
Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Nicholas Mosier
nmosier@stanford.edu

Stanford University
Stanford, California, USA

Hamed Nemati
hamed.nemati@cispa.de
CISPA Helmholtz Center
for Information Security
Saarbrücken, Germany

John C. Mitchell
jcm@stanford.edu

Stanford University
Stanford, California, USA

Caroline Trippel
trippel@stanford.edu
Stanford University

Stanford, California, USA

Abstract—We present SERBERUS, the first comprehensive miti-
gation for hardening constant-time (CT) code against Spectre
attacks (involving the PHT, BTB, RSB, STL, and/or PSF
speculation primitives) on existing hardware. SERBERUS is
based on three insights. First, some hardware control-flow
integrity (CFI) protections restrict transient control-flow to
the extent that it may be comprehensively considered by
software analyses. Second, conformance to the accepted CT
code discipline permits two code patterns that are unsafe
in the post-Spectre era. Third, once these code patterns are
addressed, all Spectre leakage of secrets in CT programs can be
attributed to one of four classes of taint primitives—instructions
that can transiently assign a secret value to a publicly-typed
register. We evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 21.3% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which is less secure.

1. Introduction

The constant-time (CT) programming approach [1]–
[14] was designed to support the safe execution of secret-
processing programs, like cryptographic code [15]–[17], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, i.e., information transmitters
(or simply transmitters) [18], typically include control-flow,
memory, and variable-time (e.g., floating-point [19] or inte-
ger division [12]) instructions.

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections.
In Spectre attacks specifically (our focus, §2.2), transient
execution results from control- or data-flow mispredictions
at runtime [20]. On modern processors, there are five
well-documented sources of such (mis)predictions, called
speculation primitives [21]: conditional branch prediction

1. Transient execution refers to the execution of instructions that are
never architecturally committed [20].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [28] - - - - - -

LLVM-SLH [29] J · Karch ✗ - - - -
RETPOLINE [30] - - - ↑ - -

IPREDD [31] - - - - - -
SSBD [32] - - - - -
PSFD [33] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch ✗ -
BLADE [34] J · Kct ✓ - - - -

ULTIMATESLH [35] J · Kct ✗ - - - -
SWIVEL-CET [36] J · Kmem ✗
SERBERUS (ours) J · Kct ✓

TABLE 1: SERBERUS versus mitigations for existing hardware. Leakage:
SERBERUS targets the CT leakage model J · Kct; CT code is insecure under
J · Kmem and J · Karch [25]. Speculation primitives: complete mitigation
without disabling speculation; disables speculation primitive ( for
implicitly disabled); incomplete mitigation; ↑ creates opportunities for
speculation primitive to introduce transient execution; - no mitigation.
SERBERUS is the only defense for the CT leakage model to mitigate leakage
due to all speculation primitives.

(PHT) [22], indirect branch prediction (BTB) [22], re-
turn address prediction (RSB) [23], store-to-load forward-
ing prediction (STL) [24], and predictive store forwarding
(PSF) [25]–[27].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned specula-
tion primitives is hard. Suitable hardware mitigations have
been proposed [37]–[40], but they require complex design
changes that limit their adoption. Several mitigations target
existing hardware (Tab. 1). However, none, nor any combi-
nation, is suitable for securing CT code.

This Paper. We present SERBERUS,3 the first com-
prehensive mitigation for hardening CT code against Spectre
attacks involving any combination of the PHT, BTB, RSB,
STL, and PSF speculation primitives on existing hardware.
It mitigates the first four primitives in software and disables
only the last primitive (PSF) in hardware due to a clear

2. Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [20], [25].

3. SERBERUS is named after Cerberus, a three-headed dog (representing
its three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).



performance advantage. An implementation of SERBERUS is
readily deployable in our compiler LLSCT,4 which produces
more performant (on average) and more secure binaries
for cryptographic routines than state-of-the-art mitigations.
SERBERUS is based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks
in software is challenged by (i) the impracticality of rea-
soning about unconstrained transient control-flow [41] and
(ii) the overhead of managing unconstrained transient data-
flow [42]. Like prior work [36], we observe that some
lightweight (negligible overhead) hardware control-flow in-
tegrity (CFI) protections, like Intel CET [43], constrain
transient control-flow to the extent that it may be com-
prehensively considered by software analyses. Thus, SER-
BERUS requires that such CFI protections are enabled in the
target hardware. Moreover, we show for the first time that
while Spectre-STL5 can be efficiently mitigated in software,
Spectre-PSF cannot. Thus, SERBERUS requires the PSFD
speculation control, available on Intel [33] and AMD [44]
processors, to disable PSF.

Insight 2: Programming contract. We focus on harden-
ing CT programs against Spectre attacks [34], [38], [42],
since they already avoid leaking secrets during sequential
(i.e., non-transient) execution. However, we observe that
CT programs, as defined previously [45], may contain two
code patterns that are unsafe in the post-Spectre era and
limit mitigated program performance: (i) transmitters with
secret operands that never execute sequentially (e.g., “if
(0) leak(secret)”), and (ii) procedure calls or returns
with secret arguments, which can often leak via BTB or
RSB misprediction. Thus, we introduce a strengthening of
CT programming, called static constant-time (CTS), which
requires that (i) all program variables have a static security
type, and (ii) all call and return arguments are public.
SERBERUS requires a CTS program as input.

Insight 3: Taint primitives. We find that all Spectre leak-
age in CTS programs can be attributed to taint primitives,
or instructions that transiently assign a secret value to a
publicly-typed register. We prove that there are exactly four
classes taint primitives (Fig. 1) for our hardware model
(§2.3.2), which assumes (i) Intel’s CET protections, (ii) In-
tel’s RRSBAD and PSFD speculation controls [46], (iii) Intel’s
DOIT Mode [47], and (iv) the PHT, BTB, RSB, and STL
speculation primitives. This result motivates SERBERUS’s
design and its correctness proof : it consists of three compiler
passes, each of which mitigates Spectre leakage due to one
or more classes of taint primitives.
Contributions. Our contributions are as follows:
• ASP operational semantics (§3): We define an opera-

tional semantics, called ASP, that encodes all (sequential
and transient) control- and data-flow that a program may
exhibit when it runs on a microarchitecture satisfying our
hardware model (§2.3.2). ASP avoids explicitly modeling
the hardware structures that give rise to speculation prim-

4. LLSCT is open source and available at https://github.com/nmosier/llsct.
5. Spectre-STL denotes Spectre leakage enabled by the STL speculation

primitive.

itives, capturing a wider range of implementations than
prior work [42], [48].

• Static Constant-Time programming (§4): We propose
CTS programming, a strengthening of CT for the post-
Spectre era. CTS forbids two legal CT code patterns (§4.2)
that preclude efficient Spectre mitigation in software.

• Taint primitives (§4): We define and characterize taint
primitives, instructions that cause a security type violation
(§4.4.2) when transiently executed. Using ASP, we prove
that taint primitives are necessary for Spectre leakage of
secrets in CTS programs and that CTS programs exhibit
exactly four classes of taint primitives.

• SERBERUS mitigation (§5): We propose SERBERUS,
the first comprehensive mitigation for existing hardware
that hardens CT code (satisfying CTS) against Spectre
attacks that exploit PHT, BTB, RSB, STL, and/or PSF.
SERBERUS offers the first software mitigation for STL that
does not simply disable it (Tab. 1); only PSF is the only
speculation primitive it disables. Using ASP, we prove
that SERBERUS mitigates all Spectre leakage of secrets in
CTS programs.

• LLSCT compiler (§6): We build LLSCT, a custom fork
of LLVM 14.0.4 that implements SERBERUS.

• Case study (§6–§7): We evaluate LLSCT alongside two
compositions of state-of-the-art mitigations [28]–[30],
[32], F+RETP+SSBD and S+RETP+SSBD, on cryptographic
primitives in the OpenSSL, Libsodium, and HACL∗ li-
braries. LLSCT produces more performant code than the
state-of-the-art on most benchmarks, introducing less than
8% average overhead on large-buffer benchmarks.

2. Background

2.1. Hardware Side-Channel Attacks

Hardware side-channel attacks involve a victim pro-
gram (the sender) running on vulnerable hardware that
leaks secrets to an attacker (the receiver). Such hardware
contains unsafe instructions, or transmitters [18], whose
execution creates operand-dependent hardware resource us-
age. A receiver infers the value(s) of a transmitter’s sen-
sitive operand(s) by measuring hardware resource usage
through various means, such as execution time [49], [50]
and more [19], [51]–[71].

Constant-time (CT) programming is the prevailing ap-
proach for countering hardware side-channel leakage in
software [1]–[14], [72]. In short, CT programs do not supply
secrets to sensitive transmitter operands in any sequential
execution. CT has been widely adopted in the context of
cryptographic code [15]–[17], [73], which must process (and
not leak) secrets. Thus, a variety of tools and techniques
have been proposed to support CT code generation [13],
[14], [72], [74] and verification [45], [75]–[78]. Prior work
surveys many such approaches [79].

https://github.com/nmosier/llsct


2.2. Spectre Attacks

Transient execution attacks circumvent CT protections
by steering secrets towards the sensitive operands of (tran-
sient) transmitters [22], [80]. These attacks leverage two
high-level mechanisms for creating transient execution at
runtime on modern processors: (i) faulting instructions, and
(ii) control- or data-flow mispredictions. These mechanisms
give rise to Meltdown and Spectre attacks, respectively [20].

In general, Meltdown attacks (e.g., Meltdown [80], Fore-
shadow [81], LVI [82], MDS [83]–[85]) can be efficiently
mitigated through microcode updates or modest hardware
changes [86]. In contrast, despite a plethora of research
proposals for mitigating Spectre attacks in hardware [18],
[37], [39], [40], [87]–[98], extreme complexity limits their
adoption. Thus, we focus exclusively on mitigating Spectre
attacks on existing hardware designs.

2.2.1. Speculation Primitives. Spectre attacks [22]–[24],
[26], [42] are characterized according to distinct sources
of control- and data-flow (mis)prediction on modern pro-
cessors, called speculation primitives [20], [21]. Predictions
introduce speculative execution, which may turn out to be
sequential (when predictions are correct) or transient (when
incorrect).

Control-Flow Prediction. To exploit instruction-
level parallelism (ILP) in sequential applications, modern
processors resolve a variety of program dependencies at
runtime. Among these are control dependencies which arise
due to control-flow instructions (e.g., conditional branches,
indirect branches) whose condition and/or target decide the
program counter (PC) of the next instruction to fetch.

To avoid frontend stalls, processors dedicate a significant
amount of circuitry to control-flow prediction, giving rise to
three notable speculation primitives. PHT (responsible for
Spectre v1 [22] and v1.1 [99]) denotes conditional branch
prediction, which diverts speculative execution following a
conditional branch towards one of two control-flow paths
(i.e., the taken or not taken path). BTB (responsible for
Spectre v2 [22]) denotes indirect branch prediction, which
diverts speculative execution following an indirect branch
towards one of many control-flow paths. RSB (responsible
for SpectreRSB [23]) denotes return address prediction,
which operates similarly to BTB except that it diverts
speculative execution following a return. In general, uncon-
strained indirect branch and return address prediction may
direct speculative control-flow to any program instruction or
even to the middle of an instruction [100].

Data-Flow Prediction. Data-flow dependencies
through memory present another barrier to exploiting ILP.
Specifically, loads block the execution of younger dependent
instructions until they have retrieved their data. Two no-
table speculation primitives result from data-flow prediction
mechanisms designed to accelerate the execution of loads.
STL (responsible for Spectre v4 [24]) denotes store-to-load
forwarding prediction, whereby a load may forward data
from an older same-address store before all prior stores have
resolved their addresses. That is, a load may speculatively

read from any same-address uncommitted store or the most
recent same-address committed store. PSF (responsible for
Spectre PSF [26], [27], [42]) denotes predictive store for-
warding, whereby a load may forward data from an older
store before the load or store has resolved its address.
With PSF, a load may speculatively read from any prior
uncommitted store.

2.2.2. Software Mitigations for Spectre Attacks. Tab. 1
summarizes state-of-the-art software mitigations6 for Spec-
tre attacks, which we characterize below.

Leakage Models. One distinction among software
Spectre mitigations is the leakage model they target (§3.2).
A mitigation’s leakage model captures what an attacker
can observe when a victim program runs on hardware of
interest. The most prevalent leakage models in the litera-
ture [25] are the CT leakage model (J · Kct) [26], [34], [41],
[42], [101]–[104] and the sandbox isolation leakage model
(J · Karch) [104], [105]. We adopt the CT leakage model in
this paper due to our focus on mitigating Spectre leakage
in cryptographic code [25], [104]. The CT leakage model
exposes the control-flow and sequence of accessed memory
addresses in a program’s execution as observations to an
attacker. The sandbox isolation model additionally exposes
all values loaded from memory, which is unsuitable for
modeling CT programs which need to access secrets. A less
common leakage model, J · Kmem, models a receiver that can
only observe accessed memory addresses [104].

Blocking Speculation Primitives. The Spectre mit-
igations in Tab. 1 can be further classified as coarse- or
fine-grained. Coarse-grained mitigations disable culprit
speculation primitive(s). We explain several examples below.

One Spectre-PHT mitigation proposed by Intel (INTEL-
LFENCE) inserts an LFENCE after every conditional
branch [28]. An LFENCE is a serializing instruction, which
guarantees that any younger instructions will not be executed
(even transiently) until all older ones commit. This mitiga-
tion is complete under J · Kct, but incurs a huge (≈ 440%)
overhead for typical software [106]. A higher-performance
Spectre-PHT mitigation, speculative load hardening (SLH),
masks the addresses or return values of loads inside in a
conditional branch with the branch predicate [29]. LLVM of-
fers the only well-established SLH implementation (LLVM-
SLH). However, it targets J · Karch and thus is incomplete for
CT code [103], [107]. UltimateSLH [35] extends LLVM’s
SLH implementation to the J · Kct leakage model, with a
performance cost.

Spectre-BTB can be mitigated with RETPOLINE [30]
or Intel’s IPREDD (i.e., IPRED_DIS_U) speculation con-
trol [31]. RETPOLINE replaces all indirect branches with
returns that direct mispredictions to a “safe” target.7 Setting
IPREDD disables indirect branch prediction.

