-
bilities in real-world crypto-libraries. LCMs also support branching
on secrets and are not limited to reasoning about vulnerabilities
involving transient execution.

To our knowledge, Clou is the only tool for identifying Spectre-
style vulnerabilities in programs that distinguishes between DT-
s/CTs and UDTs/UCTs. This enables Clou to efficiently focus on
and detect the most severe leakage in any application component
without requiring secrecy labels. However, adding support for se-
crecy labels to Clou can help filter benign DTs/CTs, as is done in
prior work.

Formalizing Transient Leakage: Recent research applies for-
mal rigor to reasoning about the impact of transient execution
attacks on software [8, 15, 25–27, 55, 59, 68]. Cauligi et al. [15] de-
fines speculative constant-time using an adversarial semantics for
speculative execution. Similar to LCMs, their modeling approach
captures a variety of transient execution attacks. InSpectre [25]
features an operational model to support reasoning about transient
execution attacks and countermeasures. Guarnieri et al. [27] pro-
posed operational hardware-software contracts to explicitly expose
to software which aspects of microarchitectural state are observable
to an adversary as a program executes. Concurrent work [19] pro-
poses using axiomatic MCM definitions to formally model and au-
tomatically detect access instructions (§3.2.4) in programs—namely
memory read events which are capable of accessing secrets. In con-
trast to LCMs, this approach cannot determine if the data read by a
particular access instruction can be leaked via a transmitter nor can
it support transmitter classification. Modeling microarchitectural
leakage which does not involve architectural read events accessing

https://github.com/nmosier/clou-bugs

ISCA ’22, June 18–22, 2022, New York, NY, USA Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel

secrets (as for silent stores) is also not supported. Further, analy-
ses based on this technique take up to 90 minutes to inspect the
benchmarks which Clou evaluates in under a second.

Finally, Blade [68] uses a static type system to eliminate transient
leakage from CT cryptographic code. Blade prohibits Spectre v1
leakage by breaking flows from transiently-typed expressions to
sinkswith a hypothetical fence called protect. Similar to Blade, LCMs
can synthesize a minimum number of fences; they can also effec-
tively use the protect fence. In contrast to Blade’s conservative type
system, LCMs are more accurate and lead to fewer false-positives.

8 CONCLUDING REMARKS

We propose LCMs—new security contracts that enable program-
mers, compiler writers, and runtime designers to reason about the
security implications of hardware on software. LCMs support pre-
cisely pinpointing hardware-related vulnerabilities in programs.
In turn, they support the design and development of (1) formal
analysis frameworks, like subrosa and (2) tools which can detect
and repair vulnerable programs, like Clou. One limitation of LCMs
is the type of side-channels they capture—LCMs capture leakage
that results from inter-instruction interactions through hardware
state rather than from operand-dependent variable time execution
of individual instructions (e.g., due to subnormal floating point
optimizations [5]). Such an enhancement to the formalism is left
for future work.

ACKNOWLEDGMENTS

We would like to thank John Mitchell and Clark Barrett for their
valuable discussions and feedback on this work. This work was
supported in part by the National Science Foundation (NSF, Award
Number 2017863) and the German Federal Ministry of Education
and Research (BMBF) through funding for the CISPA-Stanford Cen-
ter for Cybersecurity (FKZ: 13N1S0762). We also gratefully acknowl-
edge a research gift from Intel Corporation.

REFERENCES

[1] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2017. Don’t
sit on the fence: A static analysis approach to automatic fence insertion. ACM
Transactions on Programming Languages and Systems (TOPLAS) 39, 2 (2017), 1–38.

[2] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in
Weak Memory Models. (2010). http://dx.doi.org/10.1007/978-3-642-14295-6_25

[3] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:
Running Tests Against Hardware. 17th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS): Part of the Joint

European Conferences on Theory and Practice of Software (ETAPS) (2011).
[4] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and DataMining forWeakMemory. ACMTransactions

on Programming Languages and Systems (TOPLAS) 36, 2 (2014), 7:1–7:74.
[5] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham.

2015. On Subnormal Floating Point and Abnormal Timing. In 2015 IEEE Sympo-

sium on Security and Privacy.
[6] ARM. 2013. ARM A64 instruction set architecture. https://developer.arm.com/

documentation
[7] ARM Mbed. x. Mbed TLS. https://github.com/armmbed/mbedtls
[8] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao,

Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. 2021. High-
Assurance Cryptography in the Spectre Era. In 42nd IEEE Symposium on Security

and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021.
[9] Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC

Atomics in C11 and OpenCL. 43rd Symposium on Principles of Programming

Languages (POPL) (2016).
[10] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.

Mathematizing C++ Concurrency. 38th Symposium on Principles of Programming

Languages (POPL) (2011).

