
Synthesizing Formal Models of Hardware from RTL for Efficient
Verification of Memory Model Implementations
Yao Hsiao

Stanford University
yaohsiao@stanford.edu

Dominic P. Mulligan
Arm Research

dominic.mulligan@arm.com

Nikos Nikoleris
Arm Research

nikos.nikoleris@arm.com

Gustavo Petri
Arm Research

gustavo.petri@arm.com

Caroline Trippel
Stanford University
trippel@stanford.edu

ABSTRACT

Modern hardware complexity makes it challenging to determine
if a given microarchitecture adheres to a particular memory con-
sistency model (MCM). This observation inspired the Check tools,
which formally check that a specific microarchitecture correctly
implements an MCM with respect to a suite of litmus test pro-
grams. Unfortunately, despite their effectiveness and efficiency, the
Check tools must be supplied a microarchitecture in the guise of a
manually constructed axiomatic specification, called a µspec model.

To facilitate MCM verification—and enable the Check tools to
consume processor RTL directly—we introduce a methodology and
associated tool, rtl2µspec, for automatically synthesizing µspec
models from processor designs written in Verilog or SystemVerilog,
with the help of modest user-provided design metadata. As a case
study, we use rtl2µspec to facilitate the Check-based verification
of the four-core RISC-V V-scale (multi-V-scale) processor’s MCM
implementation. We show that rtl2µspec can synthesize a com-
plete, and proven correct by construction, µspec model from the
SystemVerilog design of the multi-V-scale processor in 6.84 min-
utes. Subsequent Check-based MCM verification of the synthesized
µspec model takes less than one second per litmus test.

CCS CONCEPTS

• Hardware → Functional verification; • Computer systems

organization→ Multicore architectures.

KEYWORDS

memory consistency, verification, concurrency, shared memory

ACM Reference Format:

Yao Hsiao, Dominic P. Mulligan, Nikos Nikoleris, Gustavo Petri, and Caro-
line Trippel. 2021. Synthesizing Formal Models of Hardware from RTL for
Efficient Verification of Memory Model Implementations. InMICRO-54: 54th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3466752.3480087

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480087

1 INTRODUCTION

Memory Consistency Models. In a multicore setting, multiple
hardware threads concurrently execute while modifying a shared
memory. A memory consistency model (MCM) is thus required,
which describes who sees what and when—that is, the particular
order(s) in which writes to this shared memory may become observ-
able to different threads. MCMs are described using rules which re-
strict the ordering and visibility of shared memory accesses—either
informally using natural language or formally [4, 45, 47]—with
different architectures exhibiting different MCMs [5–7, 20, 21, 44].

Notably, a sound high-level programming language MCM is not
sufficient to ensure correct execution of a parallel program. In par-
ticular, a program is only guaranteed to run correctly if a compiler
correctly translates language-level MCM primitives to assembly
instructions, and if the target microarchitecture is indeed imple-
menting the MCM specified by its instruction set architecture (ISA).
Despite the importance of correct hardware MCM implementations,
a scalable, efficient, sound, and complete methodology for verifying
processor MCM implementations remains elusive.

Verification of Hardware Memory Models. Formal verification of
hardware MCM implementations is challenging for a variety of
reasons. For example, ISA MCM correctness properties are gener-
ally articulated as ordering and visibility constraints on assembly
instructions. Deducing whether or not they hold for a particular
microarchitecture thus requires mapping these instruction-level
properties to RTL-level assertions, such as SystemVerilog Asser-
tions [43] (SVAs). These SVAs can then be proven or refuted by
off-the-shelf RTL property verification tools, many of which are
based on model checking [9, 14]. Not only is defining these asser-
tions tedious and error prone, but checking that they hold of a
design is extremely computationally intensive. Thus, it is common
for assertions to be decomposed and/or for the hardware design
itself to undergo abstraction for assertion checking to terminate.

These challenges have lead researchers to pursue other means
of evaluating the adherence of a processor implementation to its
MCM specification. Litmus tests [3, 27]—small concurrent programs
that are carefully crafted, or automatically generated [11, 26, 45],
to encode the implications of a given MCM on observable pro-
gram outcomes—are a popular approach. They have been used for
both post hoc formal specification of observable hardware behavior
and for testing of hardware implementations against a particular
MCM [13, 15, 17, 18, 28, 35, 38, 39]. For example, tools have been
developed for running litmus tests on hardware with varied timings,

679

https://doi.org/10.1145/3466752.3480087
https://doi.org/10.1145/3466752.3480087

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

interleavings, and system load imposed by a test harness, in order
to coax out bugs in the hardware MCM implementation [3, 34, 40].
While sound, this approach is incomplete for failing to prove hard-
ware will always execute litmus tests correctly even if no bug is
found during validation testing.

The Check Tools. Building on litmus test-based testing approaches,
prior work introduced the Check family of tools [24, 25, 31, 33],
which incorporate formal rigor. Specifically, the Check tools pro-
vide an efficient mechanism for proving that a microarchitecture’s
MCM implementation is correct with respect to a suite of litmus test
programs. Remarkably, recent work has shown that this approach
can even be extended to prove correctness over the space of all
programs [30].

Despite their success in finding bugs in real hardware, the Check
tools possess a limitation: they require as inputmanually-constructed

formal specifications of hardware designs, called µspec models,
rather than Verilog implementations. A µspec model is an axiomatic
model of a microarchitecture expressed in a DSL called µspec—
essentially a specific theory, or collection of function and predicate
symbols, in first-order logic. A gap therefore remains between the
µspec models that support efficient Check-based verification and
the RTL that hardware designers write and know.

The rtl2µspec Approach and Tool. In this paper, we pursue a
new approach to scalable, Check-based verification of hardware
MCMs by automatically synthesizing µspec models directly from
user-supplied RTL written in Verilog or SystemVerilog,1 with the
help of modest user-provided design metadata (§4.2.1 and §4.3.4).
We introduce the rtl2µspec tool,2 which takes a Verilog processor
design as input, and produces a complete µspec model as output,
which can serve as input into any of the Check MCM verification
tools. In designing rtl2µspec, our most fundamental challenge is
bridging the inherently operational character of Verilog with the
axiomatic specification style of µspec—the latter of which consists
of axioms describing happens-before invariants (HBIs). HBIs capture
causal happens-before relationships between hardware events that
are preserved by a particular Verilog design for every executing
program.

We bridge the operational-axiomatic gapwith our first insight—
µspec models can be decomposed into several categories of HBIs,
with the two most general classifications being intra-instruction

HBIs versus inter-instruction HBIs. Intra-instruction HBIs describe
happens-before orderings that are localized to a single instruction’s
execution on a microarchitecture. Inter-instruction HBIs describe
happens-before orderings relating the execution of a pair of in-
structions. This HBI decomposition (§3) ensures completeness of
the rtl2µspec synthesis procedure. In other words, identifying the
HBI building blocks of a complete µspec model is the first step in
automatically synthesizing one.

Our second insight, which enables rtl2µspec to synthesize a
complete set of HBIs from a Verilog design with minimal designer
input, is that a control-flow dataflow graph (CDFG) representation
of a Verilog design (i.e., a netlist) contains a subset of the target

1While rtl2µspec can accept either Verilog or SystemVerilog designs as input, we
frequently refer to rtl2µspec’s processor input as a Verilog design for brevity.
2rtl2µspec is open source and publically available at https://github.com/yaohsiaopid/
rtl2uspec.

HBIs, which can be further used to construct HBI hypotheses for the
remaining set of HBIs to be extracted. These hypotheses constitute
an over-approximation of all HBIs implied by the Verilog design,
and can be encoded as SVAs and evaluatedwith formal RTL property
verification tools [12] to either prove or refute them.

Our third insight, which leads to rtl2µspec’s efficiency over
previous approaches, is a reliance on proving simple and localized
HBIs when incrementally constructing the µspec model. In our case
study (§5), rtl2µspec automatically generates and evaluates 122
SVAs when synthesizing a µspec model from a four-core version of
the RISC-V V-scale (multi-V-scale) processor [29, 31]. Remarkably,
each assertion is either proven or refuted in seconds—3.34 seconds
on average. In contrast, prior work that aims to identify inaccura-
cies in hand-written µspec with respect to a Verilog design times
out after 11 hours of runtime when evaluating the same microar-
chitecture [31]. We attribute this difference in verification time to
the difference in assertion complexity between the two approaches.

Contributions. In this paper we make three major contributions:

(1) The decomposition of µspec models into fundamental HBI

building blocks: We observe that µspec models can be decom-
posed into a collection of intra- and inter-instruction HBIs.
Further, inter-instruction HBIs can be classified as resulting
from either structural or dataflow dependencies between
instructions during their execution on a microarchitecture.
This decomposition facilitates a systematic procedure for
synthesizing HBIs, and thus µspec models, directly from RTL.
In summary, we are the first to define what constitutes a
complete µspec model for a given RTL design.

(2) The rtl2µspec tool for synthesizing complete, and proven cor-

rect by construction, µspec models from RTL: rtl2µspec takes
a processor design written in Verilog as input and outputs a
µspec model by synthesizing all relevant HBIs. In doing so,
rtl2µspec exhibits 100% proof coverage on the compliance
of RTL to synthesized µspec model, advancing the state-of-
the-art [31]. The resulting µspec model can serve as input
to any of the Check MCM verification tools [24, 25, 30, 31,
33, 41, 42].

(3) The verification of the RISC-V multi-V-scale MCM implemen-

tation: We use rtl2µspec to facilitate the Check-based ver-
ification of the multi-V-scale processor [29, 31], rooted in

RTL. In doing so, we identify a new bug in the RISC-V V-
scale microarchitecture, and thus the multi-V-scale, that al-
lows invalid instructions to update memory, and which was
missed by prior work. rtl2µspec synthesizes a complete
µspec model from the multi-V-scale design in 6.84 minutes.
Subsequent Check-based MCM verification using the µspec
model takes less than one second per litmus test to prove

MCM compliance (with respect to said test).

2 BACKGROUND

Encoding Ordering Behaviors with Litmus Tests. Simply put,MCMs
specify the values that can be legally returned by shared memory
loads in a concurrent program via constraints on the ordering and
visibility of shared memory accesses. MCMs are a fundamental
component of a processor’s ISA specification, and the ability of a

680

https://github.com/yaohsiaopid/rtl2uspec
https://github.com/yaohsiaopid/rtl2uspec

Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(a) Message passing (MP) litmus test with forbidden non-SC outcome.

Memory locations are initialized to 0.

(b) µhb graph execution of the MP litmus test in (a) on the RISC-V

multi-V-scale [29, 31] (Fig. 3a), corresponding to the non-SC out-

come. The cycle signifies that this execution is unobservable.

Figure 1: A µhb graph, as in (b), can be used to represent the

hardware specific execution of a litmus test program, as in

(a). (b)’s µhb graph was generated by COATCheck [25] us-

ing an rtl2µspec-synthesized µspec model of the RISC-V

multi-V-scale [29, 31]. mgnode_n row labels represent groups

of state elements there were merged in the rtl2µspec-
synthesized µspec model due to exhibiting the same order-

ing behaviors (see §4.4).

microarchitecture to correctly execute a program relies crucially
on the correctness of its MCM implementation.

Prior work has proposed a number of tools for evaluating the
correctness of hardware MCMs [15, 18, 28, 35, 36, 38, 39]. Litmus
test programs [3, 27]—small programs designed to demonstrate con-
straints on shared memory ordering and visibility that are imposed
by a given MCM—are central to this. They are used to concisely
articulate the legal ordering behaviors of concurrent programs on
hardware implementing a particular MCM.

Fig. 1a gives an example of a litmus test program, commonly
called the message passing (MP) test. Here, Core 0 writes some
data x before setting a flag y, while Core 1 reads the flag y before
reading the data x. In keeping with typical litmus test convention,
all memory locations are initialized to 0 (i.e., x=0 and y=0). The
outcome of a litmus test program denotes the values returned by
the loads of the test—in this test, featuring two loads, there are
four possible outcomes. The loads on Core 1 can return either the
initial values of x and y (0s), or the values written by Core 0 (1s).
For Sequential Consistency (SC) [23]—which requires that each
legal program outcome must correspond to an execution where
all threads’ executions preserve program order, and there exists a
total global order on all memory operations—all but one of the four
possible outcomes is permitted. Specifically, r1 = 1 and r2 = 0 at
the end of the test is a forbidden outcome according to SC. MCMs

can be categorized by the non-SC outcomes that they permit or
forbid for various litmus tests. In this example, the non-SC outcome
is, by definition, forbidden by SC and TSO, e.g., x86-TSO [21].