No complete nor deployable mitigations of Spectre-
RSB exist under J · Kct. Intel has proposed an (incomplete)

6. “Software mitigations” are those that are deployable on existing
hardware.

7. We assume the victim process sets the RRSBAD speculation control
(§2.3.2), which prevents attacks from circumventing RETPOLINE [108].



technique called RSB stuffing to “reduce the likelihood of
an [RSB] underflow from occurring” [109].

Spectre-STL and Spectre-PSF can be mitigated with
SSBD and PSFD speculation controls [46], respectively, of-
fered by Intel [46] and AMD [44].

Preventing Secret-Dependent Transmitters. A
couple fine-grained Spectre mitigations have also appeared
in the literature. These approaches explicitly prevent
secrets from being supplied to transmitters during transient
execution, while leaving speculation primitives enabled.

Blade [34] is a complete Spectre-PHT mitigation for CT
WebAssembly under J · Kct that frames LFENCE insertion
as a min-cut data-flow problem. Swivel-CET [36] uses a
control-flow tracking technique called register interlocking
to mitigate Spectre attacks involving PHT, BTB, and/or RSB
in WebAssembly programs; however, it targets J · Kmem and
thus is insecure for CT code.

Layering Spectre Mitigations. State-of-the-art mit-
igations SLH, RETPOLINE, and SSBD incur modest overhead
when deployed in isolation to mitigate Spectre attacks in-
volving a single speculation primitive. Since there are no
comprehensive mitigations for Spectre under J · Kct, §6-7
compare SERBERUS’s performance to composite baselines,
F+RETP+SSBD and S+RETP+SSBD, which combine INTEL-
LFENCE (F) and LLVM-SLH (S) with RETPOLINE and SSBD.

2.3. Threat Model

2.3.1. Software Model. We provably harden trusted CTS (a
slight strengthening of CT, §4.3) victim code against Spectre
attacks that arise on processors satisfying the constraints of
our hardware model (§2.3.2). We assume a powerful attacker
that can directly observe the sensitive operands of transmit-
ters executed (sequentially or transiently) by the victim and
fully control speculation within the victim process.

2.3.2. Hardware Model. We assume the victim is running
on a processor that soundly refines our abstract speculative
processor model, ASP (§3). That is, all (sequential and tran-
sient) control- and data-flow that a program can exhibit on
the hardware is captured by ASP. Real-world processors that
qualify include Intel Alder Lake N (and other, §A.10) x86
CPUs, which feature: (i) Intel CET, (ii) RRSBAD and PSFD
speculation controls [46], (iii) Data Operand Independent
Timing (DOIT) [47], and (iv) the PHT, BTB, RSB, and
STL speculation primitives.

Indirect Branch Tracking. Intel CET’s indirect
branch tracking (IBT) feature helps SERBERUS constrain
forward-edge control-flow speculation. IBT requires that an
ENDBR instruction be placed at all valid indirect branch tar-
gets. The processor raises an exception, or blocks transient
execution, on an indirect jump to a non-ENDBR (§A.10).
SERBERUS ensures ENDBRs are only placed at a program’s
procedure entrypoints, so the set of possible predicted targets
for an indirect branch is the set of procedure entrypoints.

Shadow Stack and RRSBAD. Intel CET’s shadow
stack (SHSTK) and RRSBAD speculation control help SER-
BERUS constrain backward-edge control-flow speculation.

RSB predictions are typically sourced from a hardware
return stack buffer; (sequential or transient) calls push return
addresses onto the return stack buffer which are popped off
on return predictions. SHSTK ensures that transient out-
of-bounds stores to return addresses on the software stack
cannot hijack speculative control flow [100]. The RRSBAD
(i.e., RRSBA_DIS_U) speculation control [46] prevents a
processor from falling back to the indirect branch predictor
to service return predictions on return stack buffer under-
fills [108]. Together, SHSTK and RRSBAD guarantee that the
set of possible predicted targets for a return is exactly the
set of instructions that immediately follow program calls.8

PSFD. We find that mitigating Spectre-PSF in soft-
ware incurs significant performance overhead for the cryp-
tographic workloads we evaluate (§7), while disabling PSF
with Intel’s PSFD speculation control introduces negligible
overhead. We advocate for the latter strategy in this paper.

Data Operand Independent Timing. Intel’s DOIT
Mode [47] guarantees that the instructions which CT pro-
gramming regards as safe (e.g., ADD, XOR, MUL) exhibit
operand-independent timing. Given the guarantees of DOIT,
our SERBERUS implementation assumes that the following
instructions are transmitters: conditional branches, indirect
branches, loads, stores, and division instructions. However,
SERBERUS is parameterized by a set of user-identified trans-
mitters to encompass others that may emerge [14], [66].

3. ASP: An Operational Semantics for an Ab-
stract Speculative Processor

We define a novel operational semantics, called ASP,
to support the design and prove the security of our Spectre
mitigation SERBERUS. ASP consists of a leakage model and
an execution model [25]. Its leakage model (§3.2) refines
the CT leakage model. Its execution model (§3.3-§3.4)
defines a non-deterministic abstract speculative processor
that executes assembly-style programs as a series of state
transitions. ASP captures the PHT, BTB, RSB, and STL
speculation primitives. We show in §A.6 how to extend ASP
to also capture PSF. However, since SERBERUS assumes it
is disabled (for performance, §7), we omit it from core ASP.

3.1. ASP Preliminaries

We first define basic syntax, ASP’s configurations (i.e.,
system states), and its assembly-style programs.

3.1.1. Storage and Labeled Data.
Registers. ASP has a finite set of general-purpose

registers Rgpr, a stack pointer SP, a program counter PC,
and a zero register ZR. We denote the set of all registers as
R = Rgpr ∪ {SP, PC, ZR}.

8. Note that the Linux kernel performs RSB filling on context switches
to prevent cross-address-space Spectre-RSB attacks [110].



Values and security labels. ASP computes on
security-labeled data. V ⊆ Z is the set of data values that
registers and data memory locations can assume (0 ∈ V);
L = {PUB, SEC} is the set of security labels, where PUB
and SEC mark a public (low) and secret (high) value, re-
spectively. VL = V × L denotes the set of labeled values.
We use either subscript vl or pair notation (v, l) to attach a
label l ∈ L to value v ∈ V . Given a function o : Vn → V
over unlabeled values, we define the labeled equivalent oL :
Vn
L → VL as oL((v1, l1), . . . , (vn, ln)) = o(v1, . . . , vn)L

where the out-label L = SEC iff any in-label li = SEC. All
arithmetic operations in ASP propagate security labels in
this way (§3.4.6), as in prior work [42].

Memory Addresses. We denote the set of mapped
instruction and data addresses with MI ,MD ⊆ V , respec-
tively. Defined by programs (§3.1.3) when execution starts
(§3.3.4), these maps are fixed thereafter.

3.1.2. Configurations. A configuration of ASP is a five-
tuple C = (R,D, S,CS , T ), where:
• R : R → VL is the labeled register file contents.
• D :MD → VL is the labeled data memory contents.
• S ∈ (MD × VL)∗ is the speculative store set, a list of

(data address, labeled value) pairs.9
• CS ∈M∗

I is the call stack, i.e., a list of return addresses.
• T ∈ {SEQ, T} is the transient execution bit, which defines

whether the configuration is transient (T = T) or sequen-
tial (T = SEQ). Instructions that take transient transitions
(§3.3.3) set T←T.

An initial configuration has the form C0 = (R0[PC←
0PUB], D0, (), (), SEQ). C is the set of all configurations.

3.1.3. Instructions, Programs, Security Policies. ASP de-
fines nine instructions:

I = JMP d | BNZ rsrc, d | CALL rsrc | RET | ENDBR | LFENCE
LD [ra + d], rdst | ST [ra + d], rsrc | OPo rdst, r⃗s

where d ∈ Z; rsrc, ra, rs,i ∈ R\PC; and rdst ∈ Rgpr∪{SP}.
A program is a four-tuple P = (MI ,MD, P,C0),

where MI and MD (§3.1.1) are the mapped instruction
and data addresses, respectively, and:
• P : MI → I is the read-only instruction memory

contents. We write I 7→ I to mean P (I) = I.
• C0 ⊆ C are the initial configurations of the program.
Each initial configuration C0 ∈ C0 of program P defines
the initial memory and register contents, which implicitly
specifies the security policy (i.e., a labeling of all initial pro-
gram values). Our security-typeability requirement (§4.3.2)
constrains the security policy of initial configurations.

3.2. ASP’s Leakage Model

Observations. ASP realizes the CT leakage model,
or J · Kct (§2.2.2), by defining a set of four transmitters.

9. X∗ denotes the set of all sequences of elements from set X .

Execution model PHT BTB RSB STL PSF IBT SHSTK RRSBAD
Guarnieri et al. [102] ✓

Cauligi et al. [42] ✓ ✓∗ ✓∗− ✓ ✓ ✓
Vassena et al. [34] ✓
Fabian et al. [48] ✓ ✓− ✓− ✓

ASP (ours) ✓ ✓ ✓ ✓ ✓∗ ✓ ✓ ✓

TABLE 2: A comparison of formal speculative execution models. ✓ indi-
cates the model captures that speculation primitive (PHT, BTB, RSB, STL,
PSF), speculative CFI protection (IBT, SHSTK), or speculation control
(RRSBAD); ✓− indicates the model restricts the behavior of the speculation
primitive (§3.3.1); ✓∗ indicates the speculation primitive is captured in an
extension of the core execution model (e.g., §A.6 for ASP).

When they execute (§3.3), transmitters expose their sensitive
operand(s) as an observation taken from observation set O:

O = ε | bnz vl | call vl | ldAl | stAl

Observation bnz vl exposes the labeled condition of a con-
ditional branch (BNZ); call vl exposes the labeled target of
a call (CALL); ld/st Al exposes the labeled address operand
of a load/store (LD/ST). All other instructions are safe and
expose the empty observation ε.

Return instructions (RET) are not transmitters, since
they cannot leak new secrets on processors with a SHSTK
(§2.3.2). On such designs, a secret return address implies
a secret PC at some prior call (the one that pushed it onto
the return stack buffer or SHSTK). A secret PC implies the
execution of a prior CALL or BNZ with a secret sensitive
operand. Thus, the secret already leaked.

In §A.6, we describe how to extend ASP with a fifth
transmitter, division instructions (DIV). Without loss of
generality, we omit DIV from core ASP. Our SERBERUS
implementation (§6) does assume DIVs are transmitters.

Declassification. While labeled transmitter operands
are exposed as observations, ASP declassifies transmitter
operands (by assigning labels to PUB or stripping labels
entirely) before using them to compute the next configura-
tion (§3.4). Doing so eliminates secondary (repeated) leaks
of the same secret while retaining primary (initial) leaks.
Declassification is sound (i.e., it does not result in missed
Spectre leakage), since SERBERUS ensures the program
never passes a secret to a transmitter in the first place.

3.3. ASP’s Execution Model: Overview

ASP captures all possible speculative executions of
programs running on a design that satisfies our hardware
assumptions (§2.3.2), using a sequential semantics (δseq,
§3.3.2) and a transient semantics (δt, §3.3.3).

3.3.1. Limitations of Prior Execution Models. Several
execution models have been proposed to support software
analyses that detect or mitigate Spectre leakage in CT
programs (Tab. 2) [25]. Two limitations of these models
motivate us to design something new. First, none capture
the semantics of Intel CET protections (IBT and SHSTK).
Second, despite capturing various combinations of the five
speculation primitives we target, these models make highly



specific (and even unrealistic) assumptions about their mi-
croarchitectural implementations. For example, Fabian et
al. [48] model STL by transiently “deleting” stores, which
misses Spectre leakage on realistic designs.10 Cauligi et
al. [42] model RSB using an unrealistic infinite-size stack
structure and thus miss leakage due to RSB overfills.

3.3.2. Sequential Transitions. Given a configuration C and
instruction memory P , the sequential (seq) transition func-
tion δseq(C,P ) = (C ′, O) returns a successor configuration
C ′ and observation O ∈ O. We say that “C sequentially
yields C ′ exposing O,” written C→O

seq C
′. Each configura-

tion has exactly one sequential successor, as there is only
one sequential execution of a program.

3.3.3. Transient Transitions. The transient (t) transition
function δt(C,P ) ⊆ C×O returns a set of (configuration,
observation) pairs, capturing all transient execution steps
that may arise on behalf of some speculation primitive
(§2.2.1). We say “C transiently yields C ′ exposing O,”
written C→O

t C ′, if (C ′, O) ∈ δt(C,P ).
We say an instruction I ∈MI is a speculation primitive

if there exists a configuration C = (R,D, S,CS , T ) satis-
fying R(PC) = I that has both a transient transition (i.e.,
δt(C,P ) ̸= ∅) and a non-faulting sequential transition (i.e.,
δseq(C,P ) ̸= (C,O), §3.4.4). In ASP, speculation primitives
are instances of BNZ, CALL, RET, or LD. Speculative execu-
tion encompasses both sequential and transient execution
(§3.3.4). Thus, we say C (speculatively) yields C ′ exposing
O, written C→OC ′, if C→O

seqC
′ or C→O

t C ′.

3.3.4. Traces. A trace of a program P = (MI ,MD, P,
C0) from an initial configuration C0 ∈ C0 is the sequence
of transitions e = C0→O0 C1→O1 · · ·→On−1 Cn. We use
subscript-i notation to denote components of a configuration
Ci = (Ri, Di, Si,CS i, Ti) at step i of a trace. We say Ii =
Ri(PC), i.e., Ii is the address of the instruction executing
step i. A trace e = C0→O0 · · ·→On−1 Cn is transient (resp.
sequential) at step i if Ti = T (resp. Ti = SEQ). If i is not
specified, assume i = n, i.e., the last step in a trace. We say
an instruction Ii executes transiently (resp. sequentially) if
the trace is transient (resp. sequential) at step i+ 1.

3.4. ASP’s Instruction Execution Semantics

We specialize ASP’s transition functions per instruc-
tion.11 Assume current configuration C=(R,D, S,CS , T ),
program P = (MI ,MD, P,C0), and current instruction
address I=R(PC). If I is unmapped (I ̸∈MI ), the processor
halts (i.e., δseq(C,P )=(C, ε) and δt(C,P )=∅).