[11] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil
Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam
Morrison, Frank Mckeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher, Ab-
hishek Basak, and Alaa Alameldeen. 2021. Speculative Interference Attacks:
Breaking Invisible Speculation Schemes. In Proceedings of the 26th ACM Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems.
[12] Dan Bernstein. 2008. curve25519-donna. https://code.google.com/archive/p/

curve25519-donna/.
[13] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concurrency

Memory Model. 29th Conference on Programming Language Design and Imple-

mentation (PLDI) (2008).
[14] James Bornholt and Emina Torlak. 2017. Synthesizing Memory Models from

Framework Sketches and Litmus Tests. 38th Conference on Programming Language

Design and Implementation (PLDI) (2017).
[15] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian

Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time Foundations for
the New Spectre Era. In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation.
[16] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan.

2019. A Formal Approach to Secure Speculation. In 2019 IEEE 32nd Computer

Security Foundations Symposium (CSF).
[17] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting the Haunter

- Efficient Relational Symbolic Execution for Spectre with Haunted RelSE. In 28th

Annual Network and Distributed System Security Symposium, NDSS 2021, virtually,

February 21-25, 2021.
[18] Lesly-Ann Daniel. 2021. Binsec/haunted benchmark. https://github.com/binsec/

haunted_bench/.
[19] Hernán Ponce de León and Johannes Kinder. 2021. Cats vs. Spectre: An Axiomatic

Approach to Modeling Speculative Execution Attacks. https://arxiv.org/abs/
2108.13818

[20] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis

of Systems. Springer, 337–340.
[21] Frank Denis. 2019. libsodium. https://github.com/jedisct1/libsodium.
[22] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. 2019. The

Code That Never Ran: Modeling Attacks on Speculative Evaluation. In 2019 IEEE

Symposium on Security and Privacy (SP).
[23] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2016. A survey of mi-

croarchitectural timing attacks and countermeasures on contemporary hardware.
Journal of Cryptographic Engineering (2016).

[24] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy.

[25] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking and
Fixing Microarchitectural Vulnerabilities by Formal Analysis. In Proceedings of

the 2020 ACM SIGSAC Conference on Computer and Communications Security.
[26] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez. 2020. Spectector:

Principled Detection of Speculative Information Flows. In 2020 IEEE Symposium

on Security and Privacy (SP).
[27] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-

Software Contracts for Secure Speculation. In 2021 IEEE Symposium on Security

and Privacy.
[28] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu,

and Zhiqiang Zuo. 2020. SpecuSym: Speculative Symbolic Execution for Cache
Timing Leak Detection. In Proceedings of the ACM/IEEE 42nd International Con-

ference on Software Engineering.
[29] Jann Horn. 2018. Speculative execution, variant 4: Speculative store bypass.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
[30] Yao Hsiao, Dominic P. Mulligan, Nikos Nikoleris, Gustavo Petri, and Caroline

Trippel. 2021. Synthesizing Formal Models of Hardware from RTL for Efficient
Verification of Memory Model Implementations. In Proceedings of the Fifty-Fourth

IEEE/ACM International Symposium on Microarchitecture (MICRO 54).
[31] Intel. 2018. Q2 2018 Speculative Execution Side Channel Update. https://www.

intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
[32] Intel. 2019. Intel® 64 and IA-32 Architectures Software Developer Manuals, Order

Number: 325462-070US. https://software.intel.com/sites/default/files/managed/
39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

[33] D. Jackson. 2012. Alloy Analyzer website. http://alloy.mit.edu/
[34] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and

Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO).
[35] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:

Attacks and Defenses. CoRR abs/1807.03757 (2018). arXiv:1807.03757 https:
//dblp.org/rec/bib/journals/corr/abs-1807-03757 http://arxiv.org/abs/1807.03757.

[36] Paul Kocher. 2018. Spectre Mitigations in Microsoft’s C/C++ Compiler. https:
//www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html.

http://dx.doi.org/10.1007/978-3-642-14295-6_25
https://developer.arm.com/documentation
https://developer.arm.com/documentation
https://github.com/armmbed/mbedtls
https://code.google.com/archive/p/curve25519-donna/
https://code.google.com/archive/p/curve25519-donna/
https://github.com/binsec/haunted_bench/
https://github.com/binsec/haunted_bench/
https://arxiv.org/abs/2108.13818
https://arxiv.org/abs/2108.13818
https://github.com/jedisct1/libsodium
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://alloy.mit.edu/
https://arxiv.org/abs/1807.03757
https://dblp.org/rec/bib/journals/corr/abs-1807-03757
https://dblp.org/rec/bib/journals/corr/abs-1807-03757
http://arxiv.org/abs/1807.03757
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

Axiomatic Hardware-Software Contracts for Security ISCA ’22, June 18–22, 2022, New York, NY, USA

[37] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. CoRR abs/1801.01203
(2018). https://arxiv.org/abs/1801.01203

[38] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (1978), 558–565.