Litmus tests are useful for conducting verification of hardware
MCMs and aim to exercise behaviors most likely to exhibit bugs.
Researchers have also proposed tools for efficiently generating
complete (up to a bound in instruction count) suites of litmus test
programs that encode all unique ordering behaviors imposed by a
formally specifiedMCM [11, 19, 26]. Such comprehensive litmus test
suites can be consumed by the Check family of tools [24, 25, 31, 33]
to soundly and completely (with respect to the bound on litmus
test program size) verify the correctness of hardware MCM imple-
mentations. In other words, given a collection of litmus tests, the
Check tools will provewhether or not a specific microarchitecture is
guaranteed to correctly execute every test, using microarchitectural

happens-before (µhb) analysis, as described next.

Microarchitectural Happens-Before Analysis. The Check tools
leverage a type of Lamport-style happens-before analysis [22], called
µhb analysis, which relies on representing hardware-specific pro-

gram executions as directed graphs, called µhb graphs. Fig. 1b presents
an example of a µhb graph, depicting a non-SC execution of the MP
litmus test of Fig. 1a on the RISC-V multi-V-scale processor [29, 31]
(see Fig. 3a). Program order proceeds from left to right at the top
of the graph. Nodes represent hardware events that take place dur-
ing a program’s execution, specifically an instruction (represented
by a µhb graph column label) updating some particular hardware
state element(s) (represented by a µhb graph row label) in the mi-
croarchitecture, such as a store updating a store buffer entry. A
µhb graph node may represent an instruction updating either a
single state element in the microarchitecture or a collection of state
elements. Directed edges represent happens-before relationships be-
tween nodes, for example capturing that a store always updates an
entry in its core-local store buffer before it updates the L1 cache.

Note that µhb nodes and edges are implied by the microarchi-
tecture in combination with the executing program itself and may
vary across executions of the same program on the same design.
For example, the green PO edges in Fig. 1b result from the multi-
V-scale’s processor cores fetching instructions from instruction
memory according to program order. Further, the pink edge order-
ing i1’s update of mem before i2’s update of regfile corresponds
to the program-level data-flow between i1 which writes to y and
i2which reads the result of i1’s write. The conditions under which
µhb nodes and edges are instantiated in a µhb graph corresponding
to a specific hardware design and program are elaborated on in §3.

µhb graphs enable efficient reasoning about whether a particular
execution of a program (such as one that is expressly forbidden by
the ISA MCM) is possible on a microarchitecture in question or not.
Specifically, acyclic µhb graphs represent program executions that
are possible on a given microarchitecture, whereas cyclic graphs
represent impossible executions, since they would require events
to be transitively causally related to themselves, implying a contra-
diction. The µhb graph in Fig. 1b features a cycle, indicating that
the multi-V-scale (which implements SC [31]) correctly forbids the
non-SC litmus test outcome, r1 = 1 and r2 = 0.

681

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

Axiomatic Specifications of Microarchitectures. Using an SMT
solver [10, 25], the Check tools search the space of all possible exe-
cutions of a litmus test on a given microarchitecture, with the intent
of identifying executions that violate the ISA-specified MCM. Intu-
itively, this can be understood as enumerating all possible acyclic
µhb graphs in search of ones which correspond to illegal program
outcomes. To support this analysis, the microarchitecture is input
as a µspec model, a series of axioms expressed in a specially-tailored
typed first-order theory. These axioms describe how a legal hard-
ware instruction flows through the microarchitecture, over the
course of a program’s execution, and how each instruction may
interact with other instructions that are in-flight concurrently. In
particular, the hardware state elements that an instruction updates
and depends on, as well as the (partial) order on its state updates,
must be specified. For example, a store instructionmight first update
the fetch pipeline register, followed by execute pipeline register,
and lastly the memory. Or, a load’s update to the regfile might
depend on a prior store’s update to memory, if the load and store
access the same memory location.

With respect to µhb graphs, a µspec model describes µhb nodes
and the intra-instruction happens-before edges required for model-
ing the execution of each instruction type, andwhich inter-instruction
happens-before edges may exist between nodes corresponding to
different instructions. In this paper, we define for the first time, what
renders a µspec model complete with respect to a microarchitecture
whose ordering behavior it is intended capture.

3 A TAXONOMY FOR CONSTRUCTING

COMPLETE µSPEC MODELS

Establishing what constitutes a complete µspec model is the first
step toward automatically generating one. Thus, a key contribution
of our work is decomposing µspec models into a core set of building
blocks, which we identify as four hierarchical categories of HBIs.
In this section, we describe our taxonomy for categorizing these
HBIs. In §4, we explain how we use this taxonomy to incrementally
and systematically synthesize a complete set of HBIs (encoded as
µspec axioms), and thus a complete µspec model, from RTL.

3.1 Happens-Before Invariants

Verilog is an operational description of how state updates take
place in hardware. In contrast an axiomatic µspec model describes
happens-before invariants (HBIs) that are preserved by a Verilog
design in any executing program. A Verilog design might specify
that the fetch pipeline register is updated with new a value at
non-stall cycles. In contrast, a µspec model would assert an HBI
stating that if some instruction i0 precedes another instruction i1
in program order, i0 will update the fetch pipeline register before
i1 updates the fetch pipeline register. As mentioned in §1, µspec
models can be decomposed into axioms that describe either exe-
cution paths of individual instructions (via intra-instruction HBIs,
discussed in §3.2) or pairwise interactions between instructions
during their execution on a microarchitecture (via inter-instruction
HBIs, discussed in §3.3).

3.2 Intra-Instruction HBIs

Intra-instruction HBIs describe the execution paths of instruction
types as they execute on a microarchitecture. Thus, a set of intra-
instruction HBIs are required for each ISA instruction to encode
their individual ordering behaviors in a µspec model. In our multi-
V-scale case study (§5), rtl2µspec synthesizes a µspec model that
encodes the behavior of RISC-V load and store instructions—lw and
sw—only, given our focus on MCM verification in this paper.

Concretely, the set of intra-instruction HBIs for a particular
instruction type specify which hardware state elements, at the
granularity of sets of registers or memory cells, are updated on
its behalf during its execution, along with a partial ordering on its
induced state updates. In µhb graphs, the intra-instruction HBIs
of an instruction type specify how nodes and intra-instruction
edges (that is, edges that relate nodes corresponding to the same
instruction instance) should be instantiated. For example, a set of
intra-instruction HBIs corresponding to the execution path of lw
on the multi-V-scale processor is shown below.
forall microops i, IsAnyRead i ⇒

AddEdges [((i, inst_DX), (i, mgnode_0)); % hbi0
((i, mgnode_0), (i, mgnode_3)); % hbi1
((i, mgnode_0), (i, regfile))]. % hbi2

Above, three HBIs have been encoded in a single axiom in the
µspec DSL. hbi0 specifies that for all instructions i, such that i is a
memory read operation (IsAnyRead i), i will update the inst_DX
state element before it updates the mgnode_0 state element. Here,
mgnode_n state elements each comprise several state elements that
rtl2µspec deems equivalent in terms of ordering behaviors (see
§4.4). The overall effect of the axiom above is to instantiate intra-
instruction µhb nodes and edges for lw instructions in Fig. 1b.

3.3 Inter-Instruction HBIs

Inter-instruction HBIs describe how instructions can interact with

each other during their execution. This characterization can be fur-
ther refined by the type of interaction as detailed in §3.3.1 and §3.3.2.
µspec model excerpts correspond to the multi-V-scale.

3.3.1 Structural Dependencies. A pair of instructions may be in-
volved in a structural dependency if their accesses to a particular
state element or a collection of state elements must be serialized.
Structural dependencies take two forms—spatial and temporal.

Spatial Structural Dependencies. Spatial structural dependencies
exist between a pair of hardware state updates that result from
two instructions updating the same state element, which could
be a single register or a single cell within a memory array. If two
instructions i0 and i1 update the same hardware state element s
during their execution—that is, their execution paths in µhb graph
form both feature a node corresponding to an update of s—then
their updates to s must be serialized. We therefore need some HBIs
to describe this serialization order. As one possibility, i0 and i1
may update s in any order depending on the dynamic conditions of
program execution. However, if i0 and i1 share a reference order,
meaning they previously updated another common state element
in a particular order or are ordered in the program, it is possible
their updates to s will be constrained to take place in a way that
either always agrees with or always contradicts the reference order.
This amounts to three possible ordering behaviors.

682

Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

The µspec excerpt below gives an example axiom that features a
single inter-instruction HBI which corresponds to a spatial struc-
tural dependency, where the reference order is program order.
forall microops i0, i1,

ProgramOrder i0 i1 ⇒

AddEdge ((i0, inst_DX), (i1, inst_DX)). % hbi0

The above asserts that for all pairs of instructions i0 and i1, if
i0 appears in program order before i1 (ProgramOrder i0 i1, i.e.,
the reference order), then i0 will update the inst_DX state element
before i1 does. The axiom instantiates inter-instruction µhb edges
for pairs of instructions that are ordered in program order with
respect to their updates on the inst_DX state element, such as the
green edges labeled PO in Fig. 1b. Conceptually, this axiom enforces
an in-order instruction fetch.

Temporal Structural Dependencies. Temporal structural depen-
dencies exist between a pair of state updates that result from two
instructions updating distinct state elements, where those state
elements may only be accessed by a single instruction at any clock
cycle. That is, temporal structural dependencies serialize the order
in which instructions may update a state element within some set
of state elements that is time-multiplexed between different in-
structions. For example, the horizontal dotted black lines in Fig. 1b
illustrate the pipeline stage partitioning of the multi-V-scale, with
mgnode_0 and mgnode_2 belonging to the same pipeline stage. Since
only one instruction can access a pipeline stage at a time in this de-
sign, updates by different instructions to mgnode_0 and mgnode_2
are inherently serialized. As another example, single-ported pro-
cessor memories serialize accesses that they process.

The serialization order of temporal structural dependencies has
the same three ordering options as spatial structural dependencies—
either order, consistent with a reference order, or inconsistent with
a reference order. The µspec excerpt below gives an example of a
single-HBI axiom that corresponds to a temporal structural depen-
dency, where the reference order is the order in which a pair of
instructions update the inst_DX register during their execution.
forall microops i0, i1, IsAnyWrite i0 ⇒ IsAnyWrite i1 ⇒

EdgeExists ((i0, inst_DX), (i1, inst_DX)) ⇒

AddEdge ((i0, mgnode_2), (i1, mgnode_0)). % hbi0

This axiom asserts that for all pairs of instructions i0 and i1,
such that i0 and i1 are bothmemorywrite operations, if i0 updates
inst_DX before i1 does, then i0 will update mgnode_2 before i1
updates mgnode_0.

3.3.2 Dataflow Dependencies. A dependency may also exist be-
tween a pair of instructions because they share data, not just be-
cause they contend for shared resources. Specifically, a pair of
instructions may possess a dataflow dependency if one instruction
can update a state element that is read from and therefore influences
the state update of the other instruction. For example, a sw instruc-
tion in the multi-V-scale writes to the processor’s memory, mem,
and its memory update can be read by a lw instruction accessing
the same address. As a result, the sw influences the lw’s update of
the register file, regfile. The following µspec excerpt describes a
single-HBI axiom that corresponds to such a dataflow dependency.
forall microops i0, i1,

IsAnyWrite i0 ⇒ IsAnyRead i1 ⇒ SamePA i0 i1 ⇒

SameData i0 i1 ⇒ NoWritesInBetween i0 i1 ⇒

AddEdge((i0, (0, mem)), (i1, regfile)). % hbi0

Figure 2: Overview of the rtl2µspec synthesis procedure, as
detailed in §4.