10. Consider “a=1; a=0; if (a /*L1*/) b = secret; if
(a /*L2*/) leak(b);” in which secret transiently leaks only if
L1 skips over a=0 (and reads from a=1), but L2 reads from a=0.

11. We use color to distinguish sequential and transient semantics, so
readers should view the paper in color for a better experience.

3.4.1. Conditional Branches (PHT). The BNZ instruction
captures the PHT speculation primitive. Its sequential
transition takes the branch by adding a fixed displacement
d to the PC if the value in register r is nonzero; otherwise, it
falls through to the next instruction. The transient transition
does the opposite, modeling a branch misprediction.
Both transitions expose the labeled branch condition
via observation bnzR(r) and then declassify it before
computing the branch target.

COND. BR. I 7→ BNZ r, d vl = R(r) c = (v ̸= 0) O = bnz vl

I′seq = I + 1 + c · d I′t = I + 1 + (1−c) · d R′
t = R[PC←(I′t )PUB]

R′
seq = R[PC←(I′seq)PUB] C

′
t = C[R←R′

t ;T←T] C′
seq = C[R←R′

seq]

δseq(C,P ) = (C′
seq, O) δt(C,P ) = {(C′

t , O)}

3.4.2. Calls (BTB, IBT). The CALL and ENDBR instructions
together model the BTB speculation primitive and Intel’s
IBT. CALL’s sequential transition checks whether the target
instruction at I ′seq=R(r) is an ENDBR. If so, it jumps to I ′seq;
if not, execution halts due to a CFI violation. A transient
transition may jump to any I ′t 7→ ENDBR in the program
(I ′t ̸=I ′seq). All transitions push the return address Ir = I+1
onto the callstack CS , expose the (sequential) target via
observation callR(r), and declassify the resulting PC.

CALL I 7→ CALL r (I′seq)l = R(r) Ir = I + 1

I′t = {I′t | I′t 7→ ENDBR} \ I′seq CS ′ = (CS :: Ir) O = callR(r)

R′
seq = R[PC←(I′seq)PUB] R′

t = {R[PC←(I′t )PUB] | I′t ∈ I′t}
δseq(C,P ) = (C[R←R′

seq; CS←CS ′], O)

δt(C,P ) = {(C[R←R′
t ; CS←CS ′; T←T], O) | R′

t ∈ R′
t}

The sole purpose of the ENDBR instruction is to mark
valid targets of calls; it executes as a no-op.

ENDBR I 7→ ENDBR R′
seq = R[PC++]

δseq(C,P ) = (C[R←R′
seq], ε) δt(C,P ) = ∅

3.4.3. Returns (RSB, SHSTK). The RET instruction
captures the RSB speculation primitive. If the callstack is
empty, the processor halts execution. Otherwise, it pops
the sequential return address I ′seq off the callstack. The
sequential transition jumps to I ′seq; the transient transition
jumps to any callsite in the program, i.e., any instruction
address I ′t immediately following a CALL.

RETURN I 7→ RET (CS ′ :: I′seq) = CS R′
seq = R[PC←(I′seq)PUB)]

R′
t ={R[PC←(I′t )PUB)] | I′t − 1 7→ CALL} \R′

seq C′=C[CS ← CS ′]

C′
seq = C′[R←R′

seq] C′
t = {C′[R←R′

t ;T←T] | R′
t ∈ R′

t}

δseq(C,P ) =

{
(C, ε) if CS empty
(C′

seq, ε) otherwise
δt(C,P ) = C′

t × {ε}

ASP captures a wider range of transient behaviors
due to RSB than prior work (§3.3.1). Our approach
captures all return predictor implementations that can
predict previously seen return addresses only (e.g., return
stack buffers).

Shadow Stack. CALL/RET semantics and the call-
stack CS together model Intel’s SHSTK. By maintaining
the call stack outside of data memory, ASP prevents stores



from overwriting return addresses, transiently or otherwise.
When ASP executes a RET, it ensures that sequential control
returns to the correct callsite; transient control may return
to another, incorrect callsite.

3.4.4. Loads and Stores (STL). A LD/ST instruction com-
putes its labeled effective address Al = R(ra)+dPUB and
exposes it via observation ld/stAl. Before performing the
memory access, Al is declassified by stripping its label to
produce A (recall that data addresses are unlabeled, §3.1).

Store. Consider a store (ST). If A is unmapped,
then it has one sequential transition that halts execution
(modeling a fault) and one transient transition that executes
as a no-op (modeling out-of-order execution). If A is
mapped, then the store has one sequential transition that
appends the (declassified address, value) pair (A,R(r))
to the speculative store set and no transient transitions.
Data memory D is not updated until a speculation fence
executes (§3.4.5).

STORE I 7→ ST [ra + d], r Al = R(ra) + dPUB O = stAl

S′
seq = (S :: (A,R(r))) R′ = R[PC++]

C′
seq = C[R← R′;S ← S′

seq] C′
t = {(C[R← R′;T ← T], O)}

δseq(C,P ) =

{
(C′

seq, O) if A ∈MD

(C,O) if A ̸∈ MD
δt(C,P ) =

{
∅ if A ∈MD

C′
t if A ̸∈ MD

Load. Consider a load (LD), whose semantics
captures the STL speculation primitive. If A is unmapped,
then it has one sequential transition that halts execution
(modeling a fault) and one transient transition that assigns
zero to its output register (modeling recent Intel processors,
including our workstation [82]). If A is mapped, then the
load has one sequential transition that reads from the most
recent same-address store. It may have more than one
transient transition, each of which reads from a distinct
same-address store in the speculative store set or from data
memory.

LOAD I 7→ LD [ra + d], r
((
A1, (v1)l1

)
, . . . , (An, (vn)ln )

)
= S

Al = R(ra) + dPUB Dseq = D[A1←(v1)ln ; · · · ;An←(vn)ln ]

vseq = Dseq(A) vt = {D(A)} ∪ {(vi)li | Ai = A} O = ldAl

R′
seq = R[PC++; r←vseq] R′

t = {R[PC++; r←vt] | vt ∈ vt}

δseq(C,P ) =

{
(C[R←R′

seq], O) if A ∈MD

(C,O) if A ̸∈ MD

δt(C,P ) =

{
{(C[R←R′

t ;T←T], O) | R′
t ∈ R′

t} if A ∈MD

{(C[R←R[PC++; r ← 0PUB];T←T], O)} if A ̸∈ MD

As with RSB, ASP models STL in an implementation-
agnostic manner. It captures a superset of the STL behaviors
captured by prior execution models (§3.3.1).

NCA/CA accesses. We partition memory accesses into
two classes which differ in their ability to introduce secrets
into transient computation, as we show in §4–5.

Definition 3.1. A memory access I 7→ LD/ST [ra + d], r
is constant-address (CA) if ra ∈ {ZR, SP}; otherwise, I is
non-constant-address (NCA). Furthermore, if ra = ZR, I is
a CA global access, and displacement d is the fixed address

of a global variable. If ra = SP, I is a CA stack access, and
d gives the frame offset of a stack variable.

3.4.5. Speculation Fence. ASP features a speculation
fence instruction, LFENCE, which halts transient execution
but allows sequential execution to proceed. Its semantics
depends on whether the current configuration is sequential
(T = SEQ) or transient (T = T). If it is sequential, LFENCE
drains all stores in the speculative store set S to data
memory, thereby restricting the set of stores that loads may
transiently forward data from (§3.4.4). If it is transient,
execution halts.

SPECULATION FENCE I 7→ LFENCE R′
seq = R[PC++]((

A1, (v1)l1
)
, . . . , (An, (vn)ln )

)
= S

D′
seq = D[A1←(v1)l1 ; · · · ;An←(vn)ln ]

C′
seq = C[R←R′

seq; D←D′
seq; S←()]

δseq(C,P ) =

{
(C, ε) if T = T

(C′
seq, ε) otherwise

δt(C,P ) = ∅

3.4.6. Other Instructions. JMP sequentially jumps to PC+
d+1. OPo represents a class of arithmetic operations (e.g.,
MOV, ADD), parameterized by function o : Vn→V . r⃗s is a
list of input registers; r is the output register. Its sequential
transition assigns r ← oL(R(rs,1), . . . , R(rs,n)). Neither
JMP nor OP have transient transitions. We omit transition
rules here for brevity, but provide them in §A.5.

4. Characterizing Spectre Leakage in Static
Constant-Time Programs

4.1. Speculative Constant-Time

We formalize Spectre leakage of secrets in CT programs
as a violation of the speculative constant-time (SCT) secu-
rity property from prior work [34], [41], [42]. A program
satisfies SCT on ASP if there does not exist a trace that
exposes secret-dependent observations. An SCT violation is
a trace that exposes some secretly-labeled observation O.
Cauligi et al. [42] show that all Spectre attacks manifest as
SCT violations.

Definition 4.1. A program P is SCT iff for all traces e =
C0→O0 · · ·→On Cn+1, no observation Oi is labeled secret
for any 0 ≤ i ≤ n.

4.2. Limitations of Traditional CT

Definition 4.2. A program P is constant-time (CT) iff for all
sequential traces e = C0→O0

seq · · ·→On
seq Cn+1, no observation

Oi is labeled secret for any 0 ≤ i ≤ n.

We observe that two limitations of Def. 4.2 prevent
efficient mitigation of SCT violations in CT programs.

First, a CT program may contain latent CT violations,
such as “if (0) x = A[secret],” that do not mani-
fest in any sequential trace of the program. Such patterns
exhibit compile-time security-type violations by assigning



a secret value (e.g., secret) to a public variable or sup-
plying it to a public operand (e.g., the index operand in
A[secret]). Existing CT compilers [13], [72] detect such
security-type violations during compile-time typechecking.
We introduce a security-typeability requirement (§4.3.2) for
CTS programs, which formalizes the security-type guaran-
tees of a CT program that has passed such typechecks.

Second, CT programs use a Spectre-unaware calling
convention that permits passing secrets by value during calls
and returns. This is inherently unsafe in the presence of
BTB or RSB mispredictions, which can easily leak secret
arguments: the call (resp. return) need only transiently jump
to a procedure (resp. callsite) that expects a public argument
in a register, which it subsequently leaks by supplying it to
a transmitter. Secret argument leakage is difficult to mitigate
efficiently: it forces a mitigation to conservatively assume
all arguments and return values may be transiently secret.
No combination of currently deployed mitigations for the
CT leakage model can fully protect against this kind of
leakage.12

4.3. Static Constant-Time Programming

Definition 4.3. A program P is static constant-time (CTS)
iff it satisfies CT (Def. 4.2) as well as WF (well-formed,
§4.3.1) and TYP (security-typeable, §4.3.2).

We propose static constant-time (CTS) programming,
a strengthening of CT programming which overcomes the
limitations in §4.2. We find that existing CT programs
generally satisfy CTS when compiled with -O3 optimiza-
tions and a carefully selected set of compiler flags. §A.8
provides a full list of these flags for LLVM, which disable
optimizations that are incompatible with CTS, like stack
slot sharing and argument promotion. Using these flags, all
of the cryptographic primitives we benchmark in §6 satisfy
CTS without requiring any source modifications.

4.3.1. Well-Formed. Well-formedness captures the impor-
tant structural and behavioral properties and metadata of
compiled code that can be leveraged by a compiler-based
software mitigation like SERBERUS (§5).

The intraprocedural successors succs(I) ⊆ MI of an
instruction address I ∈MI are defined as:

succs(I) =


∅ if I 7→ RET

{I + 1, I + 1 + d} if I 7→ BNZ r, d

{I + 1 + d} if I 7→ JMP d

{I + 1} otherwise.

A procedure F ⊆MI is a set of instruction addresses
that (i) contains exactly one ENDBR instruction, denoting the
entrypoint; (ii) is closed under intraprocedural succession;
(iii) has a prologue on entry allocating a stack frame of
fixed size kF ; (iv) has an epilogue deallocating the frame
on return; and (v) has only in-bounds stack accesses into its

12. Even if LFENCE/SLH, RETPOLINE, and SSBD are simultaneously
enabled, return values may still leak via RSB speculation.

frame. Fig. 3 shows an example procedure. Fi denotes the
procedure containing the instruction Ii executing in ith step
of a trace.

Definition 4.4 (Well-formed programs WF). A program P
is well-formed if it satisfies the following:
1) Procedures only: P consists of only procedures.
2) Calling convention: P defines a calling convention A :
MI ⇀Rgpr, a map from CALL/RET instructions to the
set of registers used to pass arguments.

3) Data stack: P has a data stack DS ⊆MD, represented
as a set of data addresses, such that (a) the stack pointer
SP is always public and always points into DS in all
traces; (b) no global variables are in stack memory;13

and (c) DS is zero-initialized in all initial configurations.
4) No callee-saved registers: No general-purpose registers

are preserved across procedure calls.
5) No segfaults: No sequential traces access an unmapped

data address outside the stack DS .

4.3.2. Security-Typeable. Intuitively, a well-formed pro-
gram P is security-typeable if each variable can be statically
typed with a security label that is never violated at runtime.14

Note that SERBERUS does not require such a security la-
beling to be explicitly provided as input; SERBERUS does
not require any program annotations whatsoever. Instead,
SERBERUS relies on the following properties afforded by
security-typeable CTS programs to infer an upper bound
on what program variables may hold secret values (i.e.,
secretly-labeled values, §3.1.1) at runtime.

Definition 4.5 (TYP). A program P is security-typeable if
there exists (i) a global variable typing τglob : MG → L
where MG⊆MD is the set of data addresses accessed by
CA global accesses (Def. 3.1); (ii) a stack variable typing
τFstk : [0, kF )→L for each procedure F (recall kF is F ’s
frame size); and (iii) a register variable typing τFreg : R ×
F →L for each procedure F . The typings must also pass
the following typechecking rules (where I is an instruction
in some procedure F ):
1) Conservative: No security type is violated in any se-

quential trace—i.e., no publicly-typed global, stack, or
register variable ever holds a secret value, and no secret
values are read from or written to a publicly-typed stack
variable.

2) Transmitters: All sensitive register operands of transmit-
ters (§3.2) are publicly-typed in τFreg.

3) Load consistency: The destination register of a CA load
I 7→ LD [ZR/SP+d], r from a secretly-typed global/stack
variable is secretly-typed in τFreg.

