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ABSTRACT March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA, 15 pages.

We propose RecShard, a fine-grained embedding table (EMB) parti-
tioning and placement technique for deep learning recommendation
models (DLRMs). RecShard is designed based on two key observa-
tions. First, not all EMBs are equal, nor all rows within an EMB are
equal in terms of access patterns. EMBs exhibit distinct memory
characteristics, providing performance optimization opportunities
for intelligent EMB partitioning and placement across a tiered mem-
ory hierarchy. Second, in modern DLRMs, EMBs function as hash
tables. As a result, EMBs display interesting phenomena, such as
the birthday paradox, leaving EMBs severely under-utilized. Rec-
Shard determines an optimal EMB sharding strategy for a set of
EMBs based on training data distributions and model characteris-
tics, along with the bandwidth characteristics of the underlying
tiered memory hierarchy. In doing so, RecShard achieves over 6
times higher EMB training throughput on average for capacity con-
strained DLRMs. The throughput increase comes from improved
EMB load balance by over 12 times and from the reduced access to
the slower memory by over 87 times.
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1 INTRODUCTION

Deep learning (DL) is pervasive, supporting a wide variety of ap-
plication domains [5, 6, 14, 15, 21, 32, 37, 40]. A significant fraction
of deep learning compute cycles in industry-scale data centers
can be attributed to deep learning recommendation models (DL-
RMs) [3,4,9, 11, 20, 34, 43, 47, 48]. For example, at Facebook, DLRMs
account for more than 50% of training demand [32] and more than
80% of inference demand [11]. Moreover, Google’s search engine
relies on its recommender system, such as RankBrain, for search
query processing [36].

DLRMs DLRMs exhibit distinct systems implications compared
to more traditional neural network architectures [10, 16, 23, 24, 38].
This is due to their use of embedding layers which demand orders-
of-magnitude higher memory capacity and exhibit significantly
lower compute-intensity [11, 26, 33]. Embedding layers, comprised
of embedding tables (EMBs), support the transformation of categor-
ical (i.e., sparse) features into dense representations. Categorical
features are typically represented as one-hot or multi-hot binary
vectors, where entries represent feature categories. Activated cate-
gories (binary value of 1) in a feature vector then induce a set of
look-ups to the feature’s corresponding EMB to extract dense latent
vectors.

System Requirement Characteristics for DLRMs  The large
feature space for industry-scale DLRMs demands significant com-
pute throughput (PF/s), memory capacity (10s of TBs), and memory
bandwidth (100s of TB/s) [31]. Figure 1 illustrates that the mem-
ory capacity and bandwidth demands for DLRMs have been growing
super-linearly, exceeding the memory capacities available on training
hardware. Figure 1a shows that between 2017-2021, the memory
capacity requirements of DLRMs have grown by 16 times. EMB
memory footprints are on the order of terabytes (TB) [26, 46] and
account for over 99% of the total model capacity [11]. The growth
in the number and sizes of EMBs stems from the increase in the
number of features and feature categories represented, in order to
improve the overall DLRM prediction quality. Figure 1b shows that,
within the same four-year period, per-sample DLRM memory band-
width demand, determined by the amount of EMB rows accessed
in a single training data sample, has increased by almost 30 times,
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(a) DLRM memory requirements (b) DLRM bandwidth demands
have grown by 16x, while mem- have grown by 30x, far outpacing
ory capacity on GPU accelerators the bandwidth growth of acceler-
has improved by less than 6x. ator memories and interconnects.

Figure 1: DLRM system requirement growth trend.

outpacing the growth and availability of memory bandwidth on
state-of-the-art training hardware.

Hierarchical Memory in Training Systems The widening gap
between the DLRM memory needs and the memory specifications
of modern training system hardware motivates new memory opti-
mization techniques to effectively scale training throughput. While
the exact training system architectures differ, hierarchical memory
systems, e.g. tiered hierarchies composed of GPU HBM, CPU DRAM,
and SSD [46], are becoming increasingly common for DLRM train-
ing. Since not all EMBs can fit entirely in GPU HBMs, this scenario
gives rise to optimization strategies to address the first challenge
— deciding where EMBs should be placed in the hierarchical mem-
ory system to maximize training throughput. Strategically placing
EMBs brings up the second challenge — ensuring efficient utilization
of all available memory capacity and bandwidth.