Here, we assert that for all pairs of instructions i0 and i1, where
i0 is a memory write and i1 is a memory read, if both i0 and
i1 access the same physical memory address with no intervening
writes, and i1 reads the value written by i0, then a dataflow depen-
dency exists between i0 and i1 via mem. Since reads and writes can
only communicate through main memory (mem) on the V-scale, the
dataflow dependency implies that the write must update mem before
the read accesses mem and writes the data it retrieves to regfile.

4 SYNTHESIZING µSPEC FROM RTL

rtl2µspec incrementally synthesizes a complete set of proven HBIs
from an input Verilog design using a combination of static analysis
and model checking. The synthesis flow is summarized in Fig. 2.
We will refer to Fig. 3 throughout this section—a précis of the main
stages of the synthesis procedure per our case study in §5.

4.1 RTL to Full-Design Data Flow Graphs

The data-flow graph (DFG) representation of a Verilog design, re-
ferred to as a full-design DFG in this paper, contains all of the
information needed for rtl2µspec to orchestrate the synthesis of a
complete set of HBIs. Intuitively, this is because data-flow is a type
of happens-before relation. Hence, rtl2µspec first extracts such a
full-design DFG from the input Verilog.

To extract a Verilog design’s DFG, rtl2µspec uses two static anal-
ysis tools from the commercial Symbiotic EDA Suite,3 Verific [8]
and Yosys [46]. Verific is a parser that accepts Verilog or SystemVer-
ilog as input and outputs a netlist. Yosys can then transform such
a netlist into an intermediate representation (IR) called RTL Inter-
mediate Language (RTLIL) which supports efficient Yosys-enabled
netlist analyses and transformations.4 Note that RTLIL is simply
an alternate netlist representation.

Fig. 3b illustrates a simplified excerpt of the netlist that cor-
responds to the multi-V-scale design in Fig. 3a. The netlist was
produced by running the multi-V-scale through Verific, and then
running the Verific-generated netlist through Yosys. Observe that
3We use Symbiotica to support SystemVerilog syntax with Verific.
4Yosys can also transform Verilog into RTLIL, but rtl2µspec uses Verific as its front
end parser to support SystemVerilog syntax.

683

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

(a) Illustration of the RISC-V V-scale.

Some relevant state elements are

labeled in blue/orange. Orange state

is part of rtl2µspec’s designer-

supplied metadata (§4.2.1).

(b) Netlist generated by Verific+Yosys from (a).

Brown/blue/green nodes are state elements up-

dated during execution of both lw and sw/only
sw/only lw.

(c) Per-instruction DFGs produced by

specializing the netlist in (b). Solid

(resp. dashed) boxes denote local (resp.

remote) state elements.

(d) Intra-instruction HBIs (black nodes

and edges). Dotted black lines and stage
ID labels (§4.2.2) denote pipeline stage

partitionings.

(e) Adds inter-instruction HBIs to (d).

Green/blue/pink edges correspond to

spatial/temporal/data-flowHBIs. PO de-

notes program order.

Axiom W path: forall microops i1,
IsAnyWrite i1 ⇒ AddEdges [
((i1, inst DX), (i2, sw in WB));
(i1, inst DX), (i1, lw in WB));
(i1, sw in WB), (i1, mem))].
Axiom Temporal:
forall microops i1, i2,
IsAnyRead i1 ⇒ IsAnyWrite i2 ⇒
ProgramOrder i1 i2 ⇒ AddEdge(
(i1, regfile), (i2, mem)).
Axiom Spatial:
forall microops i1, i2,
IsAnyRead i1 ⇒ IsAnyWrite i2 ⇒
ProgramOrder i1 i2 ⇒ AddEdge(
(i1, wdata), (i2, wdata)).

(f) Three axioms from the rtl2µspec-
synthesized µspec model of the multi-V-

scale. The impact of these axioms on gen-

erating µhb graphs can be seen in(c).

Figure 3: Given the multi-V-scale in (a), represented as a netlist in (b), rtl2µspec generates per-instruction DFGs, as in (c),

and deduces from them intra-instruction HBIs, as in (d), and inter-instruction HBI hypotheses, as in (e). HBI hypotheses are

evaluated by JasperGold, and only proven hypotheses are included as axioms in the final µspec model, as in (f).

the netlist is simply a CDFG. Nodes are standard cells such as regis-
ters, memory arrays, and combinational logic gates. Edges represent
wired connections between standard cells.

Since µspec models articulate HBIs at the granularity of hard-
ware state elements, our target full-design DFG contains nodes that
correspond solely to these state elements and edges which repre-
sent (potential) data-flow relationships between them. rtl2µspec’s
transformation of a Verilog design into RTLIL form enables it to eas-
ily produce such aDFGwith the help of a newRTLIL analysis pass in
Yosys. Specifically, this RTLIL analysis pass performs a depth-first-
search (DFS) over all standard cells in the netlist, establishing a map-
ping between parent and child state elements that are connected via
pure combinational logic. The full-design DFG is then constructed
using the Verilog design’s state elements as nodes, and the parent-
to-child mappings as edges. In other words, the full-design DFG
is constructed by collapsing out all combinational circuits sepa-
rating state elements, including control flow, in the RTLIL netlist.
Since this collapsing effectively assumes that all possible data-flows
happen for every execution of every possible instruction, the full-
design DFG represents an over-approximation of the hardware-level
data-flow that can be induced by any microarchitecture-supported

instruction. rtl2µspec uses this over-approximation to synthesize
intra-instruction HBIs in §4.2.

Note that the analysis in this section need only consider the
unique modules in the input design, such as a single core plus all
shared resources in a homogeneous multi-core setting.

4.2 Synthesizing Intra-Instruction HBIs

A full-design DFG (§4.1) for a Verilog implementation contains the
information needed by rtl2µspec to synthesize intra-instruction
HBIs for each instruction type of interest; this can be reduced to
specializing the full-design DFG for each instruction type, resulting
in instruction-specific DFGs. An instruction-specific DFG captures
(1) the precise set of state elements that are updated during the
execution of a particular instruction type, expressed as DFG nodes,
and (2) the relative (partial) order of these updates, expressed as DFG
edges, since the data-flow edges represent the flow of information
from one register to the next in time.

4.2.1 User-Supplied Core-Local Metadata. To support the construc-
tion of instruction-specific DFGs, rtl2µspec requires three pieces
of user-supplied design metadata.

684

Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

First, the instruction fetch register (IFR), which holds instruc-
tions when they are first fetched from memory, must be identified,
and its signal name specified. Using this signal, rtl2µspec can ref-
erence the starting point of an instruction’s execution life-cycle on
the microarchitecture.

Second, per-pipeline stage program counter registers (PC reg-
isters or PCRs) must be identified, which are used by rtl2µspec
to precisely reason about an instruction’s presence in a particular
pipeline stage and thereby attribute specific state updates to its
execution. rtl2µspec refers to these registers via an array, called
PCR, where PCR[0] is located in the same pipeline stage as the IFR
by default, and PCR[i] corresponds to the PCR in the ith pipeline
stage with respect to the IFR’s pipeline stage.

Third, a special PC signal, the instructionmemory PC (IM_PC),
which is used to index into and access instruction memory, must be
identified. Note that all registers included in the PCR array should
be reachable from the IM_PC in the full-design DFG.

In addition to the design metadata above, rtl2µspec requires
the user to supply the binary encodings of all instructions which
will be included in the synthesized µspec model. For example, in
our case study in §5 we direct rtl2µspec to consider lw and sw
instructions only, given our goal of MCM verification.

4.2.2 Filtering Front-End State Elements. To construct a specialized
DFG for an instruction type, rtl2µspec must identify the subset
of full-design DFG nodes whose corresponding state elements are
updated on behalf of its execution. Since the IFR marks the start
of an instruction’s execution life-cycle, all nodes that precede the
IFR (e.g., front-end predictor state) can be excluded from further
consideration. To perform this filtering, rtl2µspec first identifies
all nodes in the full-design DFG that are reachable from the IM_PC.
During this identification process, rtl2µspec also tags each reach-
able node with an integer value, stage, capturing its distance from
IM_PC in the full-design DFG. Since edges in the full-design DFG
represent single-cycle data-flow relationships,5 stage effectively
associates each register with a pipeline stage, and it is used to pre-
cisely attribute hardware state updates to a particular instruction’s
execution (as it passes through some stage) as detailed further in
§4.2.3. Directed cycles in the full-design DFG are handled by retain-
ing the shortest distance from IM_PC as the stage for each node.

All nodes with a corresponding stage value less than that which
is associated with the IFR (including IM_PC) are filtered from the
reachable set, since they precede the IFR in the design. The re-
maining reachable nodes correspond to state elements that may be
updated on behalf of instructions as they flow from the IFR through
the various stages of execution. Note that stage values for nodes
are updated at this point such that the IFR is associated with stage
number 0.

4.2.3 Generating Intra-Instruction HBI Hypotheses. With the fil-
tered set of candidate nodes, rtl2µspec can now construct special-
ized DFGs for each instruction type of interest. For each instruction
type, rtl2µspec needs to determine which of the filtered nodes,
that are also reachable from the IFR in the full-design DFG, are
indeed updated on behalf of its execution. Related to this point,
5Data-flow relationships in the full-design DFG are “single-cycle,” since they corre-
spond to direct connections between state elements through combinational logic that
was collapsed out (§4.1).

rtl2µspec currently assumes that each instruction type can exhibit
at most one execution path through the design under verification—
the single-execution-path assumption. In other words, the set of state
elements updated by an instruction are always the same each time
the instruction executes. Phrased differently, an instruction will
always instantiate the same column of µhb nodes in a µhb graph.
Thus, if rtl2µspec finds that a state element can ever be updated
on behalf of a particular instruction’s execution, it concludes that
it is always updated on its behalf. §6.4 discusses the implications of
this limitation, which we plan to alleviate in future work.

To isolate the set of nodes whose corresponding state elements
are update by a specific type of instruction, rtl2µspec relies on a
set of automatically generated SVAs, which encode HBI hypotheses.6
In general, HBI hypotheses are are evaluated using the JasperGold
property verifier [12], and proven hypotheses correspond to valid
HBIs that will be inserted into final µspec model. In the case of intra-
instruction HBI synthesis, HBI hypotheses are assertions designed
specifically to determine whether or not an instruction’s execution
can ever update a particular state element (i.e., always update, per
the single-execution-path assumption above).

4.2.4 Formulating Intra-Instruction HBI Hypotheses as SVAs. The
rtl2µspec tool automatically synthesizes HBI hypotheses formu-
lated as SVAs with the help of SVA templates. For intra-instruction
HBI hypotheses, rtl2µspecmakes use of two SVA templates, shown
in Fig. 4. Both leverage the association between registers in the
PCR array and other non-PC state elements established by identi-
cal stage labels (§4.2.2) to attribute the update of a non-PC state
element s in stage i (i.e., stage(s) = i) to an instruction whose PC
is contained in stage i’s PCR, namely PCR[i]. We describe below
how Fig. 4’s SVA templates are used to synthesize intra-instruction
HBIs for a single instruction type. The process is repeated for each
instruction type of interest.

The first SVA template (Fig. 4a) is instantiated once for every
node (i.e., state element) in the filtered set of candidate nodes (§4.2.2)
that is reachable from the IFR in the full-design DFG. Thus, the
property is parameterized by instruction type (op) and state element
(s). It attempts to prove (via assertion A0) that when a particular
instruction i0 (with a particular type—op) is passing through the
stage associated with state element s (‘PCR_<stage(s)> == pc0,
where pc0 is the PC associated with i0), that s will never change
its value. A failed proof signifies that s can be updated by the in-
struction type of interest when it passes through its corresponding
stage. State elements that can never be updated on behalf of the
instruction under evaluation are ignored henceforth.