4) Store consistency: The source register of a CA store I 7→
ST [ZR/SP+d], r to a publicly-typed global/stack variable
is publicly-typed in τFreg.

5) Policy consistency: Publicly-typed global variables in
τglob contain public values in initial configurations of
P .

13. I.e., no CA global loads/stores access the stack DS .
14. Security-typeable is implicitly defined with respect to P’s initial

configuration set C0, which defines P’s security policy (§3.1.3).



6) Always-public registers: The stack pointer SP and pro-
gram counter PC are always publicly-typed in τFreg.

7) Register deps: The output of an OP instruction is secretly-
typed in τFreg iff any input is secretly-typed in τFreg.

8) No-op: Types of registers unmodified by instruction I do
not change in τFreg from I to J ∈ succs(I).

9) Public arguments: All argument registers A(I) at each
I 7→ CALL | RET are publicly-typed in τFreg.

TYP.1–2 imply a CT program in the traditional sense
(per Def. 4.2, proven in §A.1). TYP.1–8 codify the static
security properties of CT programs that prior software-based
mitigations implicitly assume of their input [34] and CT
compilers guarantee of their output [13], resolving the first
limitation in §4.2. TYP.9 resolves the second limitation in
§4.2 by requiring that all secrets arguments be passed by
reference rather than by value; that is, one must pass a public
pointer to a secret rather than the secret value itself.

4.4. Taint Primitives in a CTS Program

We now provide a complete characterization of Spectre
leakage in CTS programs, which gives rise to a powerful
Spectre mitigation approach (§4.4.3).

4.4.1. Dynamic DFG. The dynamic data-flow graph (DFG)
for a trace e is a directed acyclic graph where nodes are
register-step pairs (r, i) and edges (r, i)→e

dep (r
′, j) encode

direct dynamic register or memory dependencies in the trace
as follows:
• No-op: (r, i)→e

dep (r, i+ 1) if r is not modified by Ii.
• Register dependency: (r, i) →e

dep (r′, i + 1) if Ii 7→
OP r′, r⃗s and r ∈ r⃗s.

• Memory dependency: (r, i)→e
dep (r′, j+1) if a store Ii 7→

ST [ra + d], r sources a later load Ij 7→ LD [r′a + d′], r′.
Unlike the prior register dependencies, memory dependen-
cies can span many steps in the trace, since the store/load
may not execute consecutively.

We say (r′, j) is dynamic-dependent on (r, i) if (r, i)→e
dep∗

(r′, j), i.e., (r, i) →e
dep · · · →e

dep (r′, j). We say (r′, j)
is dynamic-dependent on a load Ii 7→ LD [ra+d], r if
(r, i+ 1)→e

dep∗ (r′, j).
We use a one-step delay (r, i+1) to reference the output

of an instruction Ii updating register r (e.g., a load Ii 7→
LD [ra+d], r). This is because the updated register does not
hold its new value until the next configuration, Ci+1.

4.4.2. Taint Primitives.

Definition 4.6. A security-type violation is a register-step
pair (r, i) where r is publicly-typed at Ii (i.e., τFi

reg(r, Ii) =
PUB, Def. 4.5) but r holds a secret value at step i (i.e.,
Ri(r) = vSEC, §3.1.1).

Definition 4.7 (Taint primitives). Instruction Ii executing at
step i in trace e is a taint primitive if there is a security-
type violation at step i + 1 (Def. 4.6) that is not dynamic-
dependent (§4.4.1) on any prior security-type violations.

NCAL: publicly-typed
non-constant-address load

x = *p;
temp = A[x];

NCAS: secretly-typed
non-constant-address store

x = 0;
*p = secret;
temp = A[x];

STKL: publicly-typed
uninitialized stack load

x = 0;
temp = A[x];

NARG: unexpectedly
secret argument

y = secret;
f();
qux(int x):

temp = A[x];

Figure 1: Exactly four kinds of taint primitives introduce transient security
type violations in CTS programs, given our hardware model (§2.3.2). Taint
primitives can be enabled by any speculation primitive. Taint primitives are
underlined; secrets are highlighted; transmitters are red.

Intuitively, Def. 4.7 says a taint primitive is an in-
struction whose execution introduced a new security-type
violation into the computation, since no inputs to Ii violated
their security types but the output of Ii did. Now, we prove
that CTS programs in ASP contain exactly four classes of
taint primitives (see Fig. 1).

Theorem 4.1 (Taint primitives). Every taint primitive Ii in
any trace e can be classified as one of the following transient
instructions (with the register violating its security type at
step i+ 1 in parentheses):
• NCAL: a transient NCA load (output register).
• NCAS: a transient CA load that reads from a transient

NCA store (output register).
• STKL: a transient CA stack load (output register).
• NARG: a transient CALL/RET (non-argument register).

Proof. We will prove the claim directly. Let Ii be a taint
primitive in a trace e. By Def. 4.7, Ii introduces a new
security-type violation in some register r′ at step i+ 1.

Suppose Ii does not modify r′. Then (r′, i) →e
dep

(r′, i + 1) and r′ is secretly-typed at i but publicly-typed
at i + 1 (Def. 4.7). Since the security type of r′ can-
not change intraprocedurally if r′ is unmodified (TYP.8),
Ii 7→ CALL | RET. Secretly-typed r′ cannot be an argument
register (TYP.9), so Ii satisfies NARG.

Suppose Ii modifies r′. First, note that r′ ̸= PC since
ASP’s declassification of transmitter operands (§3.2) ensures
that PC always holds a public value. Only two instructions
modify non-PC registers: OP and LD.

If Ii 7→ OPo r
′, r⃗s, then some input r ∈ r⃗s violated its

security type at i (TYP.7). But (r, i)→e
dep (r′, i+1), so Ii

is not a taint primitive (Def. 4.7), a contradiction.
If Ii 7→ LD [ra+d], r′, then Ii may be an NCA, CA stack,

or CA global load. If Ii is an NCA load (resp. CA stack
load), it satisfies NCAL (resp. STKL). If Ii is a CA global
load, we know it did not read from a CA stack store (WF.3)
or initial memory (TYP.1), so it read from an NCA store
or CA global store. In the former case, the store was not
sequential (TYP.1), satisfying NCAS. In the latter, Ii read
from a CA global store of a prior security type violation
(TYP.4), a contradiction (Def. 4.7).



4.4.3. Mitigating Spectre in CTS Programs.

Corollary 4.1.1. If a CTS program P violates SCT
(Def. 4.1), then there exists a trace in which a transmit-
ter’s sensitive operand is dynamic-dependent on an NCAL,
NCAS, STKL, or NARG taint primitive.

Proof. If P violates SCT, some trace e of P executes a
transmitter Ij at step j with a secretly-labeled sensitive
operand r (Def. 4.1). By TYP.2, r is publicly-typed at Ij ,
so (r, j) is a security-type violation (Def. 4.6). Thus, Ij is
dynamic-dependent on some taint primitive Ii (Def. 4.7).
By Thm. 4.1, Ii is a NCAL, NCAS, STKL, or NARG.

5. SERBERUS: A Compiler Approach for En-
forcing Speculative Constant Time

Cor. 4.1.1 is powerful: to eliminate all Spectre leakage
in a CTS program, a mitigation must simply break all
dynamic dependencies from four classes of taint primitives
(Thm. 4.1) to subsequent transmitters. SERBERUS consists
of three intraprocedural passes (Fig. 2) that do just this.

5.1. SERBERUS’s Fence Insertion Pass

SERBERUS runs the Fence Insertion Pass first to mitigate
all SCT violations due to NCAS and some due to NCAL
taint primitives in each procedure F . We formulate optimal
fence insertion as a graph cut problem over F ’s weighted
transient CFG (§5.1.1): we must eliminate all transient
control-flow paths from sources to sinks (defined in §5.1.3).

5.1.1. Transient CFG. First, SERBERUS constructs a
weighted transient CFG (T-CFG) for F which captures the
set of all transient control-flow paths through F . Unlike a
traditional procedural CFG, the T-CFG captures transient
execution through F and across invocations of F or spurious
RSB-mispredicted returns to F . Nodes are instructions in F .
Edges are defined by the transient successor function:

Ienter = {J ∈F | J 7→ENDBR or J−1 7→CALL}
Iexit = {I ∈ F | I 7→ CALL | RET}

tsuccs(I) =


Ienter if I ∈ Iexit
∅ if I 7→ LFENCE

succs(I) otherwise (§4.3.1)

The T-CFG has the edge I →F
tcfg J iff J ∈ tsuccs(I). We

write I →F
tcfg∗ J to indicate there is a path from I to J in

F ’s T-CFG. Notably, LFENCEs have no transient successors
since they block transient execution (§3.4.5) and are thus
dead-ends in the T-CFG. We compute the weight of an edge
I →∗

tdfg J as w = L/D, where L is the loop nest depth and
D is the depth in the dominator tree of instruction J . This
estimates the relative execution frequency of J and thus the
cost of placing a fence before it. Weights affect optimality
(performance) but not correctness of the min-cut (§5.1.4).

Theorem 5.1 (T-CFG complete). If same-procedure instruc-
tions Ii, Ij ∈ F transiently execute at steps i < j of some
trace of a program P , then Ii →F

tcfg∗ Ij . (Proof. See §A.2.)

5.1.2. Static DFG. Next, SERBERUS constructs a static
DFG for F , which models syntactic intraprocedural depen-
dencies through CA stack accesses and registers. Nodes are
register-instruction pairs (r, I) ∈R×F . Edges (r, I)→F

dep

(r′, J) encode direct register or stack dependencies as fol-
lows:
• No-op: (r, I) →F

dep (r, J) if J ∈ tsuccs(I) and I does
not modify r.

• Register dep: (r, I) →F
dep (r′, I + 1) for each r ∈ r⃗s if

I 7→ OPor
′, r⃗s.

• Stack dep: (r, I) →F
dep (r′, J + 1) if I 7→ ST [SP + d], r

and J 7→ LD [SP+ d], r′; i.e., if I and J are a same-offset
CA stack store and load, then J may read from I .

We say (r′, J) is static-dependent on (r, I) if (r, I)→F
dep∗

(r′, J). Furthermore, we say (r′, J) is static-dependent on
a load I 7→ LD [ra + d], r if (r, I + 1)→F

dep∗ (r′, J).
The static DFG enables SERBERUS to precisely track

how candidate NCAL taint primitives may propagate
security-type violations through intraprocedural dependen-
cies. Note the similarities with dynamic-dependencies
(§4.4.1), like the one-step delay for static DFG nodes refer-
encing an instruction’s output. We use these similarities in
our final proof of SERBERUS’s correctness (Thm. 5.7).

5.1.3. Source-Sink Pair Generation. SERBERUS identifies
five types of intraprocedural source-sink instruction pairs
that can produce SCT violations involving an NCAL or
NCAS primitive when both source and sink execute tran-
siently. The source of each pair is an NCA load/store, which
we conservatively assume may read/write a secret at an ar-
bitrary data address when executed transiently. SERBERUS
accumulates a set S of source-sink pairs as follows.

A source-sink pair (I, J) is added to S for each static
dependency (r, I) →F

dep∗ (r′, J), where I 7→ LD [ra + d], r
(I is an NCA load) and J is (i) a transmitter with sensitive
operand r′ (NCAL-XMIT); (ii) a CALL/RET with argument
r′ ∈ A(J) (NCAL-ARG); or (iii) a CA global store of r′

(NCAL-GLOB). These pairs help SERBERUS prevent NCAL
taint primitives from passing secrets (i) intraprocedurally to
transmitters or (ii) interprocedurally in arguments, or (iii)
enabling stores of secrets to publicly-typed global variables.

A source-sink pair (I, J) is added to S for each NCA
store I paired with (iv) each CA load J (NCAS-CAL) and
(v) each CALL/RET J (NCAS-CTRL). These pairs help SER-
BERUS prevent all candidate NCAS instructions (CA loads)
from (iv) intraprocedurally or (v) interprocedurally reading
from a transient NCA store I .

5.1.4. Fence Insertion. Given the set of source-sink pairs
S (§5.1.3) and the T-CFG for F (§5.1.1), SERBERUS runs
a heuristic minimum directed multicut algorithm (§A.7) to
obtain a near-optimal edge cutset C that prevents (transient)
sources from passing data to sinks. That is, SERBERUS
inserts an LFENCE along each edge (u, v) ∈ C.

5.1.5. Guarantees. SERBERUS’s Fence Insertion Pass pro-
duces a partially mitigated CTS program Pfence that con-
tains no SCT violations caused by NCAS taint primitives



Pin

✓ [CTS]
✗ [SCT]

✗ NCAL ✗ STKL
✗ NCAS ✗ NARG

Thm. 4.1
Cor. 4.1.1

Pfence

✓ [CTS]
✗ [SCT]

∼ NCAL ✗ STKL
✓ NCAS ✗ NARG

Thm. 5.3

Pfps
✓ [CTS] (Cor. 5.4.1)
✗ [SCT]

∼ NCAL ✓ STKL
✓ NCAS ✗ NARG

Thm. 5.5

Psct

✓ [CTS]
✓ [SCT]

✓ NCAL ✓ STKL
✓ NCAS ✓ NARG

Thms.
5.6, 5.7

Fence Insertion
(§5.1)

Function-Private
Stacks (§5.2)

Register
Zeroing (§5.3)

SERBERUS

Figure 2: Given a CTS program Pin (§4.3), SERBERUS runs three passes, each of which provably eliminate a class of taint primitives (§4.4.2). Thm. 5.7
proves all passes together eliminate the final primitive, NCAL and thus the output CTS program Psct satisfies SCT (Def. 4.1).

(✓ in Fig. 2). Some NCAL primitives remain (∼), which
subsequent passes will eliminate.

Theorem 5.2 (Sources execute sequentially). If (Ii, Ik) is
a source-sink pair in a trace of Pfence, Ii did not trap, and
i < k, then some Ij 7→ LFENCE executes between Ii and
Ik, so Ii executed sequentially. (Proof. See §A.3.)

Theorem 5.3 (No NCAS in Pfence). No instructions belong
to NCAS (§4.4.2) in any trace of Pfence.