[39] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computing 28, 9 (1979),
690–691.

[40] Chris Lattner and Vikram Adve. 2003. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. Tech. Report UIUCDCS-R-2003-
2380. Computer Science Dept., Univ. of Illinois at Urbana-Champaign.

[41] Kevin M. Lepak and Mikko H. Lipasti. 2000. Silent Stores for Free. In Proceedings

of the 33rd Annual ACM/IEEE International Symposium on Microarchitecture.
[42] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. CoRR abs/1801.01207 (2018). https://arxiv.org/abs/1801.01207

[43] Jason Lowe-Power, Venkatesh Akella, Matthew K. Farrens, Samuel T. King, and
Christopher J. Nitta. 2018. Position Paper: A Case for Exposing Extra-architectural
State in the ISA. In Proceedings of the 7th International Workshop on Hardware

and Architectural Support for Security and Privacy.
[44] Daniel Lustig, AndrewWright, Alexandros Papakonstantinou, and Olivier Giroux.

2017. Automated Synthesis of Comprehensive Memory Model Litmus Test Suites.
22nd International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS) (2017).
[45] Jeremy Manson, William Pugh, and Sarita Adve. 2005. The Java Memory Model.

32nd Symposium on Principles of Programming Languages (POPL) (2005).
[46] Margaret Martonosi et al. 2017. Check: Research Tools and Papers. http:

//check.cs.princeton.edu
[47] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.

2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. https://arxiv.org/abs/1902.05178

[48] Matt Miller. 2018. Mitigating speculative execution side channel hardware vulner-
abilities. https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-
execution-side-channel-hardware-vulnerabilities/

[49] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck,
Daniel Genkin, Daniel Gruss, Berk Sunar, Frank Piessens, and Yuval Yarom. 2019.
Fallout: Reading Kernel Writes From User Space. (2019).

[50] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2005. The
Program Counter Security Model: Automatic Detection and Removal of Control-
Flow Side Channel Attacks. In Proceedings of the 8th International Conference on

Information Security and Cryptology.
[51] Nicholas Mosier and Caroline Trippel. 2022. clou-bugs. https://github.com/

nmosier/clou-bugs
[52] Vijay Nagarajan, Daniel Sorin, Mark Hill, and David Wood. 2020. A Primer on

Memory Consistency and Cache Coherence, Second Edition. Morgan & Claypool
Publishers. https://doi.org/10.2200/S00962ED2V01Y201910CAC049

[53] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. 2016. An Operational
Semantics for C/C++11 Concurrency. 31st International Conference on Object

Oriented Programming Systems Languages and Applications (OOPSLA) (2016).
[54] NVIDIA. 2017. Parallel Thread Execution ISA Version 6.0. http://docs.nvidia.

com/cuda/parallel-thread-execution/index.html
[55] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.

SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In 29th USENIX

Security Symposium (USENIX Security 20).
[56] OpenSSL 2021. OpenSSL: Cryptography and SSL/TLS Toolkit. https://www.

openssl.org/.
[57] OpenSSL 2022. OpenSSL’s implementation of

SSL_get_shared_sigalgs. https://github.com/openssl/openssl/blob/
d5530efada83825ef239a8458db541adc4b422ec/ssl/t1_lib.c#L2408

[58] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model:
x86-TSO. 22nd International Conference on Theorem Proving in Higher Order Logics

(TPHOLs) (2009).
[59] Marco Patrignani and Marco Guarnieri. 2021. Exorcising Spectres with Secure

Compilers. arXiv:1910.08607 [cs.PL]
[60] Gustavo Petri, Jan Vitek, and Suresh Jagannathan. 2015. Cooking the books:

Formalizing JMM implementation recipes. 29th European Conference on Object-

Oriented Programming (ECOOP) (2015).
[61] Thomas Pornin. 2016. Why Constant-Time. https://www.bearssl.org/

constanttime.html
[62] Thomas Pornin. 2018. Constant-Time Toolkit. https://github.com/pornin/CTTK.
[63] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and

Peter Sewell. 2017. Simplifying ARM Concurrency: Multicopy-atomic Axiomatic
and Operational Models for ARMv8. ACM Programming Languages (2017).

[64] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. CoRR abs/1905.05726 (2019). arXiv:1905.05726
https://arxiv.org/abs/1905.05726

[65] The OpenSSL Project. 2021. SSL_get_shared_sigalgs. https://www.openssl.org/
docs/man3.0/man3/SSL_get_shared_sigalgs.html

[66] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate:
Automated Synthesis of Hardware Exploits and Security Litmus Tests. 51st

International Symposium on Microarchitecture (MICRO) (2018).
[67] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. S&P (May 2019).