While the first SVA template is able to deduce that a particular
state element can be updated by a particular instruction once it
progresses to a particular stage, the second SVA template (Fig. 4b)
attempts to prove that said instruction will eventually make its
way to the stage where it is capable of updating said state. For
each stage that contains state element(s) that were retained after
evaluating the first set of SVAs (Fig. 4a), the SVA in Fig. 4b attempts
to prove (via assertion A1) that the instruction type of interest will
eventually progress to and exit said stage when it executes. Thus,
the property is parameterized by instruction type (op) and pipeline
stage (stage), and a successful proof certifies forward progress.
6We use the terms SVA and HBI hypothesis interchangeably in this paper.

685

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

P0: assume (first |−> ((`PCR_0 != pc0 [*0:$]) ##1
(`PCR_0 == pc0 [*1:$]) ##1 (`PCR_0 != pc0)));

P1: assume (first |−> s_eventually(`PCR_<stage(s)> == pc0));
P2: assume (`PCR_0 == pc0 |−> `IFR == i0);
P3: assume (opcode(i0) == op);
A0: assert (`PCR_<stage(s)> == pc0 |−> s == $past(s));

(a) Assertion A0 attempts to prove that state element s will never

be updated by the execution of instruction i0 with opcode op.
PCR_<stage(s)> represents string concatenation of PCR_ with the

stage ID associated with s.

P4: assume (`PCR_0 == pc0 |−> `IFR == i0);
P5: assume (opcode(i0) == op);
P6: assume (first |−> strong((`IFR == `NOP &&

`PCR_0 != pc0 [*0:$]) ##1 (`PCR_0 == pc0)));
A1: assert (first |−> s_eventually((`PCR_<stage> == pc0) ##1

(!(`PCR_<stage> == pc0))));

(b) Assertion A1 attempts to prove that instruction i0 with opcode

opwill eventually progress to and exit some pipeline stage, stage. It
is used to prove precondition P1 in (a) for stages where instructions

of type op can update state—i.e., where instructions of type op fail

A0 for some s in stage.

Figure 4: rtl2µspec uses the SVA templates in (a) and (b) to

instantiate intra-instructionHBI hypotheses and ultimately

synthesize intra-instructionHBIs (§4.2.3). Template parame-

ters are blue. Symbolic values that correspond to the instruc-

tion under evaluation by the property are green.

Nodes which pass the HBI hypothesis evaluation of §4.2.3 are
considered to be always updated on behalf of the instruction type
under evaluation and are used to construct a specialized instruction-
specific DFG. This is done by extracting a new DFG from the full-
design DFG that is restricted to only contain nodes corresponding
to these always-updated state elements. During extraction, DFG
edges are retained if they directly relate extracted nodes. Immediate
parent nodes of the always-updated state-elements in the full-design
DFG are also extracted. These aid in synthesizing inter-instruction
HBIs that result from data-flow dependencies as detailed in §4.3.5.

Fig. 3c gives an example of two simplified instruction-specific
DFGs corresponding to the sw (top) and lw (bottom) instructions of
the RISC-V V-scale. The primary root node of each graph is the IFR—
the inst_DX signal for the V-scale—and all nodes reachable from it
are always updated on behalf of the instruction that corresponds
to the DFG. Other nodes with no incoming edges, such as regfile
and mem, are reserved parent nodes.

Recall that the intra-instruction HBIs for a particular instruc-
tion type articulate which µhb nodes and intra-instruction µhb
edges must exist in any µhb graph featuring an instance of said
instruction. The nodes reachable from the primary root node in
an instruction-specific DFG indicate relevant µhb nodes, while
directed data-flow edges (relating the reachable nodes) indicate
relevant intra-instruction µhb edges. In Figs. 3d and 3e, the nodes
and black edges correspond to intra-instruction HBIs for lw and sw
on the V-scale.

4.3 Synthesizing Inter-Instruction HBIs

After synthesizing a complete set of intra-instruction HBIs, the
rtl2µspec tool synthesizes inter-instruction HBIs which result

from structural or data-flow dependencies (§3.3). For each cate-
gory of inter-instruction HBIs, rtl2µspec compares all pairs of
per-instruction DFGs to identify all possible inter-instruction inter-
actions, each of which requires an HBI to be instantiated. Whenever
rtl2µspec determines that an HBI must be synthesized to describe
a potential pairwise interaction between instructions, it formulates
HBI hypotheses (as SVAs) so that the precise HBI can be deduced
with the help of JasperGold. In this way, rtl2µspec ensures that
the final µspec model contains a complete set of inter-instruction
HBIs that have all been formally verified.

Notably, inter-instruction HBIs can describe interactions be-
tween instructions via local on-core resources (e.g., pipeline regis-
ters) or resources that are off-core and thus remote (e.g., memories,
including on-chip caches). Furthermore, inter-instruction HBIs can
describe interactions between instructions executing on either the
same processor core (intra-core HBIs) or on different cores (inter-core
HBIs). Inter-core HBIs inherently involve interactions via shared
remote state whereas intra-core HBIs may be facilitated via inter-
actions through either local or remote state elements.

When instantiating inter-instruction HBIs as SVAs, rtl2µspec
distinguishes HBI hypotheses involving local versus remote re-
sources. That said, the general structure of inter-instruction HBI
hypotheses remains the same regardless of whether local versus
remote state elements are involved. §4.3.1, §4.3.2, and §4.3.5 give
the general procedure for generating relevant inter-instruction HBI
hypotheses regardless of the types of state elements involved, while
§4.3.3 describes how HBI hypotheses are instantiated in SVA form
in slightly different ways for local versus global resources.

4.3.1 Generating Spatial Structural HBI Hypotheses. A spatial struc-
tural dependency exists between a pair of instructions if they both
update an identical hardware state element during their execution.
To identify these dependencies, rtl2µspec iterates over all pairs
of instructions and compares their DFGs to find common nodes
(representing identical state elements) which are reachable from
the IFRs (the primary root nodes) in both. Given a pair of instruc-
tions, each such pair of common nodes constitutes a unique spatial
structural dependency. In Fig. 3c, inst_DX, sw_in_WB, lw_in_WB,
and wdata (four distinct state elements) are all updated by both lw
and sw, since nodes representing these state elements are all reach-
able from the IFR nodes in their corresponding DFGs (recall that
inst_DX is the IFR for the multi-V-scale). Four spatial structural de-
pendencies therefore exist between lw and sw on the multi-V-scale.
Note that the four spatial dependencies identified here all involve
local state elements, but spatial dependencies can involve global
state elements as well.

A spatial structural dependency between a pair of instructions
always results in the inclusion of a corresponding HBI in the final
µspec model. However, the direction of the HBI must be deduced.
For each spatial structural dependency identified between all pairs
of instructions (including same-instruction pairs), rtl2µspec either
directly outputs an HBI or generates HBI hypotheses to determine
the direction of the HBI corresponding to the dependency with
respect to a reference order if one exists.

As discussed in §3.3.1, pairs of instructions cannot be constrained
to update a common state element in a particular order without

Figure 4: rtl2µspec uses the SVA templates in (a) and (b) to

instantiate intra-instructionHBI hypotheses and ultimately

synthesize intra-instructionHBIs (§4.2.3). Template parame-

ters are blue. Symbolic values that correspond to the instruc-

tion under evaluation by the property are green.

Nodes which pass the HBI hypothesis evaluation of §4.2.3 are
considered to be always updated on behalf of the instruction type
under evaluation and are used to construct a specialized instruction-
specific DFG. This is done by extracting a new DFG from the full-
design DFG that is restricted to only contain nodes corresponding
to these always-updated state elements. During extraction, DFG
edges are retained if they directly relate extracted nodes. Immediate
parent nodes of the always-updated state-elements in the full-design
DFG are also extracted. These aid in synthesizing inter-instruction
HBIs that result from data-flow dependencies as detailed in §4.3.5.

Fig. 3c gives an example of two simplified instruction-specific
DFGs corresponding to the sw (top) and lw (bottom) instructions of
the RISC-V V-scale. The primary root node of each graph is the IFR—
the inst_DX signal for the V-scale—and all nodes reachable from it
are always updated on behalf of the instruction that corresponds
to the DFG. Other nodes with no incoming edges, such as regfile
and mem, are reserved parent nodes.

Recall that the intra-instruction HBIs for a particular instruc-
tion type articulate which µhb nodes and intra-instruction µhb
edges must exist in any µhb graph featuring an instance of said
instruction. The nodes reachable from the primary root node in
an instruction-specific DFG indicate relevant µhb nodes, while
directed data-flow edges (relating the reachable nodes) indicate
relevant intra-instruction µhb edges. In Figs. 3d and 3e, the nodes
and black edges correspond to intra-instruction HBIs for lw and sw
on the V-scale.

4.3 Synthesizing Inter-Instruction HBIs

After synthesizing a complete set of intra-instruction HBIs, the
rtl2µspec tool synthesizes inter-instruction HBIs which result

from structural or data-flow dependencies (§3.3). For each cate-
gory of inter-instruction HBIs, rtl2µspec compares all pairs of
per-instruction DFGs to identify all possible inter-instruction inter-
actions, each of which requires an HBI to be instantiated. Whenever
rtl2µspec determines that an HBI must be synthesized to describe
a potential pairwise interaction between instructions, it formulates
HBI hypotheses (as SVAs) so that the precise HBI can be deduced
with the help of JasperGold. In this way, rtl2µspec ensures that
the final µspec model contains a complete set of inter-instruction
HBIs that have all been formally verified.

Notably, inter-instruction HBIs can describe interactions be-
tween instructions via local on-core resources (e.g., pipeline regis-
ters) or resources that are off-core and thus remote (e.g., memories,
including on-chip caches). Furthermore, inter-instruction HBIs can
describe interactions between instructions executing on either the
same processor core (intra-core HBIs) or on different cores (inter-core
HBIs). Inter-core HBIs inherently involve interactions via shared
remote state whereas intra-core HBIs may be facilitated via inter-
actions through either local or remote state elements.

When instantiating inter-instruction HBIs as SVAs, rtl2µspec
distinguishes HBI hypotheses involving local versus remote re-
sources. That said, the general structure of inter-instruction HBI
hypotheses remains the same regardless of whether local versus
remote state elements are involved. §4.3.1, §4.3.2, and §4.3.5 give
the general procedure for generating relevant inter-instruction HBI
hypotheses regardless of the types of state elements involved, while
§4.3.3 describes how HBI hypotheses are instantiated in SVA form
in slightly different ways for local versus global resources.

4.3.1 Generating Spatial Structural HBI Hypotheses. A spatial struc-
tural dependency exists between a pair of instructions if they both
update an identical hardware state element during their execution.
To identify these dependencies, rtl2µspec iterates over all pairs
of instructions and compares their DFGs to find common nodes
(representing identical state elements) which are reachable from
the IFRs (the primary root nodes) in both. Given a pair of instruc-
tions, each such pair of common nodes constitutes a unique spatial
structural dependency. In Fig. 3c, inst_DX, sw_in_WB, lw_in_WB,
and wdata (four distinct state elements) are all updated by both lw
and sw, since nodes representing these state elements are all reach-
able from the IFR nodes in their corresponding DFGs (recall that
inst_DX is the IFR for the multi-V-scale). Four spatial structural de-
pendencies therefore exist between lw and sw on the multi-V-scale.
Note that the four spatial dependencies identified here all involve
local state elements, but spatial dependencies can involve global
state elements as well.

A spatial structural dependency between a pair of instructions
always results in the inclusion of a corresponding HBI in the final
µspec model. However, the direction of the HBI must be deduced.
For each spatial structural dependency identified between all pairs
of instructions (including same-instruction pairs), rtl2µspec either
directly outputs an HBI or generates HBI hypotheses to determine
the direction of the HBI corresponding to the dependency with
respect to a reference order if one exists.

As discussed in §3.3.1, pairs of instructions cannot be constrained
to update a common state element in a particular order without

686

Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

a relevant reference order. Thus, given a structural dependency in-
volving such an instruction pair, rtl2µspec will synthesize an HBI
indicating that while updates to the common state element on be-
half of the instructions of interest are ordered, their direction is
unconstrained. No proof effort is necessary. One such example
arises when rtl2µspec is considering potential inter-core interac-
tions between instructions and identifies a remote memory cell (e.g.
one cell of mem in the multi-V-scale) as a common node between a
pair of per-instruction DFGs (e.g., the DFGs corresponding to sw
instructions in the multi-V-scale).