Characterizing EMB Access Patterns for DLRMs In this
paper, we make two key observations regarding the memory access
behaviors of EMBs that motivate more performant and efficient
EMB partitioning and placement schemes.

First, not all EMBs are equal, nor are all rows within an EMB
equal in terms of access behaviors. For example, the frequency
distribution of a sparse feature’s categorical values often follows a
power law distribution. Therefore, a relatively small fraction of EMB
rows will source the majority of all EMB accesses. Furthermore,
as illustrated in Figure 3, sparse features, and thus EMBs, exhibit
varying bandwidth demands due to varying pooling factors — the
number of activated categories on average in a particular sparse
feature sample — and coverage — the fraction of training samples
in which a particular feature appears. Second, in modern DLRMs,
EMBs function as hash tables. As a result, EMBs display interesting
phenomena, such as the birthday paradox, which leaves a significant
portion of EMBs unused due to hash collisions. Unused EMB space
is further increased with increasing hash sizes.

Building on the in-depth sparse feature characterization of pro-
duction scale DLRMs (Section 3), we propose RecShard — a new
approach to improve DLRM training throughput using a data-driven
and system-aware EMB partitioning and placement strategy. Rec-
Shard’s EMB sharding strategy is informed by per-feature training
data distributions—categorical value frequency distributions (Fig-
ure 5), pooling factor statistics (Figure 6a) as well as coverage distri-
butions of all sparse features (Figure 6b). RecShard also considers
EMB design settings—hash functions and table sizes (Figure 7) as
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Figure 2: Generalized hybrid-parallel DLRM architecture.
Data parallel modules (MLPs) are shaded blue while model
parallel EMBs are shaded orange.

well as characteristics of the underlying tiered memory. RecShard
considers the training system design parameters simultaneously
through the use of a mixed integer linear program (MILP) to produce
an optimal EMB sharding strategy. Overall, the key contributions
of this paper are as follows:

e Fine-grained, data-driven EMB sharding: We demon-
strate that EMB access patterns during DLRM training vary
within and across EMBs. As a result, DLRM training through-
put stands to improve with fine-grained EMB sharding. Fur-
ther, EMB access patterns can be estimated by deriving sta-
tistics from less than 1% of training data (categorical value
frequency distribution, pooling factor, and coverage) and
the target DLRM architecture (hash function and hash size).
Thus, intelligent EMB sharding schemes can be instituted
prior to training time.

e RecShard: We propose RecShard — a new approach for
fine-grained sharding of EMBs with respect to a multi-level
memory hierarchy consisting of GPU HBM and CPU DRAM.
RecShard optimizes EMB partitioning and placement glob-
ally based on the estimated sparse feature characteristics
and DLRM architecture.

¢ Real system evaluation: To demonstrate its efficacy, we
implement and evaluate RecShard in the context of a pro-
duction scale DLRM. We demonstrate that RecShard can
on average improve the performance and load balance of
DLRM EMB training by over 5x and over 11x, respectively,
compared to the state-of-the-art industry sharding strate-
gies [1, 26, 31].

2 BACKGROUND

Figure 2 gives an overview of the canonical Deep Learning Rec-
ommendation Model (DLRM) architecture [33]. In this section, we
provide background on DRLMs and the training systems.