Proof. Suppose for contradiction some Ik satisfies NCAS in
trace e of Pfence, i.e., Ik is a CA load that read from a prior
transient NCA store Ii. If an instruction Ij 7→ CALL/RET
executes for i<j<k, then (Ii, Ij) is a NCAS-CTRL source-
sink pair. Else, (Ii, Ik) is a NCAS-CAL pair. Either way, Ii
executes sequentially (Thm. 5.2), a contradiction.

5.2. SERBERUS’s Function-Private Stacks Pass

SERBERUS runs the Function-Private Stacks (FPS) Pass
second to eliminate all STKL taint primitives in Pfence, pro-
ducing a functionally-equivalent program Pfps. Our insight
is that SCT violations due to STKL arise due to procedures
reallocating frames on the same data stack. Thus, SERBERUS
statically assigns a private stack to each procedure F on
which only F can allocate stack frames.

5.2.1. Motivation. If procedures share the same data stack,
it is difficult to ensure that a publicly-typed stack access
will not read a secret value transiently. SERBERUS’s solution
is to assign each procedure its own data stack, which is
never reused by another procedure. Thus, a publicly-typed
CA stack load will never transiently read a value from a
different-offset or different-procedure CA stack store.

5.2.2. Implementation. Let F be a procedure with stack
frame size kF . Fig. 3 depicts the code transformation per-
formed by the FPS Pass. Formally, given the input program
Pfence with data stack DS in, we define the output program
Pfps = (Mfps

I ,Mfps
D , Pfps,C

fps
0 ) with data stack DS fps. To

start, we initialize (Pfps,DS fps)← (Pfence,DS in).
Private stack assignment. SERBERUS allocates and

assigns a private stack to F , denoted as PSF . To construct
PSF , we choose a stack base and stack end BF , EF ∈ V
(where EF −BF is a positive multiple of kF ) and set

PSF ← [BF , EF )︸ ︷︷ ︸
usable region

∪ [EF , EF + kF )︸ ︷︷ ︸
underflow region

1 foo: ENDBR
2 + LD [ZR+PSPF ],SP // load private SP
3 SUB SP,SP,kF // frame allocation
4 + MAX SP,SP,BF // prevent overflow
5 + ST [ZR+PSPF ],SP // store private SP
6 ...
7 CALL r1
8 + LD [ZR+PSPF ],SP // load private SP
9 ...

10 ADD SP,SP,kF // frame deallocation
11 + MIN SP,SP,EF // prevent underflow
12 + ST [ZR+PSPF ],SP // store private SP
13 RET

Figure 3: Instructions inserted by SERBERUS’s FPS Pass (indicated with
“+”). Lines 2–5 are the prologue; lines 11–12 are the epilogue. MAX/MIN
are instances of ASP’s OP instruction (§3.4.6).

such that PSF ∩ Mfps
D = ∅. We then map PSF ’s usable

region into data memory (Mfps
D ←M

fps
D ∪ [BF , EF )) and

zero-initialize it in all initial configurations C0 ∈ Cfps
0 ;

however, we leave the underflow region unmapped, since
well-formed procedures never sequentially underflow their
stack. We also add the private stack PSF to the program’s
stack metadata (DS fps←DS fps ∪ PSF , Def. 4.4). Finally,
SERBERUS allocates a global variable PSPF ∈MD to hold
the private stack pointer and initializes it to the stack end
D0[PSPF←EF ] in all initial configurations C0∈Cfps

0 .
Switching private stacks. SERBERUS inserts in-

structions into the prologue and epilogue of F to ensure
it uses its private stack PSF rather than the shared stack.
Prologue: F loads its private stack pointer PSPF (L2 in
Fig. 3) before frame allocation (L3); a lower bounds clip
(L4) prevents stack overflow; and F ’s updated stack pointer
is saved (L5). Post-call: after each CALL, we switch from
the callee’s stack pointer back to F ’s stack pointer (L8).
Epilogue: after frame deallocation (L10), we insert an upper
bounds clip (L11) to restrict any subsequent transient stack
underflows to the underflow region; and F restores its
private stack pointer at procedure entry (L12). Since EF−BF

is a multiple of kF , the bounds clips produce mutually kF -
aligned stack pointers, preventing STKL taint primitives.

5.2.3. Guarantees. SERBERUS’s FPS Pass produces a CTS
program Pfps (Cor. 5.4.1) that has no SCT violations due to
NCAS (Thm. 5.3) or STKL taint primitives (Thm. 5.5).

Theorem 5.4 (Private and aligned stacks). At each CA
stack access Ii in any trace of Pfps, the stack pointer points



inside the current procedure F ’s private stack PSF and is
aligned to F ’s frame size kF . Formally, Ri(SP) ∈ PSF and
Ri(SP) = EF −m · kF for some m ≥ 0. (Proof. See §A.4.)

Corollary 5.4.1. Pfps satisfies CTS.

Proof. Thm. 5.4 implies the stack pointer SP is always in-
bounds of DS fps and so Pfps satisfies WF.3. All other CTS
properties trivially continue to hold for Pfps.

Theorem 5.5 (No STKL in Pfps). No taint primitives
(§4.4.2) belong to STKL in any trace of Pfps.

Proof. Suppose for contradiction some taint primitive Ij 7→
LD [SP+d], r satisfies STKL in a trace of Pfps. Ij read from
a prior secretly-typed same-address store Ii 7→ST [r′a+d

′], r′,
which is neither a transient NCA store (Thm. 5.3), sequential
NCA store (violates TYP.4), nor CA global store (WF.3).

Thus, Ii is a CA stack store. Let (eq. 1) A = Ri(SP) +
d′ = Rj(SP)+d be the effective address of Ii and Ij . Ii and
Ij must be in the same procedure F since they are both in-
bounds accesses to the same private stack (Thm. 5.4). Also
by Thm. 5.4, (eq. 2) Ri(SP) = EF −m′ · kF and (eq. 3)
Rj(SP) = EF −m ·kF for some m,m′ ≥ 0. Eqs. 1–3 imply
d′ − d = kF · (m′ − m) and thus d′ − d = 0 (mod kF ).
Since frame offsets are less than the frame size (WF.3),
d = d′, so Ii and Ij access the same stack variable d. Thus
d (TYP.3) and Ii (TYP.4) are publicly-typed like Ij . We
conclude (r′, i) is a security-type violation but (r′, i)→e

dep

(r, j + 1), thus Ij is not a taint primitive by Def. 4.7, a
contradiction.

5.3. SERBERUS’s Register Cleaning Pass

SERBERUS’s final pass, the Register Cleaning Pass,
eliminates all NARG taint primitives from Pfps to produce
the fully mitigated output program Psct. It inserts instruc-
tions to zero out all non-argument registers (defined by
the calling convention A, Def. 4.4) before each call and
return. Formally, let I be a CALL/RET. If I 7→ CALL r, set
rzero = Rgpr \A(I)\ r; if I 7→RET, set rzero = Rgpr \A(I).
For each rzero ∈ rzero, insert MOV rzero, 0 directly before I .

Theorem 5.6 (No NARG in Psct). No trace of Psct features
any instruction satisfying NARG.

Proof. We publicly zero all non-argument registers before
each CALL/RET, so NARG is never satisfied.

5.4. Proof of SERBERUS’s Correctness

In §5.1–5.3, we proved that SERBERUS’s three passes
eliminate all NCAS, STKL, and NARG taint primitives.
Now, we prove in Thm. 5.7 that the fully mitigated pro-
gram Psct has no NCAL taint primitives and is thus SCT
(Def. 4.1), i.e., does not transiently leak secrets.

Theorem 5.7. Psct satisfies speculative constant-time.

Proof. Suppose for contradiction Psct is not SCT. By
Cor. 4.1.1, a transmitter Il with sensitive operand rxmit

is dynamic-dependent (§4.4.1) on an NCAL taint primitive
(i.e., a transient NCA load, §4.4.2) in some trace e of Psct.
Let Ii 7→ LD [ra+d], rncal be the most recent transient NCA
load to execute on which (rxmit, l) is dynamic-dependent,
and let F be the procedure containing Ii. That is, (rncal, i+
1) →e

dep∗ (rxmit, l), and for all steps k with i < k < l,
Ik 7→ LD [r′a + d′], r′ =⇒ (r′, k + 1) ̸→e

dep∗ (rxmit, l). be
Recall that we use a one-step delay (rncal, i+1) to describe
dependencies to/from the output of a load Ii (§4.4.1).

We will show that there exists a source-sink pair (Ii, Ij)
(i < j ≤ l) which guarantees that Ii executed sequentially
via Thm. 5.2, yielding a contradiction (since Ii is transient
by assumption). There are two cases we consider: either
(rxmit, Il) is or is not static-dependent on Ii.

If (rxmit, Il) is static-dependent on Ii (§5.1.2)—i.e.,
(rncal, Ii+1) →F

dep∗ (rxmit, Il)—then (Ii, Il) is a NCAL-
XMIT source-sink pair and we are done.

Otherwise, there is some dynamic dependency from Ii
to Il not mirrored in a static dependency:

(rncal, i+1)→e
dep∗(r, j) →e

dep (r
′, k+1)→e

dep∗ (rxmit, l)

(rncal, Ii+1)→F
dep∗(r, Ij) ̸→F

dep (r
′, Ik+1) (1)

We will show that (Ii, Ij) forms a source-sink pair. Clearly,
(r, j) →e

dep (r′, k+1) is not an intraprocedural dynamic
register dependency (§4.4.1), or else (r, Ij)→F

dep (r′, Ik+1)
would hold. Thus, it must be a dynamic interprocedural
register dependency or memory dependency, implying (a)
Ij 7→ CALL/RET or (b)–(d) Ij is a store.

(a) Suppose Ij 7→CALL/RET. The Register Cleaning Pass
(§5.3) breaks all dependencies through non-arguments, so
r must be an argument. Thus, (Ii, Ij) forms a NCAL-ARG
source-sink pair and we are done.

(b) If Ij is an NCA store, Ik is a load. Ik must be a CA
load, since we already assumed Ii was the most recent NCA
load. By Thm. 5.3, Ij executed sequentially, thus so did Ii,
contradicting that Ii is a transient NCA load.

(c) If Ij is a CA global store, then (Ii, Ij) is a NCAL-
GLOB source-sink pair and we are done.

(d) Else, Ij 7→ST [SP+d], r is a CA stack store. Ik is not
an NCA load (by assumption, Ii is the most recent NCA
load on which Il depends) or CA global (WF.3). Thus, Ik 7→
LD [SP+d], r′ is a same-offset CA stack load in F (Thm. 5.4),
so (r, Ij)→F

dep (r
′, Ik + 1) = (r′, Ik+1) by the definition of

static stack dependencies (§4.4.1), contradicting Eq. (1).

6. Hardening Software Against Spectre

We produce a code artifact LLSCT, an implementa-
tion of SERBERUS for LLVM 14. We empirically evaluate
LLSCT on a suite of cryptographic primitives to assess its
performance overhead. For comparison, we evaluate three
variants of LLSCT alongside two baseline mitigations and
an insecure baseline NONE. See §A.9 for additional LLVM-
specific LLSCT implementation details.

Baseline Mitigations. Our baseline mitigations,
F+RETP+SSBD and S+RETP+SSBD, layer Spectre mitiga-
tions discussed in §2.2.2. Tab. 1 compares their security



guarantees to SERBERUS. The LLSCT repository contains
evaluations of two additional SLH-based mitigations based
on BladeSLH [34] and UltimateSLH [35].

SERBERUS Variants. To justify our hardware model
(§2.3.2), we implement three LLSCT variants: LLSCT (our
proposal), LLSCT-PSF, and LLSCT-NOSTL.

LLSCT-PSF implements a SERBERUS extension that mit-
igates Spectre-PSF in software (§A.6.1). In general, PSF
implicates all transient loads as taint primitives (§4.4.2),
i.e., all loads may transiently return secrets, as long as the
program has stored a secret since the last LFENCE. Thus, we
expand SERBERUS’s NCAL-XMIT and NCAL-ARG source-
sink pairs (§5.1.3) to encompass all loads (not just NCA
loads) as sources and omit the three other pair types. The
FPS Pass (§5.2) is not needed, since with PSF all stack loads
may transiently return secrets.

LLSCT-NOSTL implements a SERBERUS extension
where STL is disabled, e.g., via SSBD [32]. LLSCT-NOSTL
omits the FPS Pass, since its core motivation is mitigating
Spectre-STL. It is replaced with a lighter-weight Stack Ini-
tialization Pass, which zero-initializes the newly-allocated
stack frame in a procedure’s prologue. A new kind of source-
sink pair CALL-XMIT is added to the Fence Insertion Pass
(§5.1), where sources are CALLs and sinks are transmitters
that are dependent on CA stack loads. This pair captures
that RSB can cause a procedure to execute with the wrong
stack frame featuring mismatching security types.

Transmitters. LLSCT assumes five transmitters: con-
ditional branches, indirect branches (except returns), loads,
stores, and division. ASP already models the first four
(§3.2); §A.6 shows how to extend ASP to capture DIV.

Compilation Setup. All mitigations compile code
with LLVM with -O3 optimizations. All LLSCT variants
pass the -mllvm -sct flag to LLVM to enable relevant
SERBERUS mitigation passes. We link all code using LLD
[111], which supports the -z retpolineplt flag (re-
quired for baseline mitigations using RETPOLINE). When
compiling with LLSCT variants, we disable the following
compiler optimizations which violate CTS requirements
(§4.3): -mllvm -no-stack-slot-sharing, -mno
-red-zone, -mllvm -no-argument-promotion,
-fno-jump-tables. See §A.8 for details.

Hardware Modes. Each mitigation assumes a spe-
cific hardware model to uphold its assumptions (§2.3.2),
which we realize with a set of runtime flags called the hard-
ware mode. We set the hardware mode before executing the
program. NONE assumes mode HWNONE = ∅, i.e., it does
not restrict behavior. F+RETP+SSBD and S+RETP+SSBD
assume mode SSBD = {ssbd} which disables STL.
LLSCT assumes mode ASP = {doitm,rrsbad,psfd,
ibt,shstk} to ensure the processor refines ASP (§3).
LLSCT-NOSTL assumes mode ASP-NOSTL = ASP ∪ SSBD,
which disables STL in ASP. LLSCT-PSF assumes mode
ASP+PSF = ASP \ {psfd}, which enables PSF in ASP.