For pairs of instructions entwined in a structural dependency
with a relevant reference order that rtl2µspec has identified (e.g.,
instructions executing on the same core which minimally have
program order as a reference order), rtl2µspec generates HBI hy-
potheses in an attempt to prove that the instructions will always
update the common state element in an order that is consistent with
their reference order. These hypotheses attempt to prove that:

For instructions i0 and i1 and state element s, if i0 is ordered before
i1 with respect to some reference order (e.g., program order), then i0
will update s before i1 updates s.

§4.3.3 gives more detail on precisely how inter-instruction HBI
hypotheses are instantiated as SVAs, depending on whether s is
local or remote. Regardless, to transform these HBI hypotheses
into HBIs, the instantiated SVAs are evaluated by JasperGold, and
proven hypotheses are translated by rtl2µspec into µspec axioms.
On the other hand, invalid hypotheses require a second round of
evaluation to check if the instructions always perform their updates
in an order that is inconsistent with the reference order. Regardless
of whether or not this final hypothesis is proven, an HBI can be
deduced for inclusion in the final µspec model, as structural HBIs
can be ordered in one of three ways (see §3.3.1), and structural HBI
hypotheses always imply existence of a structural HBI.

4.3.2 Generating Temporal Structural HBI Hypotheses. Temporal
structural dependencies occur when a pair of distinct state elements
can only be accessed by one instruction at a time, and therefore
updates by different instructions to these distinct elements are
serialized by the hardware. rtl2µspec considers two sources of
temporal dependencies: (1) state elements that belong to the same
pipeline stage and are only accessible by a single instruction at
any cycle, and (2) arrays of state elements (such as a register file or
memory) whose access is constrained by a restricted interface.

To identify temporal dependencies, rtl2µspec iterates over all
pairs of instructions and compares their corresponding DFGs. For
each pair of DFGs, rtl2µspec looks for pairs of nodes (one in each
DFG) that reside in the same pipeline stage (using stage labels
from §4.2.2) or access the same register or memory array. Such node
pairs may signify true temporal structural dependencies between
instructions. True temporal structural dependencies identified by
pairwise DFG analysis always result in the inclusion of a corre-
sponding HBI in the final µspec model. As with spatial structural
dependencies, the direction of the HBI must be deduced. False tem-
poral structural dependencies involve instructions that can update
a pair of state elements concurrently. For example, pairwise DFG
analysis may determine that two instructions update a common
memory array where the memory array is in fact multi-ported.

rtl2µspec presently assumes single-ported memories, which is
sufficient for our case study in §5, but supporting multi-ported
memories is straightforward—one additional SVA check to filter
out false temporal structural dependencies is all that is required.

As with spatial structural HBIs, if there is no relevant reference
order that can be established for a given true temporal structural
dependency, an HBI can be simply synthesized without any hypoth-
esis generation or evaluation. True temporal structural dependen-
cies for which a relevant reference order can be established require
extra proof effort via temporal HBI hypotheses. The generated tem-
poral HBI hypotheses attempt to prove that:

For instructions i0 and i1 and state elements s0 and s1, if i0 is

ordered before i1 with respect to some reference order (e.g., program

order), then i0 will update s0 before i1 updates s1.

§4.3.3 explains how hypotheses matching the format above are
captured as SVAs and evaluated by JasperGold. Again, if the first
hypothesis proof fails, rtl2µspec attempts to prove that the updates
are sequenced in the reverse order with respect to the reference
order. Also note, that spatial HBI hypotheses are simply a special-
ization of temporal HBI hypotheses, where s0 = s1.

4.3.3 Formulating Structural HBI Hypotheses as SVAs. This sec-
tion explains how rtl2µspec instantiates the inter-instruction HBI
hypotheses from §4.3.1 and §4.3.2 (and upcoming §4.3.5) as SVAs,
depending on whether they involve local or remote state elements.

Structural HBI Hypotheses Involving Local State. When rtl2µspec
instantiates structural HBIs involving local state as SVAs, designer-
provided PCRs (§4.2.1) are again used to uniquely identify in-flight
instructions and attribute particular state updates to their execution
(§4.2.3). Recall that an update of local state element s is attributed
to the instruction whose PC is contained in the PCR associated with
s’s pipeline stage at the cycle s is updated. Notably, for a structural
dependency involving local state, the two PCRs that are relevant
for instantiating a structural HBI hypothesis are the same. Thus,
the SVAs generated by rtl2µspec to deduce structural HBIs reduce
to checks of the order in which two instructions, i0 and i1, update
a common PCR with respect to a reference order.

Notably, for all pairs of registers within the same pipeline stage
(which all share a PCR), the direction of all relevant structural
HBIs can be deduced by evaluating one or two SVAs—one (resp.
two) if the structural HBIs associated with that stage are consistent
(resp. inconsistent) with a reference order. This results in significant
runtime savings for rtl2µspec which can evaluate, for structural
HBIs involving local state, a number of SVAs that scale as a function
of the number of pipelines stages rather than local state elements.

Structural HBI Hypotheses Involving Remote State. When an in-
struction updates a remote state element, the update is typically
facilitated via a communication interface that connects the proces-
sor core executing the instruction to the remote resource. Thus,
remote state updates are generally not attributed to particular in-
struction PCs, but rather to particular requests over the commu-
nication interface. This scenario necessitates a new approach for
detecting state updates that are initiated by specific instructions,
beyond associating state elements with same-stage PCRs.

687

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

To instantiate HBI hypotheses that require reasoning about the
ordering of updates to remote state (e.g., memories, including on-
chip caches), rtl2µspec assumes the existence of a generic request-
response interface. §4.3.4 describes the structure of this interface,
which the designer must expose to rtl2µspec for each remote state
element (or array of state elements).

Given a request-response interface through which instructions
can update a particular remote resource, rtl2µspec can instantiate
(as SVAs) HBI hypotheses, like those in §4.3.1 and §4.3.2, involv-
ing said resource. The designer-exposed request-response interface
(1) enables SVAs to attribute remote state updates to specific in-
structions without solely using PCRs, and (2) decomposes ordering
proofs involving remote resources into multiple fine-grained and
localized SVAs. For an HBI involving a remote resource, rtl2µspec
evaluates it with the help of three SVAs, summarized as follows:

Req-Snd: Requests corresponding to the instructions’ state updates
are sent from their local core to the remote resource in an order that is

consistent with their reference order (e.g., program order). Req-Rec:
For any two requests that are sent from the same core to the remote

resource, they are received in the order in which they were sent. Req-
Proc: For any two requests from the same core that are received by

the shared resource, they are processed in the order received.

Consider a temporal HBI hypothesis that aims to prove that a pair
of same-core instructions always update a remote memory array
in an order that is consistent with program order. Three SVAs will
be instantiated. First, the Req-Snd SVA will be formulated, using
PCRs to associate the sending of requests to the memory array with
particular instructions. Second, the Req-Rec SVA will leverage the
exposed request-response interface, which labels requests with IDs
of the cores that issued them, to determine if the memory array
receives same-core requests in the order in which they were sent.
Finally, the Req-Proc SVA will also leverage requests’ core IDs to
determine if the memory array processes same-core requests in the
order in which they are received.

If any of the three SVAs associated with an HBI hypothesis
involving a remote resource are invalidated, they are re-evaluated
with an inverted reference order. Further, rtl2µspec can refine
hypotheses to detect ordering relationships that are only preserved
for same-address accesses.

4.3.4 User-Supplied Interface Metadata. rtl2µspec requires com-
munication interfaces that facilitate updates of remote state to be
structured according to a generic request-response template. For
each remote resource, rtl2µspec requires the designer to supply a
mapping between output ports of unique processor cores and input
ports of the remote resource with respect to five main signals—
transaction type, transaction size, address, data, and core
ID. Furthermore, rtl2µspec requires for each remote resource that
any signals used to indicate the completion of processing a request
are also identified (and their signal names specified).

4.3.5 Generating Data-flow HBI Hypotheses. A pair of instructions
are entwined in a data-flow dependency if one instruction updates
a state element that is read from and subsequently influences a state
update of the other. To identify data-flow dependencies between
instructions, rtl2µspec again considers all pairs of per-instruction
DFGs. For a given DFG pair, rtl2µspec searches for common nodes,

where one node instance is reachable from the IFR (the primary
root node) in one instruction’s DFG (the writer instruction) and the
other constitutes a parent node (§4.2) in the other instruction’s DFG
(the reader instruction). Such a pair of nodes signifies a data-flow
dependency from the writer’s update of the common node to the
reader’s update of the common node’s child node (in its DFG). In
Fig. 3c, mem is one such common node in the sw and lw DFGs that
is written by sw instructions but is read from and influences the
state updates of lw instructions with respect to the regfile.

To deduce theHBIs that correspond to identified data-flow depen-
dencies, rtl2µspec generates HBI hypotheses which try to prove
that:

For instructions i0 and i1 and state element s, where i0 updates s
which can pass data to i1, if i0 is ordered before i1 with respect to

some reference order, then i0 will write to s before i1 reads s.

4.3.6 Formulating Data-Flow HBI Hypotheses as SVAs. To instan-
tiate data-flow HBIs as SVAs, rtl2µspec must again be able to
attribute state updates to particular instructions. It does so with the
help of user-identified PCRs (for local state elements) and request-
response interfaces (for remote state elements), as in §4.3.3. Note
that rtl2µspec assumes that memory operations are functionally
correct. For example, a write of some data value v to some state ele-
ment s (e.g., a memory location), will indeed write v to s. Likewise,
a read of a state element s will return the exact value stored in s.

4.4 From Validated HBIs to a µspec Model

§4.2 and §4.3 detail rtl2µspec’s procedure for collecting a complete
set of proven correct HBIs to describe an input microarchitecture.

Node Merging. Thus far, all deduced HBIs operate at the gran-
ularity of individual state elements. To improve the efficiency and
scalability of µspec model analyses, rtl2µspec agglomerates state
elements into groups, and updates HBIs accordingly. This abstrac-
tion procedure is reducible to a µhb graph node merging problem.
rtl2µspec merges a pair of intra-instruction nodes for an instruc-
tion if the two nodes reside at the same distance from the IFR node
and are both involved in the same set of inter-instruction HBIs.

Syntax Translation. After node merging, the final µspec model
is generated via syntactic translation of validated HBIs to µspec.

5 MULTI-V-SCALE CASE STUDY

Wedemonstrate the efficacy of rtl2µspec by using it to synthesize a
complete µspec model from the multi-V-scale processor and thereby
conduct Check-based verification of its MCM.

5.1 The RISC-V multi-V-scale

The multi-V-scale [29, 31] consists of four Sequentially Consis-
tent [23] cores. Each core features a three-stage in-order pipeline
implementing the RISC-V 32-bit base instruction set. The four cores
interact with each other via a single shared memory module. The
design features a single arbiter that connects all cores to the mem-
ory and allows one core to issue a data memory request per cycle,
according to a round-robin policy. On concurrent memory requests,
the arbiter services only one core and stalls all others looking to

688

Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

issue requests. The arbiter can accept a new memory request on
each clock cycle due to the memory’s pipelined design.

A single core of the multi-V-scale features 1,042 wires, 605 stan-
dard cells, 55 registers and 2 memories, and 1,088 D flip-flop bits.
The four-core design features 15,616 wires, 3,185 standard cells,
200 registers and 5 memories, and 4,135 D flip-flop bits. To run
rtl2µspec on the multi-V-scale, we slightly modify the design in
two ways. First, to conform to rtl2µspec’s structural requirements
on request-response communication interfaces (§4.3.4), we extend
the output port of the arbiter and all buffers holding memory re-
quests with two bits each that tag memory requests with core IDs.
The result is a 4-bit increase in design size with no additional logic.
Second, we modify the multi-V-scale’s memory module so that
Yosys can recognize it as an addressable array with a restricted
interface (§4.3.2). Yosys originally interpreted the multi-V-scale’s
memory as a collection of distinct memory cells. We suspect this
was due to the complexity of the originalmemorymodule interface—
a unifiedmemorywith split data and instruction access ports, where
instruction memory access ports are parameterized by core count.
Our split of instruction and data memory into distinct modules
resolves this issue. 7

We supply rtl2µspec with the slightly modified multi-V-scale
design (in SystemVerilog), along with all required design meta-
data (§4.2.1 and §4.3.4). rtl2µspec is loaded as a C++ extension
to the Symbiotic EDA Edition [20201202A] of Yosys v0.9+3715.
HBI hypotheses are embedded in SVA 2009 [1] and evaluated with
JasperGold v2016.09. All experiments are run on a compute node
featuring a dual 32-core 2.9GHz Intel Xeon CPUs with 512GB RAM.