DLRMs process user-content pairs to predict the probability that
a user will interact with a particular piece of content, commonly
referred to as the click-through-rate (CTR). To produce such a
prediction, DLRMs consume two types of features: dense and sparse.
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Figure 3: Example illustrating the pooling factor and cover-
age statistics, along with the embedding lookup and (sum)
pooling operation. In this example there are two sparse fea-
tures, A and B, with two corresponding embedding tables, and
a training dataset composed of three training data samples.
The average pooling factors of sparse features A and B over
the dataset are 3.66 and 3, respectively, while the coverages
are 1.0 and .33, respectively. The example shows the embed-
ding lookup and pooling operation for the second training
data sample (highlighted in bold). For sparse feature A, the
raw input IDs are hashed with an output size of 100 (which
corresponds to the number of rows in A’s EMB), generating
the corresponding embedding lookup indices. These embed-
ding rows, each containing embedding dimension number of
values, are then read and combined, i.e. pooled, via element-
wise summation to produce the output vector of the lookup
operation. For sparse feature B, the second training data sam-
ple is NULL, signifying that B contains no feature data for
that particular data sample. This results in the stages which
sparse feature A went through being bypassed and a 0-vector
being produced as the output.

Dense features represent continuous data, such as a user’s age or the
time of day, while sparse features represent categorical data, such
as domain names or recent web pages viewed by a user. To encode
this categorical data, sparse features are represented as one-hot or
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Figure 4: Sparse feature cardinality (categorical space; x-axis)
versus chosen feature hash size (EMB size; y-axis) for 200
sparse features used in a large production-scale model. Hash
size equal to cardinality is shown by the red-dotted line.

multi-hot binary vectors which are only activated for a small subset
of relevant categories (hence the term sparse). Sparse features used
in DLRMs can have cardinalities in the billions [22, 46].

At a high level, the primary components of DLRMs are Multi-
Layer Perceptrons (MLPs) and Embedding Tables (EMBs). EMBs
are commonly-used to transform sparse features from the high-
dimensional, sparse input space to low-dimensional, dense embed-
ding vectors. EMBs perform this operation by functioning as large
lookup tables, where, in theory, each rows acts as a latent vector
encoding of a particular sparse feature value (i.e., category). The
activated, or hot, indices of the sparse inputs then act as indices
into the EMBs, gathering one or more embedding vectors.

In practice, however, the binary-encoded sparse feature inputs
are hashed prior to EMB look-up. Hashing serves two purposes.
First, hashing allows the bounding of a sparse feature’s EMB to a
pre-determined, fixed size. Second, hashing permits the handling
of unseen inputs at runtime [1, 22]. Once gathered, the embedding
vectors are aggregated on a per-EMB basis using a feature pooling
operation, such as summation or concatenation. The pooled vectors,
along with the outputs of the bottom MLP layers (which process
dense inputs), are then combined using a feature interaction layer,
before proceeding through the top MLP layers and producing a
prediction for the estimated engagement for the user-content pair.
Training Systems for DLRMs DLRMs present significant in-
frastructure challenges. While the MLP layers are compute-intensive
and exhibit (relatively) small memory footprints, single EMBs of
production-scale DLRMs can be on the order of 100s of gigabytes
each, with the total memory capacity on the multi-TB scale [22,
31, 46]. Furthermore, EMBs exhibit irregular memory access pat-
terns [41], and the concurrent vector accesses per-EMB and across
EMBs require substantial memory bandwidth [1, 23]. This has led
to a hybrid data- and model-parallel training approach (Figure 2).
MLP layers (both top and bottom) are replicated across all trainers
(GPUs in figure) in a data-parallel manner, while EMBs are sharded
across trainers to exploit model-parallelism [17, 18, 31, 44].

The ever-increasing memory capacity and bandwidth demands
of DLRM training has also led to the emergence of training systems
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with tiered hierarchical memories (such as hierarchies with HBM,
DRAM, and SSD tiers). The large collection of EMBs are partitioned
and/or cached across the various tiers [31, 46]. One class of parti-
tioning approaches leverages unified virtual memory (UVM) [13].
This places both host DRAM and accelerator HBM in a shared vir-
tual address space, allowing transparent access of host DRAM on
a GPU accelerator without explicit host-device transfers [27, 30].
UVM can greatly expand the usable memory capacity of a GPU
node with ease. For example, a server with 8x 32GB HBM GPUs
can have 2TB of DRAM [1].