System and Workloads. We run all experiments on
a 24-core Alder Lake15 Intel® Core™ i9-12900KS proces-

15. While Alder Lake implements weak CET-IBT, we expect comparable
performance on Alder Lake N, which implements strong CET-IBT (§A.10).

sor with 640 KiB L1d, 768 KiB L1i, 14 MiB L2, and 30
MiB L3 caches and 128 GB RAM, running a fork of Linux
v5.9.0 that adds usermode IBT and SHSTK support [112].

We evaluate crypto primitives from Libsodium (Salsa20,
SHA-256) [16]; the verified CT crypto library HACL∗

(ChaCha20, Poly1305, ECDH Curve25519) [17]; and
OpenSSL (SHA-256, ChaCha20, ECDH Curve25519) [15].

7. Results

Fig. 4 compares the performance of our cryptographic
benchmarks when mitigated with LLSCT, its two variants,
and our two baseline mitigations. Performance is normal-
ized to NONE. On average, LLSCT incurs lower overhead
(21.3%) than both baseline mitigations (66.7%/24.9%) for
F/S+RETP+SSBD). Fig. 4 also decomposes LLSCT’s overhead
into four components: Fence Insertion (“f,” §5.1), Function-
Private Stacks (§5.2), Register Cleaning (§5.3), and SER-
BERUS’s ASP hardware mode (§6). Unsurprisingly, the over-
head of fence insertion dominates overhead in all cases,
whereas the overhead of FPS, register cleaning, and the ASP
hardware model are negligible (and are thus unlabeled).

Large Buffers. Cryptographic code features
arithmetic-heavy loops for common operations
like encryption, decryption, hashing, and message
authentication. Thus, loop performance is crucial for
overall cryptographic code performance. LLSCT introduces
half the overhead (7.1%) of the next best mitigation,
S+RETP+SSBD (14.1%), for large buffer sizes (8 KB).
This is because SERBERUS’s loop-aware transient CFG
construction (§5.1.1) prioritizes placing LFENCEs outside
of loops in its Fence Insertion Pass; both baselines require
placing mitigations inside of loops.

LLSCT Variants. Both LLSCT-NOSTL and LLSCT-
PSF perform much worse than LLSCT, in the worst case
(OpenSSL SHA-256 64B) incurring 599.7% and 646.3%
overhead, respectively. Since neither variant uses FPS, they
add new source-sink pairs (§6) which require inserting
more fences, tripling (63.1%/65.8%) the overhead relative
to LLSCT (21.3%). Clearly, FPS and SERBERUS’s default
selection of source-sink pairs are essential to LLSCT’s effi-
ciency. Secondly, there is no clear way to adapt SERBERUS
to mitigate Spectre-PSF fully in software while maintain-
ing SERBERUS’s low overhead. We conclude that the ASP
hardware model is the best fit for the SERBERUS approach,
striking the ideal balance between enabling speculation
primitives that can be efficiently mitigated in software (PHT,
BTB, RSB, STL) and disabling those that cannot (PSF).

Baseline Mitigations. As expected, F+RETP+SSBD
performs worse than S+RETP+SSBD and LLSCT overall,
since inserting LFENCEs after every conditional branch is
expensive [106]. However, S+RETP+SSBD sometimes per-
forms worse than F+RETP+SSBD. For Libsodium’s SHA-
256 (8KB), S+RETP+SSBD’s overhead is over 10%/35%
more than F+RETP+SSBD’s/LLSCT’s. Fig. 4 shows that in
this case, enabling SSBD on top of SLH+RETPOLINE (which
exhibits 12.7% overhead) incurs significant additional over-
head (26.1%). In contrast, enabling SSBD for the insecure



libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

100

ov
er

he
ad

 (\
%

)

f
99

.9

f
r

70
.6

f
26

.8

f
19

.7

f
10

4.
6

f
18

.7

f
26

9.
8

f
45

.2

f
12

2.
8

f 1
0.

2 f
66

.7

f
58

.6

1.
6 s

r
ss

bd
69

.5

s
ss

bd
38

.8

r
16

.0

1.
6

s
19

.8 s
r

11
1.

6

5.
9

s
11

.7

9.
6

s
24

.9

14
.1

f
24

.7

f
36

.6

0.
1 f

20
.4

1.
5

f
15

3.
8

f
59

9.
7

f
12

.9

f
36

.9 f
13

2.
3

f
63

.1

f
13

.6

f
16

.4

f
34

.8

-0
.2 f
17

.9

1.
5

f
16

7.
5

f
64

6.
3

f
14

.2

f
40

.7

f
16

1.
2

f
65

.8

f
13

.9

f
13

.9

f
16

.5

1.
5

f
16

.1

0.
9

f
16

.0

f
19

6.
6

3.
8 11

.2

7.
1

f
21

.0

6.
5

f
14

.0

f
16

.8

1.
6

f
16

.2

0.
9

f
15

.7

f
19

6.
2

6.
2 11

.2

7.
1

f
21

.3

7.
1

f+retp+ssbd
s+retp+ssbd
llsct-nostl

llsct-psf
llsct-sls (§A.6.1)
llsct

Figure 4: Runtime overheads of mitigations for crypto primitives in Libsodium, HACL∗, and OpenSSL relative to code compiled with
no mitigations. Segments within the same bar indicate the additional overhead incurred by layering on the mitigation component. We
label components with ≥15% overhead (“f” = LFENCE, “s” = SLH, “r” = RETPOLINE, “ssbd” = SSBD speculation control). Total percent
overhead is at the top of each bar. Overheads >100% are cut off.

baseline NONE incurs < 1% overhead. This difference is
likely due to the complexity that SLH’s masking operations
introduce into the address calculation of stores; with SSBD,
stores must wait for longer to perform.

Hardware Modes. The top segment of each bar in
Fig. 4 indicates the overhead of the mitigation’s hardware
mode (§6) when layered on top of its software mitigations.
The average overheads across all/8KB benchmarks for each
are the following: 1.7%/0.9% for F+RETP+SSBD with SSBD;
5.5%/4.9% for S+RETP+SSBD with SSBD; 2.9%/1.6% for
LLSCT-NOSTL with ASP-NOSTL; 0.8%/0.3% for LLSCT-PSF
with ASP+PSF; and 1.9%/2.3% for LLSCT with ASP.

8. Related Work and Conclusions

Several works study detection, formal foundations, and
mitigation of Spectre attacks [25], [113].

Software Detection. Symbolic execution [41], [42],
[48], [102], [114], [115] is the most widely used technique to
detect Spectre vulnerabilities in programs. However, existing
detection tools do not scale well to large programs or to
new speculation primitives. For example, none can detect
Spectre-BTB vulnerabilities due to limitations of always-
mispredict semantics [25], [41], [102]. Other approaches
include fuzzing [116]–[118] or static analysis [119], [120].

Formal Foundations. Recent work deploys formal
techniques to model and mitigate Spectre attacks [26],
[34], [42], [101]–[103], [103], [104], [107]. Patrignani and
Guarnieri [103] and Shivakumar et al. [107] both use for-
mal models to demonstrate that LLVM’s SLH mitigation is
incomplete for Spectre-PHT. Fabian et al. [48] define an ex-
tensible framework for composing semantics for individual
speculation primitives to model and detect Spectre leakage
due to their combinations. Mosier et al. [120] and Ponce-de-
León and Kinder [27] take an axiomatic approach inspired
by memory consistency models to model and detect program
instructions that may transiently access or leak secrets.

Software Mitigation. Few compiler-based Spectre
mitigation proposals [25] are formally grounded [34] or
protect against multiple Spectre variants [36], [121]. Some
detection tools [105], [120] can mitigate detected Spectre
vulnerabilities but do not evaluate the performance of the
resulting program. None of these mitigations are readily
deployable in an existing toolchain, in contrast with LLVM’s
LFENCE and SLH mitigations (§6).

Conclusions. We present SERBERUS, the first com-
prehensive mitigation for existing hardware that prevents all
Spectre-PHT/BTB/RSB/STL/PSF leakage in CTS programs.
We prove SERBERUS’s correctenss using our operational
semantics, ASP, and implement it as a code artifact, LLSCT,
in the LLVM compiler infrastructure. We evaluate LLSCT on
a suite of cryptographic primitives from Libsodium, HACL∗,
and OpenSSL, and demonstrate significant performance and
security improvements over the state-of-the-art.

Acknowledgment

This work was supported in part by the National Sci-
ence Foundation (NSF) under award numbers CNS-2153936
and CAREER CCF-2236855; by a gift from Intel; and by
the German Federal Ministry of Education and Research
(BMBF) through funding for the CISPA-Stanford Center for
Cybersecurity (FKZ: 13N1S0762). We thank the anonymous
reviewers for their valuable feedback during the review
process. We also thank Carlos Rozas and Jason Brandt from
Intel for clarifying the technical implementation details of
Intel CET-IBT.

References

[1] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,”
in Public Key Cryptography, M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, Eds., 2006.

[2] ——, “The poly1305-aes message-authentication code,” in Fast
Software Encryption, H. Gilbert and H. Handschuh, Eds., 2005.

[3] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: Automatic detection and removal of control-
flow side channel attacks,” in Information Security and Cryptology,
D. H. Won and S. Kim, Eds., 2006.

[4] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
Functional encryption using intel sgx,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security,
2017.

[5] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “Sgx-bigmatrix: A
practical encrypted data analytic framework with trusted processors,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[6] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez,
and I. Stoica, “Opaque: An oblivious and encrypted distributed
analytics platform,” in 14th USENIX Symposium on Networked
Systems Design and Implementation, 2017.



[7] S. Eskandarian and M. Zaharia, “Oblidb: Oblivious query processing
for secure databases,” Proc. VLDB Endow., 2019.

[8] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix:
An efficient oblivious search index,” in IEEE Symposium on Security
and Privacy, 2018.

[9] S. Tople and P. Saxena, “On the trade-offs in oblivious execution
techniques,” in Detection of Intrusions and Malware, and Vulnera-
bility Assessment, M. Polychronakis and M. Meier, Eds., 2017.

[10] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace: Oblivious
memory primitives from intel sgx,” in Network and Distributed
Systems Security, 2018.

[11] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A
data oblivious filesystem for intel sgx,” in Network and Distributed
System Security Symposium, 2018.

[12] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sut-
ter, “Practical mitigations for timing-based side-channel attacks on
modern x86 processors,” in 30th IEEE Symposium on Security and
Privacy, 2009.

[13] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang,
R. Jhala, and D. Stefan, “Fact: A flexible, constant-time program-
ming language,” in IEEE Cybersecurity Development, 2017.

[14] S. Dinesh, G. Garrett-Grossman, and C. W. Fletcher, “SynthCT:
Towards portable constant-time code,” in NDSS, 2022.

[15] “OpenSSL: Cryptography and SSL/TLS toolkit,” 2021, https://www.
openssl.org/.

[16] F. Denis, “libsodium,” 2019, https://github.com/jedisct1/libsodium.

[17] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“Hacl*: A verified modern cryptographic library,” in Proceedings of
the ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[18] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt): A comprehensive protec-
tion for speculatively accessed data,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture, 2019.

[19] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,”
in IEEE Symposium on Security and Privacy, 2015.

[20] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic
evaluation of transient execution attacks and defenses,” in 28th
USENIX Security Symposium, 2019.

[21] M. Miller, “Mitigating speculative execution side channel
hardware vulnerabilities,” 2018, https://msrc.microsoft.com/blog/
2018/03/mitigating-speculative-execution-side-channel-hardware-
vulnerabilities/.

[22] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy, 2019.

[23] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-
Ghazaleh, “Spectre returns! Speculation attacks using the return
stack buffer,” 12th USENIX Workshop on Offensive Technologies,
2018.

[24] J. Horn, “Speculative execution, variant 4: Speculative store by-
pass,” 2018, https://bugs.chromium.org/p/project-zero/issues/detail?
id=1528.

[25] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan,
“Sok: Practical foundations for software spectre defenses,” in IEEE
Symposium on Security and Privacy, 2022.

[26] R. Guanciale, M. Balliu, and M. Dam, “InSpectre: Breaking and
fixing microarchitectural vulnerabilities by formal analysis,” in Pro-
ceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security, 2020.

[27] H. P. de León and J. Kinder, “Cats vs. spectre: An axiomatic
approach to modeling speculative execution attacks,” in Proceedings
of the 43rd IEEE Symposium on Security and Privacy, 2022.

[28] Intel, “Analysis of Speculative Execution Side Channels,” 2018,
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/
Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf.

[29] C. Carruth, “Cryptographic software in a post-spectre world. talk
at the real world crypto symposium.” https://chandlerc.blog/talks/
2020 post spectre crypto/post spectre crypto.html, 2020, accessed
October 2022.

[30] P. Turner, “Retpoline: a software construct for preventing branch-
target-injection.” https://support.google.com/faqs/answer/7625886,
2018.

[31] Intel, “Branch History Injection and Intra-mode Branch Target
Injection / CVE-2022-0001, CVE-2022-0002 / INTEL-SA-00598,”
2022, https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/technical-documentation/
branch-history-injection.html.

[32] Intel, “Speculative store bypass,” https://www.intel.com/content/
www/us/en/developer/articles/technical/software-security-guidance/
advisory-guidance/speculative-store-bypass.html, 2018.

[33] Intel, “Fast store forwarding predictor,” 2022, https://www.intel.com/
content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/fast-store-forwarding-
predictor.html.

[34] M. Vassena, C. Disselkoen, K. v. Gleissenthall, S. Cauligi, R. G.
Kıcı, R. Jhala, D. Tullsen, and D. Stefan, “Automatically eliminating
speculative leaks from cryptographic code with blade,” Proceedings
of the ACM on Programming Languages, 2021.

[35] Z. Zhang, G. Barthe, C. Chuengsatiansup, P. Schwabe, and
Y. Yarom, “Ultimate slh: Taking speculative load hardening to the
next level,” in 32nd USENIX Security Symposium, 2023.

[36] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. John-
son, Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham,
D. Tullsen, and D. Stefan, “Swivel: Hardening WebAssembly against
spectre,” in 30th USENIX Security Symposium, 2021.