5.2 Verifying the multi-V-scale’s MCM

We use the latest release of the Check MCM verification tools,
called COATCheck [25], to verify the multi-V-scale’s adherence to
Sequential Consistency. For the litmus test input, we use a suite
of 56 litmus tests composed of both hand-written tests from an
x86-TSO litmus test suite [35] and tests that were automatically
generated with the diy framework [2]. The µspec model input is
synthesized by rtl2µspec from the multi-V-scale’s RTL implemen-
tation. The correct-by-construction µspec model and litmus tests
were supplied to COATCheck which determined that the synthe-
sized model passed all 56 litmus tests, as detailed in §6.

Prior work has also sought to address the gap between µspec
models and RTL, namely RTLCheck [31]. RTLCheck seeks to vali-
date a manually-constructed µspec model against a Verilog imple-
mentation with respect to a suite of litmus test programs. The user
supplies as input a µspec model, a Verilog design, a set of map-
pings to link to the two, and a suite of litmus tests. RTLCheck then
simultaneously checks for each litmus test that the µspec model
faithfully captures the Verilog behaviors exercised by the test and
that the test exhibits the correct behavior when it runs on the mi-
croarchitecture. Similar to rtl2µspec, RTLCheck leverages SVAs
and JasperGold.

We run the RTLCheck verification procedure on the multi-V-
scale with the same suite of 56 litmus tests, both of which were
acquired from the RTLCheck Github repository [32]. We compare

7Note that rtl2µspec can handle multi-ported memories, e.g., the multi-V-scale’s
regfile.

the performance, scalability, and completeness of RTLCheck and
rtl2µspec along two dimensions: (1) ability to deduce a correct
µspec model, and (2) ability to conduct litmus test-based verifica-
tion on Verilog designs. We note that we compare RTLCheck to
rtl2µspec using the same JasperGold solver engines. Given this,
our reported runtimes for RTLCheck are improved from the origi-
nal paper [31], due to the presence of JasperGold’s Tri engine that
was released after RTLCheck’s original publication.

6 RESULTS

6.1 Bug Discovered in the multi-V-scale

During multi-V-scale µspec model synthesis, rtl2µspec exhibited
two assertion failures when trying to prove an intra-core tem-
poral HBI involving a remote state array—memory. Specifically,
rtl2µspec instantiated a set of SVAs in an attempt to prove that
twomemory requests from the same core will update thememory in
an order concordant with program order (§4.3.3). One SVA asserted
that, if a pair of memory requests from the same core are received
by the memory, the memory will process them in the order in which
they are received. This SVA was refuted for sw/lw x

po
−−→ sw y

pairs, where x != y, implying that the final µspec model would
have been unable to preserve program order for such instruction
sequences.

The counterexample trace produced by JasperGold featured an
undefined instruction—with an encoding similar to RISC-V’s sw but
where the width field has an undefined value (funct3=3’b111)—
updating memory. Instead it should have triggered an exception.
Since the erroneous sw encoding was undefined, it was not properly
accounted for by the memory’s request-tracking logic which tags
requests with unique IDs. JasperGold was thus able to attribute the
latter sw in a sw/lw x

po
−−→ sw y sequence to an invalid instruction

with same (unconstrained) request ID that was actually received by
the memory earlier in time. We fixed this issue in the multi-V-scale
before re-running rtl2µspec to synthesize a fresh µspec model.

6.2 rtl2µspec Performance Breakdown

Fig. 5 summarizes the overhead of synthesizing a complete µspec
model for MCM verification (lw and sw instructions only) from
the multi-V-scale with rtl2µspec. Overall, it takes 6.84 minutes

to synthesize the µspec model, including 2.14 seconds of Ver-
ilog parsing and HBI hypothesis generation and 1.36 seconds of
Python post-processing. JasperGold’s evaluation of 122 rtl2µspec-
synthesized SVAs accounts for the bulk of the run time—6.78 min-
utes in total. Running COATCheck on the rtl2µspec-synthesized
µspec model takes 1.37 seconds in total for all 56 litmus.

Optimizing Structural HBI Hypotheses. When generating struc-
tural HBI hypotheses, rtl2µspec considers specific pairs of instruc-
tion types at a time. One such hypothesis might be instantiated
to determine the order in which lw and sw instructions, specifi-
cally, update some common state element (e.g., wdata in Fig. 3).
As an optimization, rtl2µspec relaxes instruction-specific struc-
tural HBI hypotheses to prune the number of SVAs that Jasper-
Gold must evaluate. In particular, instruction-specific properites
are modified such that they refer to arbitrary pairs (rather specific
pairs) of instructions. In other words, rtl2µspec tries to prove an

689

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

Intra-Instruction Structural (Spatial) Structural (Temporal) Dataflow Total

SVAs 107 1 12 (+1 spatial) 2 120
Runtime (s) 354.99 5.24 31.08 15.77 407.06

Runtime/SVA (s) 3.32 5.24 2.59 7.89 3.34

HBI Hypo. / # HBI
Local 180 / 155 129 / 129 4,762 / 4,719 2 / 2 5,073 / 5,005
Global 25 / 22 15 / 15 59 / 59 1/ 1 100 / 97
Total 205 / 177 144 / 144 4,821 / 4,778 3 /3 5,173 / 5,102

Figure 5: Results for rtl2µspec’s synthesis of amulti-V-scale µspecmodel. SomeHBI hypotheses graduate toHBIs (by proving

SVAs) and are included in final µspec model. The total runtime is 6.78 minutes, with a std. dev. of 8.60 seconds for proving

SVAs. (+1 spatial) indicates that 1 spatial SVA served to validate the remaining temporal HBI hypotheses that are not covered

by the 12. All runtimes are averaged over five runs of rtl2µspec.

instruction-specific property for all possible pairs of instructions
simultaneously. If the relaxed property fails, rtl2µspec reverts back
to the finer-grained instruction-specific encoding. This optimiza-
tion reduced the number of properties evaluated by JasperGold
(while synthesizing a µspec model of the multi-V-scale) by a factor
of about i2, where i is the number of instruction types evaluated.

6.3 Performance and Proof Coverage

Fig. 6 quantitatively and qualitatively compares rtl2µspec with
RTLCheck on their ability to support verification of the multi-V-
scale’s MCM implementation. Both charts feature the 56 evaluated
litmus tests along the x-axis and verification times on the y-axis.

Fig. 6a effectively compares the combined performance of validat-
ing a µspec model and proving that the multi-V-scale will execute
a given litmus test correctly. Recall that RTLCheck simultaneously
proves that a given µspec model is correct with respect to input
litmus test and that the litmus test will execute as required by
MCM specification on the microarchitecture. These proof times are
represented by the left (light gray or patterned) bar for each lit-
mus test. However, likely due to the complexity of SVAs generated
by RTLCheck, not all litmus tests can be fully verified. Incomplete
proofs are noted with patterned bars. On the other hand, rtl2µspec
synthesizes a complete µspec model in one step, proving that it is
correct with respect to the microarchitecture by construction. This
cost can then be amortized over the number of litmus tests evalu-
ated on the final model using the Check tools. The upper right (dark
gray) bars for each litmus test represent the amortized overhead
(over 56 litmus tests) of synthesizing a multi-V-scale µspec model.
Meanwhile, the lower right (black) bars represent the overhead
of evaluating each of the 56 litmus tests on the synthesized µspec
model with COATCheck. The average latency of RTLCheck for
evaluating one of 56 tests (including incomplete proofs) is 5,786.63
seconds (1.61 hours). In contrast the average amortized lifting time
and litmus test evaluation time and for rtl2µspec are 7.33 and 0.03
seconds, respectively, for a total of 7.36 seconds.

Fig. 6b compares the runtime of evaluating the multi-V-scale’s
MCM with respect to each of the 56 litmus tests using RTLCheck
and rtl2µspec. RTLCheck optimizes the procedure of proving that a
hardware design correctly executes a given litmus test when proofs
about the correctness of a user-supplied µspec model are not re-
quired. Run time results for this optimized variant of RTLCheck are
shown in bars on the left. Again, patterned bars signify incomplete
proofs. The bars on the right, representing runtimes for litmus
test evaluation with rtl2µspec, are identical to those in Fig. 6a

but redrawn for clarity. Overall, RTLCheck spends an average of
1,507.81 seconds (25.13 minutes) proving that a given litmus test
cannot exhibit MCM bugs when they run on the microarchitecture
(including incomplete proofs), whereas the rtl2µspec approach
can leverage a synthesized µspec model to conduct verification a
single test in 0.03 seconds on average.

Besides its apparent performance and coverage benefits, we note
that rtl2µspec is the first tool capably of synthesizing a complete
correct-by-construct µspec model from RTL.

6.4 rtl2µspec Scope

In-Order, Out-of-Order, and Superscalar. rtl2µspec supports and
has been evaluated on in-order processors. Theoretically, it can
support a restricted class of out-of-order processors that do not
speculate. Speculation violates the single-execution-path (§4.2.3)
assumption. rtl2µspec can also handle superscalar designs, subject
to the single-execution-path assumption. Such an in-scope design
cannot feature multiple execution lanes for a single instruction
type—this would directly violate assumption.

Single-Execution-Path and Single-Data-Source Assumptions. In ad-
dition to the single-execution-path assumption, rtl2µspec requires
that designs feature a single data source per data-flow dependency
that an instruction can be involved in (as the reader instruction, see
§4.3.5)—the single-data-source assumption. A load whose read data
can be sourced from either a store buffer or DRAM directly violates
this. Handling designs that violate these constraints presently re-
quires more user involvement; however, we think this is still an
important advance over existing fully-manual approaches.

Memory Systems. Given the single-execution-path assumption,
rtl2µspec cannot yet automatically identify cache structures which
may be conditionally updated during the execution of an instruction
(e.g., for cacheable versus uncacheable memory accesses). Regard-
ing DRAM, rtl2µspec features no special restrictions outside of
the request-response interface structure for remote state. Memory
controllers are free to reorder requests. Multiple memory write
ports and banked memories are also theoretically supported by
rtl2µspec, but have not been evaluated.

User-SuppliedMetadata. While rtl2µspec requires some designer-
providedmetadata to accompany the input design (§4.3.1 and §4.3.2),
we expect annotations will be straightforward to provide, even with
a complex design. In particular, many signals are likely to be in-
volved in other standard property-based verification flows.

690

Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(a) Time to verify compliance of the multi-V-scale RTL with its µspec model on a per litmus test basis for RTLCheck (left), compared with

the amortized time to synthesize a complete µspec model (upper right) plus the time to conduct litmus test verification (lower right) for

rtl2µspec.

(b) Time to conduct litmus test-based MCM verification of the multi-V-scale using RTLCheck (left) versus a rtl2µspec-synthesized µspec
model (right). Black bars are identical to those in (a).

Figure 6: Performance comparison (log scale) of rtl2µspec-assisted and RTLCheck [31]-based verification of hardwareMCMs.

Patterned bars represent incomplete proofs—instanceswhere JasperGold returnedundetermined orwhere a time out of 8 hours

was reached.

Scalability. We cannot make definitive claims about the scalabil-
ity of rtl2µspec, but have reasons to be optimistic. First, rtl2µspec
generates highly localized properties which support low proof times
with low variability. For example, rtl2µspec leverages the most
recent reference ordering between a pair of instructions when in-
stantiating HBI hypotheses as SVAs. This enables rtl2µspec to take
advantage of RTL cut points that are already commonly used in
commercial processor verification flows. Second, HBI hypotheses
are independent and can be evaluated in fully in parallel. Finally,
rtl2µspec’s synthesis procedure features opportunities for opti-
mization, like the elimination of redundant SVAs (§4.3.3 and §6.2).