However, for memory-bound workloads, such as DLRMs, using
UVM naively can come with significant performance cost. While the
latest GPUs contain HBMs with bandwidth capacity approaching
2TB/s, the interconnects used can have bandwidth capacity an order
of magnitude less. Single direction throughput of PCle 4.0x16, for
example, is just 32 GB/s. This places particular importance on the
DLRM EMB sharding scheme—hundreds of EMBs with heterogeneous
memory characteristics have to be placed across potentially hundreds
of trainers.

To address the performance needs of production-scale DLRM
training in the presence of rapidly-growing memory capacity and
bandwidth demands, this paper focuses on the partitioning and
placement problem—determining the optimal placement of EMBs on
a tiered memory system with fixed memory capacity and bandwidth
constraints.

3 CHARACTERIZATION OF DLRM SPARSE
FEATURES

The goal of a DLRM sharder is to partition a model’s EMBs across
a training system’s hardware topology, in order to fully exploit
model parallelism and thereby maximize training throughput. This
requires an EMB placement across an increasingly tiered memory
hierarchy that balances training load across all trainers (GPUs). To
achieve such load balancing, an effective EMB sharder must be able
to accurately estimate the memory demands of each EMB. RecShard
addresses this problem through a data-driven approach.

This section presents our in-depth memory characterization of
sparse features used in industry-scale DLRMs. The characterization
study captures the statistical nature of recommendation training
data, and sheds light on five key characteristics of DLRM sparse
features which RecShard exploits to improve the EMB training
throughput performance. Notably, we find that a sparse feature’s
value distribution enables us to determine the portion of an EMB
that will exhibit high temporal locality during training, the feature’s
average pooling factor provides a proxy for its memory bandwidth
cost, and the feature’s coverage allows us to rank the placement
priorities across EMBs. Furthermore, these statistics are distinct and
vary over time for each sparse feature.

3.1 Skewed Categorical Distribution Presents
Unique EMB Locality Characteristics

A small subset of categories can constitute the majority of

accesses to an EMB.

Sparse features represent categorical data, with each sparse fea-
ture’s data sample containing a variable length list of categorical
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Figure 5: Hashed Value Frequency CDFs of 200 sparse fea-
tures used in a production DLRM. The CDFs are generated
from over two billion randomly-selected training samples
over ten days of data, post-hash.

values from its sparse feature space. As the size of this categori-
cal feature space can be arbitrarily large, it is natural to ask if a
subset of values appear more often than others, and in fact they
do [8, 19, 25, 42]. For example, the country a user is located in is
a common feature for recommendation use cases. If we were to
measure the distribution of this feature, we would see the feature
follows a skewed power-law distribution, as the world population
by country itself follows a power-law distribution with a long tail.
Production-scale DLRMs often consist of hundreds of features that
exhibit similar categorical frequency distributions [1, 31].

Figure 5 illustrates the cumulative distribution function (CDF)
of 200 representative categorical features of a production DLRM.
While a handful of features exhibit more uniform value distribu-
tions, the vast majority display a power-law distribution over the
categorical values. In other words, for the majority of features,
a small subset of categories appear much more frequently than
the rest. This implies that a small set of EMB rows comprise the
majority of EMB accesses. It is important to also highlight that
the strength of the distribution varies from one feature to another,
requiring consideration of the distribution on a per-feature basis.

Overall, the locality characteristics unique to each feature give
rise to an optimization opportunity — EMB entries within a table
can be placed across a tiered memory hierarchy based on expected
access patterns. We refer to this optimization as fine-grained EMB
partitioning.

3.2 Pooling Factors Determine Memory
Bandwidth Demand

Within a training data sample, each EMB exhibits its own
bandwidth demand due to varying pooling factor distributions.

Activated indices in a sparse feature’s input effectively corre-
spond to the rows in the feature’s EMB that should be accessed
to acquire latent vector representations of the categories. This re-
sults in a scatter-gather memory access pattern, where one embed-
ding vector is accessed for each activated index. The n EMB rows
accessed by a sparse feature’s input is its sample pooling factor,
whereas the interaction of the corresponding n latent embedding



RecShard: Statistical Feature-Based Memory Optimization for Industry-Scale Neural Recommendation

200

100 .