[37] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“Nda: Preventing speculative execution attacks at their source,” in
Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

[38] R. Choudhary, J. Yu, C. Fletcher, and A. Morrison, “Speculative
privacy tracking (spt): Leaking information from speculative exe-
cution without compromising privacy,” in 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021.

[39] J. Yu, L. Hsiung, M. E. Hajj, and C. W. Fletcher, “Data oblivious
ISA extensions for side channel-resistant and high performance com-
puting,” in 26th Annual Network and Distributed System Security
Symposium, 2019.

[40] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and
D. Gruss, “Context: A generic approach for mitigating spectre,” in
Network and Distributed System Security Symposium, 2020.

[41] L.-A. Daniel, S. Bardin, and T. Rezk, “Hunting the haunter-efficient
relational symbolic execution for spectre with haunted relse,” in
NDSS 2021-Network and Distributed Systems Security, 2021.

[42] S. Cauligi, C. Disselkoen, K. v. Gleissenthall, D. Tullsen, D. Stefan,
T. Rezk, and G. Barthe, “Constant-time foundations for the new
spectre era,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2020.

[43] V. Shanbhogue, D. Gupta, and R. Sahita, “Security analysis of
processor instruction set architecture for enforcing control-flow
integrity,” in Proceedings of the 8th International Workshop on
Hardware and Architectural Support for Security and Privacy, 2019.

[44] “Security analysis of amd predictive store forwarding,”
https://www.amd.com/system/files/documents/security-analysis-
predictive-store-forwarding.pdf, 2021, accessed: 2022-10-18.

https://www.openssl.org/
https://www.openssl.org/
https://github.com/jedisct1/libsodium
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://chandlerc.blog/talks/2020_post_spectre_crypto/post_spectre_crypto.html
https://chandlerc.blog/talks/2020_post_spectre_crypto/post_spectre_crypto.html
https://support.google.com/faqs/answer/7625886
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html


[45] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations.” in USENIX Security
Symposium, 2016.

[46] Intel, “Cpuid enumeration and architectural msrs,”
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/technical-documentation/
cpuid-enumeration-and-architectural-msrs.html, 2022.

[47] Intel, “Data Operand Independent Timing Instruction Set
Architecture (ISA) Guidance,” 2023, https://www.intel.com/content/
www/us/en/developer/articles/technical/software-security-guidance/
best-practices/data-operand-independent-timing-isa-guidance.html.

[48] X. Fabian, M. Guarnieri, and M. Patrignani, “Automatic detection
of speculative execution combinations,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security,
2022.

[49] D. J. Bernstein, “Cache-timing attacks on aes,” The University of
Illinois at Chicago, Tech. Rep., 2005.

[50] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games—bringing
access-based cache attacks on AES to practice,” 2011 IEEE Sympo-
sium on Security and Privacy (S&P), 2011.

[51] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware
performance counters,” in 2008 5th Workshop on Fault Diagnosis
and Tolerance in Cryptography, 2008.

[52] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache storage
channels: Alias-driven attacks and verified countermeasures,” 2016
IEEE Symposium on Security and Privacy (S&P), 2016.

[53] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: The case of AES,” 2006 The Cryptographers’ Track at
the RSA Conference on Topics in Cryptology (CT-RSA), 2006.

[54] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” 23rd USENIX Security
Symposium, 2014.

[55] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA,” IACR’16, 2016.

[56] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack Directories, Not Caches: Side Channel Attacks
in a Non-Inclusive World,” in IEEE S&P, 2019.

[57] O. Aciicmez, J.-P. Seifert, and C. K. Koc, “Predicting secret keys
via branch prediction,” IACR’06, 2006.

[58] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Pono-
marev, “Branchscope: A new side-channel attack on directional
branch predictor,” 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems, 2018.

[59] J. Großschädl, E. Oswald, D. Page, and M. Tunstall, “Side-channel
analysis of cryptographic software via early-terminating multiplica-
tions,” in ICISC’09, 2009.

[60] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and
N. Tuveri, “Port contention for fun and profit,” IACR’18, 2018.

[61] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “Mem-
Jam: A False Dependency Attack Against Constant-Time Crypto
Implementations,” International Journal of Parallel Programming,
2019.

[62] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” 2015 IEEE
Symposium on Security and Privacy, 2015.

[63] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX,” in CCS ’17,
2017.

[64] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with TLB
Attacks,” in USENIX Security’18, 2018.

[65] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,”
in USENIX Security’16, 2016.

[66] J. R. S. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison,
D. Kohlbrenner, and C. W. Fletcher, “Opening pandora’s box: A
systematic study of new ways microarchitecture can leak private
data,” in 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture, 2021.

[67] S. Mangard, “A simple power-analysis (SPA) attack on implemen-
tations of the aes key expansion,” 5th International Conference on
Information Security and Cryptology, 2003.

[68] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder,
“Acoustic side-channel attacks on printers,” 19th USENIX Security
Symposium, 2010.

[69] N. Homma, T. Aoki, and A. Satoh, “Electromagnetic information
leakage for side-channel analysis of cryptographic modules,” 2010
IEEE International Symposium on Electromagnetic Compatibility,
2010.

[70] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO’99, 1999.

[71] A. Sayakkara, N.-A. Le-Khac, and M. Scanlon, “A survey of
electromagnetic side-channel attacks and discussion on their case-
progressing potential for digital forensics,” Digital Investigation,
2019.

[72] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “Ct-
wasm: type-driven secure cryptography for the web ecosystem,”
Proceedings of the ACM on Programming Languages, 2019.

[73] “Mbed TLS,” 2023, https://www.trustedfirmware.org/projects/
mbed-tls/.

[74] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Four-
net et al., “Evercrypt: A fast, verified, cross-platform cryptographic
provider,” in IEEE Symposium on Security and Privacy, 2020.

[75] L.-A. Daniel, S. Bardin, and T. Rezk, “Binsec/rel: Efficient relational
symbolic execution for constant-time at binary-level,” in 2020 IEEE
Symposium on Security and Privacy (SP), 2020.

[76] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie,
and A. Trieu, “Formal verification of a constant-time preserving c
compiler,” Cryptology ePrint Archive, 2019.

[77] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie,
“System-level non-interference for constant-time cryptography,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, 2014.

[78] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. La-
porte, T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y. Strub, “Jasmin:
High-assurance and high-speed cryptography,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[79] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers,
K. Liao, and B. Parno, “Sok: Computer-aided cryptography,” in 2021
IEEE symposium on security and privacy (SP), 2021.

[80] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[81] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” 27th USENIX Security Symposium,
2018.

[82] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi:
Hijacking transient execution through microarchitectural load value
injection,” in IEEE Symposium on Security and Privacy, 2020.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.trustedfirmware.org/projects/mbed-tls/
https://www.trustedfirmware.org/projects/mbed-tls/


[83] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout:
Leaking data on meltdown-resistant cpus,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Secu-
rity, 2019.

[84] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data
load,” in 2019 IEEE Symposium on Security and Privacy, 2019.

[85] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary
data sampling,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019.

[86] “Affected processors: Guidance for security issues on intel
processors,” https://www.intel.com/content/www/us/en/developer/
topic-technology/software-security-guidance/processors-affected-
consolidated-product-cpu-model.html, accessed: 2023-03-29.

[87] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible in
the cache hierarchy,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[88] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019.

[89] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative ex-
ecution processors,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[90] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay
and value prediction,” in Proceedings of the 46th International
Symposium on Computer Architecture, 2019.

[91] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional spec-
ulation: An effective approach to safeguard out-of-order execution
against spectre attacks,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2019.

[92] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in Proceedings of
the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, 2020.

[93] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An” undo” ap-
proach to safe speculation,” in Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture, 2019.

[94] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in
Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019.

[95] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. De-
vadas, “Mi6: Secure enclaves in a speculative out-of-order pro-
cessor,” in Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture, 2019.

[96] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative data-oblivious execution: Mobilizing safe prediction for
safe and efficient speculative execution,” in ACM/IEEE 47th Annual
International Symposium on Computer Architecture, 2020.

[97] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
shield: Shielding speculative data from microarchitectural covert
channels,” in 2019 28th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), 2019.

[98] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “Dolma: Securing speculation with the principle of
transient non-observability.” in USENIX Security Symposium, 2021.

[99] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows:
Attacks and defenses,” CoRR, vol. abs/1807.03757, 2018, http:
//arxiv.org/abs/1807.03757.

[100] A. Bhattacharyya, A. Sánchez, E. M. Koruyeh, N. Abu-Ghazaleh,
C. Song, and M. Payer, “SpecROP: Speculative exploitation of ROP
chains,” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), 2020.

[101] G. Barthe, S. Cauligi, B. Grégoire, A. Koutsos, K. Liao, T. Oliveira,
S. Priya, T. Rezk, and P. Schwabe, “High-assurance cryptography
in the spectre era,” in IEEE Symposium on Security and Privacy,
2021.

[102] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,”
in 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[103] M. Patrignani and M. Guarnieri, “Exorcising spectres with secure
compilers,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021.

[104] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila, “Hardware-software
contracts for secure speculation,” in 2021 IEEE Symposium on
Security and Privacy, 2021.

[105] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan, “A formal
approach to secure speculation,” in 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF), 2019.

[106] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer,
“You shall not bypass: Employing data dependencies to prevent
bounds check bypass,” CoRR, vol. abs/1805.08506, 2018. [Online].
Available: http://arxiv.org/abs/1805.08506

[107] B. A. Shivakumar, J. Barnes, G. Barthe, S. Cauligi, C. Chuengsatian-
sup, D. Genkin, S. O’Connell, P. Schwabe, R. Q. Sim, and Y. Yarom,
“Spectre declassified: Reading from the right place at the wrong
time,” in IEEE Symposium on Security and Privacy, 2023.

[108] J. Wikner and K. Razavi, “Retbleed: Arbitrary speculative code
execution with return instructions,” in 31st USENIX Security Sym-
posium, 2022.

[109] Intel, “Retpoline: A branch target injection mitigation.” https://
www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/technical-documentation/retpoline-
branch-target-injection-mitigation.html, 2018.

[110] K. Philips, A. Arcangeli, T. Chen, and L. Bulwahn, “Spec-
tre side channels,” 2023, https://www.kernel.org/doc/html/latest/
sources/admin-guide/hw-vuln/spectre.rst.txt.

[111] “Lld - the llvm linker,” https://lld.llvm.org, accessed: 2022-10-17.

[112] Y. Yu, “linux cet,” https://github.com/yyu168/linux cet.git, 2021.

[113] W. Xiong and J. Szefer, “Survey of transient execution attacks and
their mitigations,” ACM Computing Surveys (CSUR), 2021.

[114] G. Wang, S. Chattopadhyay, A. K. Biswas, T. Mitra, and A. Roy-
choudhury, “Kleespectre: Detecting information leakage through
speculative cache attacks via symbolic execution,” ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 2020.

[115] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo,
“Specusym: Speculative symbolic execution for cache timing leak
detection,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020.

[116] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “Specfuzz:
Bringing spectre-type vulnerabilities to the surface,” in 29th USENIX
Security Symposium, 2020.

[117] O. Oleksenko, C. Fetzer, B. Köpf, and M. Silberstein, “Revizor:
Testing black-box cpus against speculation contracts,” in Proceed-
ings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2022.

[118] H. Nemati, P. Buiras, A. Lindner, R. Guanciale, and S. Jacobs, “Val-
idation of abstract side-channel models for computer architectures,”
in Computer Aided Verification, 2020.

[119] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roy-
choudhury, “oo7: Low-overhead defense against spectre attacks via
program analysis,” IEEE Transactions on Software Engineering,
2019.

http://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1805.08506
https://www.kernel.org/doc/html/latest/_sources/admin-guide/hw-vuln/spectre.rst.txt
https://www.kernel.org/doc/html/latest/_sources/admin-guide/hw-vuln/spectre.rst.txt
https://lld.llvm.org
https://github.com/yyu168/linux_cet.git


[120] N. Mosier, H. Lachnitt, H. Nemati, and C. Trippel, “Axiomatic
hardware-software contracts for security,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, 2022.

[121] Z. Shen, J. Zhou, D. Ojha, and J. Criswell, “Restricting control flow
during speculative execution,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, 2018.

[122] ARM, “Straight-Line Speculation,” 2020, https://developer.arm.com/
documentation/102825/0100/?lang=en.

[123] M.-C. Costa, L. Létocart, and F. Roupin, “Minimal multicut and
maximal integer multiflow: a survey,” European Journal of Opera-
tional Research, vol. 162, no. 1, pp. 55–69, 2005.

[124] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian journal of Mathematics, vol. 8, pp. 399–404, 1956.

[125] LLVM Project, “The LLVM Target-Independent Code Generator,”
2023, https://www.llvm.org/docs/CodeGenerator.html.

Appendix A.
Supplemental Material

A.1. Proof that CTS is a Strengthening of CT

Theorem A.1. If a program P for ASP satisfies CTS
(Def. 4.3), then it also satisfies CT (Def. 4.2).

Proof. We prove the contrapositive. Suppose a sequential
trace e contains a CT violation, i.e., it exposes a secretly-
labeled sensitive operand rxmit of some transmitter Ii via
observation Oi. By CTS rule TYP.2, rxmit must be publicly-
typed at Ii (i.e., τFi

reg(rxmit, Ii) = PUB). Thus, e violates the
public type of rxmit by sequentially assigning it a secret
value, violating CTS rule TYP.1. Thus, P is not CTS.

A.2. Proof of Theorem 5.1

Proof. Let Ii ∈ F , and let Ij ∈ F (i < j) be the next
executed instruction belonging to F in some trace e (i.e.,
for all l where i<l<j, Il ̸∈F ). We will show that Ii = Ij
or Ij ∈ tsuccs(Ii) and thus Ii →F

tcfg∗ Ij . The claim follows
due to the transitivity of →F

tcfg∗.
If Ii halts execution (i.e., Ci = Ci+1) due to an LFENCE

or trap, then clearly Ij = Ii, so we are done.
Now, suppose Ii 7→ CALL | RET. Then Ii ∈ Iexit and

the instruction that executed before Ij must have been a
Ij−1 7→ CALL | RET instruction in order to have re-entered
F at step j. Thus, Ij is a ENDBR or post-CALL instruction
(due to ASP’s control-flow restrictions, §3.4.2–3.4.3), and
so Ij ∈ Ienter. Thus, Ij ∈ tsuccs(Ii), so we are done.