7 RELATEDWORK AND CONCLUSIONS

With minimal intervention, the rtl2µspec tool synthesizes an ax-
iomatic description of hardware behavior—in the guise of a µspec
model—from a Verilog design. To demonstrate its efficacy, we ap-
plied the tool to the multi-V-scale, thereby synthesizing a µspec
model in 6.84 minutes. Subsequent verification of MCM litmus tests
takes less than one second per test. Moreover, we identified a new,
previously missed bug in the Verilog design of the V-scale.

Several tools are available for systematic litmus-based post-
silicon testing of hardware, including litmus [3], mcversi [16], and
PerpLE [34], and dedicated tools for GPU testing [40]. rtl2µspec,
on the other hand, can be used to verify hardware before tape out.

The Check tools [24, 25, 30, 31, 33, 41, 42] are the most relevant
prior work, especially RTLCheck. However, RTLCheck requires a
user-provided µspec model, a processor implementation in Verilog,
and a set of mappings from µspec primitives to signals in Verilog.

In contrast, rtl2µspec only requires a Verilog implementation and
modest design metadata. It also accomplishes a different goal—
µspec model synthesis. ISA-Formal [37] checks RTL correctness by
comparing states before and after the execution of an instruction
against the machine readable definition of the Arm® Architec-
ture [5]. In contrast to rtl2µspec, ISA-Formal does not verify the
memory system and its concurrency implications.

We used the RISC-V V-scale in our case study for its simplic-
ity and to ease the comparison with the RTLCheck tool, the cur-
rent state-of-the-art. An obvious avenue for future work is ap-
plying our techniques to other processors—for example an Arm
Cortex® design—which feature more complex microarchitectural
features and also exhibit weak memory behaviors, in contrast to the
multi-V-scale’s strong consistency model. The Pipeproof [30] and
Checkmate [41] tools could also be integrated with rtl2µspec. In
the case of Pipeproof, this would allow us to conduct full proofs of
MCM correctness, side-stepping litmus tests altogether. Checkmate,
on the other hand, searches for security vulnerabilities in hardware
designs using µhb analysis. Integrating both tools with rtl2µspec
would allow them to work directly from source Verilog.

ACKNOWLEDGMENTS

We thank our shepherd and the anonymous reviewers for their
helpful feedback. This work was supported by the National Science
Foundation (under the grant CCF-2017863).

691

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

A ARTIFACT APPENDIX

A.1 Abstract

This artifact8 uses rtl2µspec to produce a µspecmodel for the RISC-Vmulti-
V-scale [29, 31], and COATCheck [25] to conduct formal MCM verification
of the µspec model with respect to 56 litmus tests [31]. Overall, rtl2µspec
requires two runtime environments:

• rtl2uspecEnv, where rtl2µspec runs as a C++ extension to Yosys
• cadEnv, where Jaspergold is installed and is able to evaluate
rtl2µspec-generated SystemVerilog Assertions (SVAs).

A.2 Artifact check-list (meta-information)

• Data set:

– RISC-V multi-V-scale SystemVerilog design for rtl2µspec to con-
sume as input

– TCL and Python driver scripts to support evaluation of rtl2µspec-
generated SVAs on the multi-V-scale

Data set components can be accessed here: https://github.com/
yaohsiaopid/multicore_vscale_rtl2uspec_ae.git

• Run-time environment:

Running rtl2µspec requires:
– Symbiotic EDA Edition of Yosys

Please contact edmund@symbioticeda.com and
office@symbioticeda.com for academic license.

– Cadence JasperGold
Running the full end-to-end MCM verification case study featured
in this artifact additionally requires:
– COATCheck MCM verification tool (included in container image)
To facilitate artifact evaluation, the compilation and execution envi-
ronments for rtl2µspec, including rtl2µspec source code (https:
//github.com/yaohsiaopid/rtl2uspec), and COATCheck have been
wrapped as a container image: yaohsiao/micro21:v0.2.3. The image
requires the user to obtain Yosys access, as detailed below. A run-

time environment where JasperGold has been installed is required in

addition to the container image.

• Output:

Given the multi-V-scale as input, rtl2µspec will produce a µspec
model, called vscale.uarch, along with performance for various
parts of the synthesis procedure. As a secondary output, COATCheck
will produce qualitative and quantitative MCM verification results
by indicating MCM compliance (or not) with sequential consistency
(the multi-V-scale’s MCM) and verification runtimes, respectively.

A.3 Installation

(1) Setup the rtl2µspec execution environment. (rtl2uspecEnv)
The below assumes that one has reached out to Symbiotica EDA and
obtained instructions on how to download their software wrapped
in a tar.gz file and a corresponding license file ending with .lic .
Our artifact submission features a Docker image that includes all
software dependencies, with the exception of JasperGold and Yosys,
and requires users to provide the software and license file paths
as mentioned (replace <TARGZPATH> and <LICPATH>). Run the com-
mands as follows. The last line should be executed within the

container.

$ export SYMBIOTIC=<TARGZPATH>
$ export SYMBIOTIC_LIC=<LICPATH>
$ docker run −itd −−name microtest yaohsiao/micro21:v0.2.3
$ docker cp $SYMBIOTIC microtest:/home/symbiotic_bin.tar.gz
$ docker cp $SYMBIOTIC_LIC microtest:/home/symbiotic.lic
$ docker attach microtest

8Official artifact can be found here: https://doi.org/10.5281/zenodo.5492990.

$ cd /home && . envsetup.sh

This step should end with the following result:
export PATH=/opt/symbiotic−20201202A−serp/bin:$PATH
export SYMBIOTIC_LICENSE=/home/symbiotic.lic
==================================
[success] yosys path is at /opt/symbiotic−20201202A−serp/

bin/yosys
==================================

Path tomulti-V-scale design: /home/multicore_vscale_rtl2uspec
Path to rtl2µspec: /home/rtl2uspec

(2) Setup the JasperGold execution environment (cadEnv):
• Confirm that JasperGold can be found in PATH
$ which jc

• Install relevant python3 packages
$ yum install -y python3 && python3 -m pip install
numpy pandas

• Populate the multi-V-scale design
$ git clone https://github.com/yaohsiaopid/

multicore_vscale_rtl2uspec_ae.git
multicore_vscale_rtl2uspec &&

mkdir multicore_vscale_rtl2uspec/gensva

A.4 Experiment workflow

(1) Intra-instruction HBI synthesis. In rtl2uspecEnv,
$ cd /home/rtl2uspec && make init && make intra_hbi
• make init: compiles rtl2µspec using source files located in
src_revised. rtl2µspec’s required user-provided design anno-
tations are supplied as a header file, src_revised/design.h.
For example, src_revised/design.h includes design informa-
tion like the instruction fetch register (IFR) signal name, which
is declared as a string type. The value of the IFR string is
the hierarchical name in the RTL design of the state element
that stores instructions when they are first fetched from instruc-
tion memory on a given core. For the multi-V-scale, the IFR
is the core_gen_block[0].vscale.pipeline.inst_DX signal,
and it is instantiated concretely in the multi-V-scale design files
(/home/multicore_vscale_rtl2uspec/src/main/verilog).
The src_revised/design.h header file is also used to specify
which ISA instructions should have their behavior formalized
and included in the final µspec model. This is done by enu-
merating (opcodes_name, valid_exe_condition) pairs, where
opcodes_name is a string name for an instruction of interest,
and valid_exe_condition describes the how to recognize the
instruction of interest from its binary encoding. Given the focus
of our paper is on extracting µspec models for conducting MCM
verification, src_revised/design.h specifies two relevant ISA
instructions for the multi-V-scale: sw (appears first, and thus will
be referred to with ID 0 by rtl2µspec) and lw (appears second,
and thus will be referred to with ID 1 by rtl2µspec).

• make intra_hbi: runs CDFG analysis over the Verilog design sup-
plied in script/multicore_yosys_verific.tcl, namely the
multi-V-scale located at /home/multicore_vscale_
rtl2uspec in this artifact evaluation. CDFG analysis identifies
the set of state elements that are reachable from the user-supplied
IFR in the input design’s netlist and generates corresponding
intra-instruction HBI hypotheses in the form of SVAs. These
SVAs are output into the folder build/sva/intra_hbi/. Meta-
data files ever_update_[0-9]+.txt for each instruction type
list relevant state elements to be considered for inclusion in the
instruction’s execution path, pending the outcome of SVA evalu-
ation. SVAs corresponding to an instruction metadata file can be
found in a ever_update_[0-9]+.sv file with the same integer

692

https://github.com/yaohsiaopid/multicore_vscale_rtl2uspec_ae.git
https://github.com/yaohsiaopid/multicore_vscale_rtl2uspec_ae.git
edmund@symbioticeda.com
office@symbioticeda.com
https://github.com/yaohsiaopid/rtl2uspec
https://github.com/yaohsiaopid/rtl2uspec
yaohsiao/micro21:v0.2.3
https://doi.org/10.5281/zenodo.5492990

Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

ID. These integer IDs match the order in which instructions were
enumerated in the
src_revised/design.h file. The result should be
build/sva/intra_hbi/
|−− ever_update_0.sv
|−− ever_update_1.sv
−− several other files

(2) Intra-instruction HBI hypothesis evaluation.

• Copy the folder /home/rtl2uspec/build/sva/intra_hbi/ in
rtl2uspecEnv to cadEnv under
multicore_vscale_rtl2uspec/gensva/.

• Evaluate SVAs in cadEnv:
$ python3 revised_script/intra_hbi.py
The script invokes JasperGold to evaluate the SVA files in the
folder and, based on the results (proven/cex), generates a mod-
ified version of metadata file ever_update_[0-9]+.txt, called
ever_update_[0-9]+.txt.res.
This file features a new field for each row (updated/fixed),
which indicates whether the instruction of interest (denoted by
the file ID) does/does not update the state element of interest
(denoted by a row of the file).
Upon termination of SVA evaluation, the script prints out total
number of SVAs evaluated and the total runtime, which should

match the first two rows of the Intra-Instr. column in Fig. 5

in the paper.

==
Total time on intra−instruction HBI (sec) : 271.063000
Total number of SVA evaluated: 105
==

• Copy the folder multicore_vscale_rtl2uspec/gensva
/intra_hbi from cadEnv back to rtl2uspecEnv to replace orig-
inal folder /home/rtl2uspec/build/sva/intra_hbi/ so that
rtl2uspecEnv has the updated metadata files.

(3) Inter-instruction HBI synthesis. In rtl2uspecEnv,
$ cd /home/rtl2uspec && make inter_hbi
Based on the results from previous step (intra-instruction HBI eval-
uation), this step deduces per-instruction DFGs, and iterates over
all pairs of per-instructions DFGs to generate all inter-instruction
hypotheses. The result of inter-instruction HBI synthesis will be
stored in build/sva/inter_hbi/ and be structured as follows:
gensva/
|−− inter_hbi
| |−− 0.sv
| |−− 1.sv
|−− |−− several other files
| |−− hbi_meta.txt
| −− hbi_meta.txt.detail
−− intra_hbi

|−− several other files

hbi_meta.txt.detail listed all generated inter-instruction HBI
hypotheses (one per row) that will be evaluated along with their
corresponding SVA file (in the file_# field of the list). One of the
rows in hbi_meta.txt.detail should look like the following to
indicate this hypothesis is validated by the SVA contained in 0.sv.
file_#,hbi_type,samecore,i0_type,i1_type,i0_loc,i1_loc,...
0,0,1,0,0,core_gen_block[0].vscale.pipeline.ctrl....

hbi_meta.txt contains metadata pertaining to all unique SVAs that
will be used to validate all inter-instruction HBI hypotheses.

(4) Inter-instruction HBI hypothesis evaluation.

• Copy the folder /home/rtl2uspec/build/sva/inter_hbi/ in
rtl2uspecEnv to cadEnv under
multicore_vscale_rtl2uspec/gensva/.