Average Pooling Factor

B ° 0.4 °
e o oo’ e 0 %o " ‘e 8 ‘gu.;"ws" o adte
! . ° o
| g A dee | Fo| e W S
;’. &. 3 oS, BB ogo s KT LR g
0 00 6 °§® d’& 00| ® 8 8: ° %% ° ®o

0 100 200 300 400 0 200 300 400

Feature Feature

(a) Average pooling factor: the (b) Coverage percentage: the prob-
number of ‘hot’ indices in an aver- ability a sparse feature is present
age sparse feature’s input sample. in arandom training data sample.
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from feature to feature. Collectively, they serve as a proxy
for the per-sample bandwidth demand of a feature.

vectors via pooling determines the feature sample’s representation.
The distribution of the pooling factors — n — of a sparse feature
across the training data models the feature’s memory bandwidth
consumption.

Furthermore, the pooling factor distribution can vary from fea-
ture to feature, resulting in memory bandwidth needs that are
feature-specific (i.e., EMB-specific). This is due to variability in the
information each feature represents. While the feature representing
the location of a user may always be of length one, a feature repre-
senting the pages recently viewed by a user will likely have length
greater than one. Figure 6a depicts the average pooling factor distri-
bution for hundreds of sparse features which varies widely. Some
sparse features exhibit high pooling factors of approximately two
hundred on average, while the average pooling factors of others
are on the order of a few tens; the result is an order of magnitude
difference in the memory bandwidth demand.

As with sparse feature value distributions, the pooling distribu-
tions for sparse features are also skewed with a long tail; however
unlike the value distributions, they cannot be broadly classified
as being power-laws with varying degrees of strengths. We ex-
perimented with an assortment of summary statistics, such as the
median and mean, to determine which provides the best estimate
for the ‘average’ case across all features; resulting in the choice
of mean as the estimate for the average pooling factor of a sparse
feature. This choice was made as we observed that the mean gen-
erally tends to over-estimate an EMB’s bandwidth demand, which
we find preferable to under-estimating and potentially resulting in
a sub-optimal EMB placement.

In summary, pooling factor diversity across features motivates
optimizations that consider per-feature average pooling factors to
approximate the unique memory bandwidth consumption charac-
teristics for EMBs.

3.3 Varying Degrees of Coverage for Sparse
Features Determines EMB Placement
Priority

Sparse features exhibit varying degrees of coverage, with some

EMBs being used much more often than others.

Not all sparse features of a DLRM are referenced in each training
data sample. There are a variety of reasons for this, such as a par-
ticular feature being phased in or out, or a user simply not having
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Figure 7: The impact of hashing on the feature value fre-
quency distribution. Even using a hash size greater than the
number of unique values, hashing causes the compression of
the raw value distribution, leaving considerable EMB under-
utilization.

the content interaction or metadata necessary for the feature to
be instantiated. Regardless of the reason, there is variability in the
presence of sparse features across training inputs, which provides
us with additional empirical information for system performance
optimizations.

Figure 6b depicts the feature access probabilities (y-axis) across
hundreds of sparse features sampled from a number of industry-
scale DLRMs (x-axis). The probability that a sparse feature is present
in a training sample is referred to as its coverage. Similar to the
pooling factor distribution (Section 3.2), the coverage of individual
sparse features varies widely from feature to feature — ranging
from less than 1% on the low-end to 100% on the high-end. This ob-
servation demonstrates the importance of considering per-feature
coverage characteristics in EMB placement decisions. Thus, a fea-
ture’s coverage gives rise to system optimizations based on the
prioritization of EMBs according to their frequency of use.

3.4 Embedding Hashing Leads to Sub-optimal
System Memory Utilization

While a simple technique, embedding hashing is inefficient
from the perspective of system memory utilization.

The cardinality of a given sparse feature can be on the order of
billions. Thus, constructing an EMB representing the entirety of
such a sparse feature would be prohibitively expensive in terms
of the memory capacity requirement. Furthermore, it would not
generalize to unseen feature values when new categories emerge.
Thus, it is unrealistic to construct a one-to-one mapping between
every sparse feature value and EMB rows. Instead, the EMBs of
industry-scale DLRMs typically employ hashing [1, 22, 39], using
a random hash function to map arbitrary feature values to output
values constrained by a specified hash size. The hash size therefore
dictates the size of the EMB.