Else, the instruction executing after Ii is in the same pro-
cedure, or Ii+1 ∈ F , so Ii+1 = Ij . Since Ii+1 ∈ succs(Ii),
Ii+1 = Ij ∈ tsuccs(Ii) by definition (§5.1.1).

A.3. Proof of Theorem 5.2

Proof. Let (Ii, Ik) be a source-sink pair, and suppose for
contradiction that Ii executed transiently. By Thm. 5.1, there
is a path Ii →F

tcfg∗ Ik in the T-CFG for F . Furthermore,
since Ii did not trap, the path is non-trivial (i.e., for some
i ≤ j < j′ ≤ k, Ij →F

tcfg Ij′). SERBERUS’s Fence Insertion

Pass inserted an LFENCE along all paths in the T-CFG from
Ii to Ik (§5.1.4), thus Ii →F

tcfg∗ Ij →F
tcfg∗ Ik for some Ij 7→

LFENCE (i < j < k). Recall that LFENCEs halt transient
execution (§3.4.5), so Ij = Ik. Thus, Ik is not a sink (i.e.,
the real sink did not execute), a contradiction.

A.4. Proof of Theorem 5.4

Proof. It suffices to show that each private stack pointer
(PSP) load Ik 7→ LD [ZR+PSPF ], SP inserted by the FPS Pass
at procedure (re-)entrypoints (L2 or L8 in Fig. 3) returns an
in-bounds and aligned value for the current procedure F .

We use the following predicate to capture whether SP
is in-bounds and aligned at step i, where Ii is in procedure
F (recall from §5.2 that BF , EF , and kF denote F ’s stack
base, stack end, and frame size, respectively):

Q(i) : ∃m ≥ 0, BF ≤ Ri(SP) = EF −m · kF .

We show that the result of each PSP load Ik satisfies Q(k+
1) by induction on the number of such loads.

Base case. If Ik is the first PSP load to execute, it
executed in the prologue (L2) of the first procedure, before
any stores have executed. Thus, Ik read from initial mem-
ory, which the FPS Pass initialized to D0(PSPF ) = EF .
Therefore, Q(k + 1) is satisfied for m = 0.

Inductive step. Suppose that for all PSP loads Ii execut-
ing before Ik (i < k), Q(i+1) is satisfied (i.e., they return an
in-bounds and aligned PSP for their respective procedures).

If Ik read from initial memory, Q(k + 1) holds for the
same reason as in the base case. Otherwise, Ik read from a
prior same-address store Ij .

Suppose for contradiction Ij is an NCA store. The
FPS Pass only inserts a PSP load Ik after a procedure
(re)entrypoint, so some CALL/RET executed between Ij
and Ik, forming a NCAS-CTRL source-sink pair. Thus, Ij
executed sequentially (Thm. 5.2). This implies Ij in Pin

sequentially wrote to global address PSPF , which was un-
mapped prior to the FPS Pass, contradicting WF.5.

Suppose for contradiction Ij is a CA stack store in
some procedure G. Since Ik is a CA global load, the PSP
load Ii directly preceding Ij read an out-of-bounds PSP
that pointed into global memory. So, Ri+1(SP) ̸∈ PSG, a
contradiction of the inductive hypothesis that Q(i+1) holds.

Thus, Ij is a CA global store. Furthermore, it is the
PSP store Ij 7→ ST [ZR + PSPF ], SP (L5, L12), since only
instructions inserted by the FPS Pass access PSP global
variables which were newly allocated in Pfps.

Let Ii be the PSP load that directly preceded Ij in F .
If Ij is in the prologue, then Ij−3 = Ii, Ij−2, Ij−1, and
Ij correspond to L2–5 in Fig. 3. Applying the inductive
hypothesis that Q(i+1) holds, Ri+1(SP) = Rj−2(SP) =
EF −m · kF for some m≥0. After frame allocation Ij−2,
Rj−1(SP)=EF −(m+1) ·kF . The bounds clip Ij−1 ensures
BF ≤ Rj(SP)=EF − (m+ d) · kF for a d ∈ {0, 1}. Thus,
Q(j) holds. Since the PSP load Ik read from the PSP store
Ij , Q(k+1) holds as well, and we are done. If Ij is in the
epilogue (L12), the argument is analogous.

https://developer.arm.com/documentation/102825/0100/?lang=en
https://developer.arm.com/documentation/102825/0100/?lang=en
https://www.llvm.org/docs/CodeGenerator.html


A.5. Additional Instruction Semantics

ARITHMETIC OP I 7→ OPo r, r⃗s vl = oL(R(rs,1), . . . , R(rs,n))

R′
seq = R[PC++; r←vl] C′

seq = C[R←R′
seq]

δseq(C,P ) = (C′
seq, ε) δt(C,P ) = ∅

UNCOND. JUMP I 7→ JMP d R′
seq = R[PC← R(PC) + 1 + dPUB]

δseq(C,P ) = (C[R←R′
seq], ε) δt(C,P ) = ∅

A.6. Extending ASP and SERBERUS

A.6.1. Extending the Execution Model. SERBERUS rea-
sons directly about taint primitives. Thus, when a new spec-
ulation primitive is discovered, one must determine if/how
it changes the set of taint primitives.

Adding taint primitives. Consider straight-line
speculation (SLS) [122], which adds the following transient
transition to CALL/RET/JMP: (C[PC++], O) ∈ δt(C,P ),
where O is the exposed observation. One can prove that
these transitions add a fifth taint primitive to CTS programs
(§4.4.2): LINE: a transient CALL/RET/JMP that falls through
to the next linear address (any register). SERBERUS can be
extended to mitigate LINE with a new pass that inserts
an LFENCE following each JMP. CALLs/RETs require no
additional mitigations due to TYP.9 (§4.3.2) and Register
Cleaning (§5.3). Fig. 4 evaluates this extension, LLSCT-SLS.

Replacing taint primitives. Consider PSF (§2.2.1),
which redefines the transient transitions of LD as follows:

LOAD (WITH PSF) LD [ra + d], rv Al = R(ra) + dPUB

vt = {D(A)} ∪ {vl′ | ∃A′, (A′, vl′ ) ∈ S} \ vseq O = ldAl

δt(C,P ) = {(C[R← R[PC++; r ← vt]; T ← T], O) | vt ∈ vt}

One can prove that these new transitions replace NCAL,
NCAS, and STKL (§4.4.2) with one new taint primitive:
LOAD: a transient LD (output register). We evaluate an
extension of SERBERUS which mitigates Spectre-PSF in
software using the prior rule in §6 and §7.

A.6.2. Extending the Leakage Model. On many proces-
sors, DIV is a transmitter. To model this, we can add
“div a, b” to ASP’s observation set O (§3.2) and define the
sequential transition for DIV ra, rb to expose the observation
“div R(ra), R(rb).” Adding new observations does not
change SERBERUS’s correctness proof.

A.7. SERBERUS’s Heuristic Directed Multicut

Computing the minimum directed multicut (i.e., the best
global cut for multiple source-sink pairs) of a directed graph
is NP-hard [123]. We approximate the optimal multicut by
iteratively computing the optimal cuts for each source-sink
pair individually (computed using Ford-Fulkerson [124])
while fixing the cuts of other source-sink pairs until conver-
gence or loop. After that, we validate the cutset by verifying
no source can reach its corresponding sink.

A.8. CTS-Unsafe Compiler Optimizations

When compiling with LLSCT, we disable these optimiza-
tions which violate CTS (§4.3). -mllvm -no-stack
-slot-sharing: Stack slot sharing may assign two stack
variables of different security types to the same frame index
if their lifetimes do not overlap, violating CTS’s stack typing
requirements (§4.3.2). -mno-red-zone: A leaf procedure
can use a limited amount of memory directly below the stack
pointer (the “red zone”) for its stack frame without need-
ing to allocate it, violating WF.3 (§4.3.1). -mllvm -no
-argument-promotion: LLVM may promote (possibly
secret) pass-by-reference arguments to pass-by-value dur-
ing interprocedural optimization, violating TYP.9 (§4.3.2).
-fno-jump-tables: CTS procedures contain exactly
one ENDBR, marking the procedure entrypoint (§4.3.1); jump
tables require inserting ENDBRs elsewhere.

A.9. LLSCT Implementation Details

We implement Fence Insertion as a post-optimization
IR pass, Function-Private Stacks as a post-register-allocation
machine IR (MIR) pass that runs during frame lowering, and
Register Cleaning as a post-register-allocation MIR pass that
runs after call lowering.

It is safe to implement these passes at the identified
points in the LLVM pipeline, given that LLVM upholds the
following: (1) no NCA loads/stores are inserted when low-
ering IR to MIR or machine code (MC); and (2) MIR/MC
optimizations are not allowed to reorder loads/stores past
fences. The LLVM documentation [125] and our analysis
of output machine code corroborate these assumptions.

A.10. Intel CET-IBT Implementations

Intel processors implement two variants of speculative
semantics for CET-IBT: strong and weak (our terminology).

Strong CET-IBT completely blocks speculation fol-
lowing a missing ENDBRANCH instruction. Like prior
work [36], ASP and SERBERUS assume a processor with
strong CET-IBT. Intel processors implementing strong CET-
IBT include Alder Lake N and Arizona Beach. Intel has
shared with us that the long-term direction of CET-IBT im-
plementations is towards these strong speculative semantics.

Weak CET-IBT allows some fixed, nonzero number of
instructions to speculatively execute following a missing
ENDBRANCH. Weak CET-IBT implementations are char-
acterized by the number of instructions, and specifically
loads, which may speculatively execute following a miss-
ing ENDBRANCH. Older weak CET-IBT implementations—
found in Tiger Lake—allow up to 7 speculative instructions
containing up to 5 speculative loads. Newer weak CET-
IBT implementations—found in Alder Lake (our work-
station), Sapphire Rapids, Raptor Lake, and some future
processors—only allow up to 2 speculative instructions con-
taining up to 1 speculative load. Our preliminary investiga-
tion shows that it is possible to restore SERBERUS’s security
guarantees on older and newer CET-IBT implementations
with moderate and negligible runtime cost, respectively.



Appendix B.
Meta-Review

B.1. Summary

The paper proposes SERBERUS, a set of compiler passes
aimed at hardening cryptographic code against Spectre-type
attack. The paper introduces a stronger notion of constant
time programming, which code must adhere to, and relies
on hardware support for preventing leaks of secret data from
transient execution.

B.2. Scientific Contributions

• Creates a new tool to enable future science.
• Addresses a long-known issue.
• Provides a valuable step forward in an established field.

B.3. Reasons for Acceptance

1) The paper addresses a long-standing problem. It pro-
poses a new approach for a solution. The solution
is comprehensive, proven secure, and only incurs a
modest performance overhead.

B.4. Noteworthy Concerns

1) The proposed execution model that underlies the secu-
rity proof assumes mostly in-order execution. There is
a gap in semantics between the model and out-of-order
execution.

2) SERBERUS does not handle declassification.
3) SERBERUS relies on partially documented processor

features and LLVM properties. SERBERUS is fragile
due to possible future changes that break its assump-
tions.

Appendix C.
Response to the Meta-Review

Response to Concern 1. While ASP has an in-order
semantics like many prior speculative processor models [48],
[102], [103], [107], it is intended to capture all transient
control- and data-flows that may be exhibited by a program
running on a speculative out-of-order processor. Specifically,
we believe our transient load and store semantics capture
all Spectre-relevant memory instruction reorderings that can
occur on a speculative out-of-order processor.

Response to Concern 2. As presented, SERBERUS,
like prior work [34], does not handle secret declassification
in its formalization or proof. We expect that secret declassi-
fication can be achieved without compromising SERBERUS’
guarantees by calling an auxiliary function that (1) copies a
secret input buffer to a public output buffer and then (2)
executes a speculation fence. Proving this would require
changes to CTS and ASP, so we leave this to future work.

Response to Concern 3. Indeed, SERBERUS relies
on processor and compiler properties that are not guaranteed
to hold in the future. However, we believe academic work
like SERBERUS is critical towards incentivizing hardware
vendors and compiler writers to design processors and com-
pilers that can support efficient Spectre mitigations.


	Introduction
	Background
	Hardware Side-Channel Attacks
	Spectre Attacks
	Speculation Primitives
	Software Mitigations for Spectre Attacks

	Threat Model
	Software Model
	Hardware Model


	ASP: An Operational Semantics for an Abstract Speculative Processor
	ASP Preliminaries
	Storage and Labeled Data
	Configurations
	Instructions, Programs, Security Policies

	ASP's Leakage Model
	ASP's Execution Model: Overview
	Limitations of Prior Execution Models
	Sequential Transitions
	Transient Transitions
	Traces

	ASP's Instruction Execution Semantics
	Conditional Branches (PHT)
	Calls (BTB, IBT)
	Returns (RSB, SHSTK)
	Loads and Stores (STL)
	Speculation Fence
	Other Instructions


	Characterizing Spectre Leakage in Static Constant-Time Programs
	Speculative Constant-Time
	Limitations of Traditional CT
	Static Constant-Time Programming
	Well-Formed
	Security-Typeable

	Taint Primitives in a CTS Program
	Dynamic DFG
	Taint Primitives
	Mitigating Spectre in CTS Programs


	Serberus: A Compiler Approach for Enforcing Speculative Constant Time
	Serberus's Fence Insertion Pass
	Transient CFG
	Static DFG
	Source-Sink Pair Generation
	Fence Insertion
	Guarantees

	Serberus's Function-Private Stacks Pass
	Motivation
	Implementation
	Guarantees

	Serberus's Register Cleaning Pass
	Proof of Serberus's Correctness

	Hardening Software Against Spectre
	Results
	Related Work and Conclusions
	References
	Appendix A: Supplemental Material
	Proof that CTS is a Strengthening of CT
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.4
	Additional Instruction Semantics
	Extending ASP and Serberus
	Extending the Execution Model
	Extending the Leakage Model

	Serberus's Heuristic Directed Multicut
	CTS-Unsafe Compiler Optimizations
	llsct Implementation Details
	Intel CET-IBT Implementations

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix C: Response to the Meta-Review