[68] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Au-
tomatically Eliminating Speculative Leaks from Cryptographic Code with Blade.
Proc. ACM Program. Lang. (2021).

[69] Jose Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline Trippel, Adam Mor-
rison, David Kohlbrenner, and Christopher W. Fletcher. 2021. Opening Pandora’s
Box: A Systematic Study of New Ways Microarchitecture Can Leak Private Data.
In ISCA’21.

[70] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra,
and Abhik Roychoudhury. 2020. KLEESpectre: Detecting Information Leakage
through Speculative Cache Attacks via Symbolic Execution. (2020).

[71] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2021. oo7: Low-Overhead Defense Against Spectre Attacks
via Program Analysis. (2021).

[72] Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction Set Manual,

Volume I: Unprivileged ISA Document, Version 20190608-Base-Ratified. Technical
Report. SiFive Inc. and CS Division, EECS Department, University of California,
Berkeley. https://riscv.org/specifications/

[73] David Wheeler and Roger Needham. 1994. The Tiny Encryption Algorithm.
https://www.schneier.com/sccd/TEA.C.

[74] John Wickerson, Mark Batty, Bradford M. Beckmann, and Alastair F. Donaldson.
2015. Remote-Scope Promotion: Clarified, Rectified, and Verified. 30th Inter-

national Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA) (2015).
[75] John Wickerson, Mark Batty, Tyler Sorensen, and George A Constantinides.

2017. Automatically comparing memory consistency models. 44th Symposium

on Principles of Programming Languages (POPL) (2017).
[76] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,

Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in an Age
of Risk. In Proceeding of the 41st Annual International Symposium on Computer

Architecuture.
[77] Meng Wu and Chao Wang. 2019. Abstract Interpretation under Speculative

Execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation.
[78] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W. Fletcher. 2019.

Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance
Computing. In 26th Annual Network and Distributed System Security Symposium,

NDSS.
[79] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Compre-
hensive Protection for Speculatively Accessed Data. In Proceedings of the 52nd

Annual IEEE/ACM International Symposium on Microarchitecture.
[80] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas. 2015.

IMP: Indirect memory prefetcher. In 2015 48th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO).
[81] X. Yu, C. J. Hughes, and N. R. Satish. 2016. Hardware prefetcher for indirect

access patterns. US Patent 14/582,348. Filed December 24, 2014. Issued June 30,
2016..

[82] Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. 2019. Using Information
Flow to Design an ISA that Controls Timing Channels. In 32nd IEEE Computer

Security Foundations Symposium, CSF.
[83] Tianwei Zhang and Ruby B. Lee. 2014. New Models of Cache Architectures

Characterizing Information Leakage from Cache Side Channels. In Proceedings

of the 30th Annual Computer Security Applications Conference.

https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01207
http://check.cs.princeton.edu
http://check.cs.princeton.edu
https://arxiv.org/abs/1902.05178
https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://github.com/nmosier/clou-bugs
https://github.com/nmosier/clou-bugs
https://doi.org/10.2200/S00962ED2V01Y201910CAC049
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.openssl.org/
https://www.openssl.org/
https://github.com/openssl/openssl/blob/d5530efada83825ef239a8458db541adc4b422ec/ssl/t1_lib.c#L2408
https://github.com/openssl/openssl/blob/d5530efada83825ef239a8458db541adc4b422ec/ssl/t1_lib.c#L2408
https://arxiv.org/abs/1910.08607
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
https://github.com/pornin/CTTK
https://arxiv.org/abs/1905.05726
https://arxiv.org/abs/1905.05726
https://www.openssl.org/docs/man3.0/man3/SSL_get_shared_sigalgs.html
https://www.openssl.org/docs/man3.0/man3/SSL_get_shared_sigalgs.html
https://riscv.org/specifications/
https://www.schneier.com/sccd/TEA.C

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Axiomatic Memory Consistency Models
	2.2 An Architectural Semantics for LCMs

	3 Leakage Containment Models
	3.1 What Memory Models are Missing
	3.2 A Microarchitectural Semantics for LCMs
	3.3 A Speculative Semantics for LCMs
	3.4 The subrosa Toolkit

	4 Detecting Leakage in Real-World Examples
	4.1 Formalizing Microarchitectural Leakage
	4.2 LCMs by Example

	5 Clou: Detecting Leakage with LCMs
	5.1 Constructing an Abstract CFG (A-CFG)
	5.2 Constructing a Symbolic Abstract Event Graph (S-AEG)
	5.3 Leakage Detection Engines

	6 Results
	6.1 Analyzing Spectre Benchmarks with Clou
	6.2 Analyzing Crypto-Libraries with Clou

	7 Related Work
	8 Concluding remarks
	Acknowledgments
	References