A consequence of using random hashing to map a feature’s
inputs to corresponding EMB entries is hash collisions—where the
hash function maps two unique input values to the same output
value. The existence of hash collisions can be demonstrated via the
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pigeonhole principle, as mapping H + 1 unique values with a hash
size of H requires at least two input value overlap. What is less
obvious however, is whether or not, and to what degree, collisions
occurs when the hash size is equal to or even slightly greater than
the number of unique input values seen. Commonly known as the
birthday paradox, when hashing N unique input values with a hash
size of H = N, one will observe that approximately % input values
will collide. And, as N = H, this results in % hash entries being
unused.

Figure 7 depicts the birthday paradox phenomenon by illustrat-
ing the pre- and post-hash distributions for a specific feature of a
production DLRM. The pre-hash distribution (dark blue line) depicts
the input feature value space, whereas the post-hash distribution
(light blue line) depicts the distribution of accesses to the corre-
sponding EMB. The red-dotted vertical line denotes the specified
hash size and therefore the number of unique embedding vectors
that can be captured by this EMB. Although the hash size is greater
than the number of unique pre-hash values observed (the red dotted
line is to the right of the dark blue line), the post-hash embedding
space compresses the pre-hash categorical feature space (the light
blue line terminates to the left of the dark blue line). Furthermore,
Figure 7 highlights the under-utilization of EMBs due to training
data sparsity by 26% and hash collisions by another 22%.

Increasing the hash size to accommodate the tail of the power-
law distribution - a technique which can improve model perfor-
mance [46] — leaves an increasing percentage of the hash space
under-utilized, which RecShard can reclaim. Figure 8 illustrates
that, as the hash size is increased to accommodate the tail of the
input sparse feature distribution (Section 3.1), an increasing per-
centage of the hash space is unused by training samples (sparsity
increases).

Given the observations above, hashing gives additional insight
into designing an intelligent partitioning strategy for EMBs. Due
to the birthday paradox and the desire to choose a hash size which
can retain as much of the tail as possible, a non-trivial percentage
of embedding rows will not be accessed at all during training. This
enables us to move the under-utilized portions of EMBs to a slower
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Figure 9: Sparse features are grouped into two general cate-
gories, users and content. Both feature types exhibit dynamic
memory demand over time. We show memory demand for
a large production model (~400 features) over a 20-month
period. Data represent averages over all relevant features.

memory tier (or potentially avoid allocation altogether) without
visible impact on the training time performance.

3.5 Sparse Feature Memory Patterns Evolve
over Time

Sparse features exhibit distinct, dynamic memory demands
over time.

Sections 3.1-3.4 provide insights into how memory characteristics
specific to DLRM sparse features and EMB design can be used to
optimize the EMB performance of DLRMs through an intelligent
data-driven sharding strategy. It is, however, also important to
know how often EMB sharding should be performed. Once deployed,
industry-scale production models may be continuously retrained
on new data for potentially many weeks [14] at a time.

Figure 9 illustrates how average feature lengths evolve over a 20-
month time period for two distinct types of sparse features: content
features and user features. Based on the time-varying nature of
sparse feature statistics, ideally the benefit of re-sharding would be
evaluated regularly throughout training as new data arrives, due to
the potentially large impact that data distribution shifts can have
on training throughput. Although this benefit can be approximated
quickly by RecShard (Section 4), it must be dynamically weighed
against the cost of carrying out the re-sharding on the given training
stack and topology.

4 RECSHARD

Building on the EMB memory access characterization results in
Section 3, we design, implement, and evaluate an intelligent EMB
sharding strategy — RecShard. RecShard is a data-driven EMB shard-
ing framework that optimizes embedding table partitioning and
placement across a tiered memory hierarchy. Figure 10 provides the
design overview for RecShard, which is comprised of three primary
phases: Training Data Profiling (Section 4.1), Embedding Table Par-
titioning and Placement (Section 4.2), and Remapping (Section 4.3).
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Figure 10: Overview flow diagram of the RecShard pipeline.