• Evaluate SVAs cadEnv:
$ python3 revised_script/inter_hbi.py
As in intra-instruction HBI evaluation, this script invokes Jasper-
Gold for each SVA files in the inter_hbi/. Based on the re-
sults (proven/cex) a modified version of hbi_meta.txt, called
hbi_meta.txt.res, is generated, which includes a new field for
each row (updated/fixed). As before, the script prints out total
number of SVAs evaluated and the total runtime, which should

match to first two rows of the Inter-Instr. column of Fig. 5

in the paper.

==
(Spatial)| (Temporal)| Dataflow|

cnt 1| 12| 2|
time 5.347000| 31.632000| 15.801000|
==

• Copy the folder multicore_vscale_rtl2uspec/gensva/
inter_hbi from cadEnv back to /home/rtl2uspec/build/
sva/inter_hbi/ in rtl2uspecEnv. rtl2uspecEnv should now
have new files, namely
/home/rtl2uspec/build/sva/inter_hbi/hbi_meta.txt.res

(5) µspec generation. In rtl2uspecEnv,
$ cd /home/rtl2uspec && make uspec .
This pass aggregates the results from previous steps, merges state
elements having the same ordering behaviors into “mega-nodes,”
and generates the final µspec model, named vscale.uarch. The
mega-nodes will be instantiated as single nodes during instruction
execution path enumeration in the µspec model. Part of this pass
also includes a syntatic translation of the proven HBI hypotheses
to the µspec DSL. An excerpt of the µspec model generated by our
artifact evaluation is included below for reference.
StageName 0 "IF_".
StageName 1 "mgnode_2".
StageName 2 "mgnode_0".
StageName 3 "hasti_mem_mem".
StageName 4 "mgnode_3".
StageName 5 "mgnode_1".

% ProgramOrder
Axiom "PO_man": forall microop "i1", forall microop "i2",

SameCore i1 i2 => ProgramOrder i1 i2 =>
AddEdge ((i1, IF_), (i2, IF_), "PO", "orange").

A.5 Evaluation and expected results

Our artifact evaluates the synthesized µspec model against a suite of litmus
tests using the COATCheck MCM verification tool. In rtl2uspecEnv,
$ cd /home/rtl2uspec && make eval_uspec
This step obtains a suite of litmus tests [31] to evaluate compliance of a
µspec model with Sequential Consistency (the MCM of the multi-V-scale).
It then uses COATCheck to evaluate the rtl2µspec-generated µspec model
against these same litmus tests. An example of the results that should be gen-
erated is shown below. Each row features the name of a litmus test and the
runtime (ms). Runtimes correspond to blue performance bars Fig. 6 of

the paper. The final line of output should also indicate that none of

the litmus tests fail to execute in a Sequentially Consistent manner,
demonstrating that COATCheck has proven the multi-V-scale to implement
Sequential Consistency with respect to the litmus tests considered.
.....
safe027.test,29.083897
safe029.test,16.207506
safe030.test,22.950519
sb.test,11.006003
ssl.test,16.676122
wrc.test,23.565418
−−− 1379.073456 ms −−−

======= ALL TESTS PASSES =======

693

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

REFERENCES

[1] 2009. Institute of electrical and electronic engineers (IEEE) standard for
SystemVerilog–Unified Hardware Design, Specification, and Verification Lan-
guage.

[2] Jade Alglave, LucMaranget, Susmit Sarkar, and Peter Sewell. 2010. Fences inWeak
Memory Models. Proceedings of the 22nd International Conference on Computer

Aided Verification (CAV) (2010). http://dx.doi.org/10.1007/978-3-642-14295-6_25
[3] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:

Running Tests Against Hardware. Proceedings of the 17th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)

(2011).
[4] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and DataMining forWeakMemory. ACMTransactions

on Programming Languages and Systems (TOPLAS) 36, 2 (2014), 7:1–7:74.
[5] Arm. 2013. Arm Architecture Reference Manual.
[6] Arm. 2021. The Arm memory model tool. https://developer.arm.com/

architectures/cpu-architecture/a-profile/memory-model-tool Accessed 12th
April 2021.

[7] Krste Asanović. 2017. The RISC-V Memory Consistency Model. RISC-V Organi-

zation (2017). https://riscv.org/2017/04/risc-v-memory-consistency-model/
[8] Verific Design Automation. 2019. Verific’s Parser Platform.
[9] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Repre-

sentation and Mind Series). The MIT Press.
[10] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. 2009. Satisfiability modulo

theories. In Handbook of Satisfiability. 825–885.
[11] James Bornholt and Emina Torlak. 2017. Synthesizing Memory Models from

Framework Sketches and Litmus Tests. Proceedings of the 38th Conference on

Programming Language Design and Implementation (PLDI) (2017).
[12] Cadence Design Systems, Inc. [n.d.]. Cadence JasperGold formal verification

platform. https://www.cadence.com/en_US/home/tools/system-design-
and-verification/formal-and-static-verification/jasper-gold-verification-
platform.html Accessed 12th April 2021.

[13] Nathan Chong and Samin Ishtiaq. 2008. Reasoning about the Arm Weakly
Consistent Memory Model. In Proceedings of the ACM SIGPLAN workshop on

memory systems performance and correctness (MPSC). 16–19.
[14] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 2000. Model Checking.

MIT Press.
[15] Francisco Corella, James M. Stone, and Charles Barton. 1993. A formal specifi-

cation of the PowerPC shared memory architecture. Technical Report Computer

Science Technical Report RC 18638(81566), IBM Research Division, T.J. Watson

Research Center (1993).
[16] M. Elver and V. Nagarajan. 2016. McVerSi: A test generation framework for

fast memory consistency verification in simulation. In 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA). 618–630.
[17] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget,

Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. 2017. Mixed-size
concurrency: Arm, POWER, C/C++11, and SC. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, (POPL). 429–442.
[18] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit

Sarkar, and Peter Sewell. 2015. An integrated concurrency and core-ISA architec-
tural envelope definition, and test oracle, for IBM POWER multiprocessors. In
Proceedings of the 48th International Symposium on Microarchitecture (MICRO).
635–646.

[19] Naorin Hossain, Caroline Trippel, and Margaret Martonosi. 2020. TransForm:
Formally Specifying Transistency Models and Synthesizing Enhanced Litmus
Tests. Proceedings of the 47th International Symposium on Computer Architecture

(ISCA) (2020).
[20] IBM. 2013. Power ISA Version 2.07.
[21] Intel Corporation. 2007. Intel 64 architecture memory ordering white paper.
[22] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (1978), 558–565.
[23] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs. IEEE Transactions on Computing 28, 9 (1979),
690–691.

[24] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2014. PipeCheck: Spec-
ifying and Verifying Microarchitectural Enforcement of Memory Consistency
Models. Proceedings of the 47th International Symposium on Microarchitecture

(MICRO) (2014).
[25] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee. 2016.

COATCheck: Verifying Memory Ordering at the Hardware-OS Interface. Proceed-
ings of the 21st International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (2016).
[26] Daniel Lustig, AndrewWright, Alexandros Papakonstantinou, and Olivier Giroux.

2017. Automated Synthesis of Comprehensive Memory Model Litmus Test Suites.
Proceedings of the 22nd International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS) (2017).

[27] Sela Mador-Haim, Rajeev Alur, and Milo M K. Martin. 2010. Generating Litmus
Tests for Contrasting Memory Consistency Models. 22nd International Conference
on Computer Aided Verification (CAV) (2010).

[28] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave,
Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams.
2012. An Axiomatic Memory Model for POWER Multiprocessors. Proceedings of
the 24th International Conference on Computer Aided Verification (CAV) (2012).

[29] Albert Magyar. 2016. A Verilog implementation of the RISC-V Z-scale micropro-
cessor. https://github.com/ucb-bar/vscale.

[30] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta. 2018.
PipeProof: Automated Memory Consistency Proofs for Microarchitectural Speci-
fications. Proceedings of the 51st International Symposium on Microarchitecture

(MICRO) (2018).
[31] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer.

2017. RTLCheck: Verifying the Memory Consistency of RTL Designs. Proceedings
of the 50th International Symposium on Microarchitecture (MICRO) (2017).

[32] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer.
2017. RTLCheck: Verifying the Memory Consistency of RTL Designs. https:
//github.com/ymanerka/rtlcheck.

[33] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
2015. CCICheck: Using µhbGraphs to Verify the Coherence-consistency Interface.
Proceedings of the 48th International Symposium on Microarchitecture (MICRO)

(2015).
[34] Themis Melissaris, Markos Markakis, Kelly Shaw, and Margaret Martonosi. 2020.

PerpLE: Improving the Speed and Effectiveness of Memory Consistency Testing.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO).
[35] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model:

x86-TSO. Proceedings of the 22nd International Conference on Theorem Proving in

Higher Order Logics (TPHOLs) (2009).
[36] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and

Peter Sewell. 2017. Simplifying Arm Concurrency: Multicopy-atomic Axiomatic
and Operational Models for Armv8. ACM Programming Languages (2017).

[37] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes,
Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi. 2016.
End-to-End Verification of Arm® Processors with ISA-Formal. In Proceedings of

the 28th International Conference on Computer Aided Verification (CAV).
[38] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.

2011. Understanding POWERMicroprocessors. Proceedings of the 32nd Conference
on Programming Language Design and Implementation (PLDI) (2011).

[39] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. x86-TSO: A Rigorous and Usable Programmer’s Model for
x86 Multiprocessors. Commun. ACM 53, 7 (2010), 89–97.

[40] Tyler Sorensen and Alastair F. Donaldson. 2016. Exposing Errors Related to Weak
Memory in GPU Applications. In Proceedings of the 37th Annual ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI). 100–
113.

[41] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate:
Automated Synthesis of Hardware Exploits and Security Litmus Tests. Proceedings
of the 51st International Symposium on Microarchitecture (MICRO) (2018).

[42] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Mar-
garet Martonosi. 2017. TriCheck: Memory Model Verification at the Trisection
of Software, Hardware, and ISA. Proceedings of the 22nd International Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS) (2017).
[43] Srikanth Vijayaraghavan and Meyyappan Ramanathan. 2014. A Practical Guide

for SystemVerilog Assertions. Springer Publishing Company, Incorporated.
[44] Andrew Waterman and Krste Asanović (Eds.). 2018. The RISC-V Instruction Set

Manual Volume I: User-level ISA. RISC-V International. Document version 2.2.
[45] John Wickerson, Mark Batty, Tyler Sorensen, and George A Constantinides. 2017.

Automatically comparing memory consistency models. Proceedings of the 44th
Symposium on Principles of Programming Languages (POPL) (2017).

[46] Clifford Wolf, Johann Glaser, and Johannes Kepler. 2013. Yosys: a free Verilog
synthesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics

(Austrochip).
[47] Y. Yang, Ganesh Gopalakrishnan, G. Lindstrom, and K. Slind. 2004. Nemos: a

framework for axiomatic and executable specifications of memory consistency
models. In Proceedings of the 18th International Parallel and Distributed Processing

Symposium. 31–.

694

http://dx.doi.org/10.1007/978-3-642-14295-6_25
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://riscv.org/2017/04/risc-v-memory-consistency-model/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://github.com/ucb-bar/vscale
https://github.com/ymanerka/rtlcheck
https://github.com/ymanerka/rtlcheck

	Abstract
	1 Introduction
	2 Background
	3 A Taxonomy for Constructing Complete spec Models
	3.1 Happens-Before Invariants
	3.2 Intra-Instruction HBIs
	3.3 Inter-Instruction HBIs

	4 Synthesizing spec from RTL
	4.1 RTL to Full-Design Data Flow Graphs
	4.2 Synthesizing Intra-Instruction HBIs
	4.3 Synthesizing Inter-Instruction HBIs
	4.4 From Validated HBIs to a spec Model

	5 multi-V-Scale Case Study
	5.1 The RISC-V multi-V-scale
	5.2 Verifying the multi-V-scale's MCM

	6 Results
	6.1 Bug Discovered in the multi-V-scale
	6.2 rtl2spec Performance Breakdown
	6.3 Performance and Proof Coverage
	6.4 rtl2spec Scope

	7 Related Work and Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected results

	References