RecShard leverages a MILP along with the latest training data dis-
tributions and EMB design characteristics to produce an optimal
EMB sharding strategy each time a given DLRM is trained.

4.1 Training Data Profiling

The first stage of the RecShard pipeline is model-based training
data profiling, which approximates the aforementioned memory
characteristics in Section 3. In this stage, RecShard first samples
and hashes a random subset of the input training dataset based on
the DLRM architecture specification. The purpose of this sampling
is to estimate three per-EMB statistics: (1) the value frequency CDF
over the EMB entries, (2) the average pooling factor of accesses for
each EMB, and (3) each EMB’s coverage over the training dataset.

We observe empirically that sampling 1% or less of large training
data stores achieves statistical significance to accurately facilitate
high-performance EMB partitioning decisions. This is largely be-
cause increasing the sampling rate primarily serves to capture more
of the tail of a sparse feature’s skewed distribution. With respect
to the value frequency CDF, these extra “tail values,” when hashed,
will either map to their own EMB entry with minimal access count,
or will collide with other previously-seen feature values. And view-
ing more of the tail has little to no impact on the average pooling
factor and coverage of an EMB. In all cases, not capturing the full
tail is sufficient from the perspective of memory pattern profiling.

In the training data profiling phase, RecShard constructs the
value frequency and pooling factor statistics as well as the coverage
of each sparse feature for use in sharding.

4.2 Embedding Table Partitioning and
Placement

RecShard uses the generated per-feature statistics to produce an
efficient, load-balanced EMB partitioning decision. In order to per-
form partitioning and sharding across multiple compute nodes with
a tiered memory hierarchy, RecShard formulates the partitioning
problem as a mixed integer linear program (MILP). By solving the
MILP [12], RecShard can globally minimize per-GPU cost, a proxy
for EMB training latency, simultaneously, while ensuring that nei-
ther GPU on-device nor per-node host memory limits are violated.
The remainder of this section outlines our MILP formulation, which
considers the problem of sharding EMBs across a two-tier memory
hierarchy consisting of GPU HBM and host DRAM accessed via
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Table 1: Description of Parameters used in the RecShard
MILP.

Parameter Description
M Number of GPUs
7 Number of EMBs
B Batch size
Capp Per-GPU HBM Capacity
Capy Per-GPU Host DRAM Capacity
BWysm GPU HBM Bandwidth
BWuyvm UVM Transfer Bandwidth
ICDF; Inverse Value Frequency CDF of EMB j
avg _pool;  Average Pooling Factor of EMB j
coverage; ~ Coverage of EMB j
hash_sizej ~ Hash Size of EMB j
dim; Embedding Dimension of EMB j
bytes; Size of data-type of EMB j

UVM. We refer to the latter as UVM for the rest of this paper. Table 1
summarizes parameters used by the MILP formulation.

MILP Formulation As the training throughput is determined
by the embedding operator performance of the slowest trainer, we
formulate the MILP as a minimization problem to:

C

cm 2 C

minimize

subject to VYme M

(1)

M is the set of GPUs available for training (each GPU is represented
by an integer ID m ranging from 0 to M — 1), ¢, is the total EMB
cost for GPU m, and C is the maximum single GPU cost to minimize,
subject to Constraint 1.

In order to estimate the total EMB cost per GPU, RecShard incre-
mentally incorporates the per-EMB memory statistics to construct
constraints which effectively describe the space of all possible EMB
partition and placement combinations for the underlying tiered
memory hierarchy.

To construct a search space of candidate placements, the first
constraint specified by RecShard is the mapping of each EMB to a
single GPU. An EMB can either be located fully in a GPU’s HBM,
fully in UVM, or split across both in a fine-grained manner. If an
EMB is placed entirely in HBM, the corresponding GPU will be
the sole accessor of the entire EMB. If an EMB is placed entirely in
UVM, it must be assigned a GPU that will issue memory accesses
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to it. When an EMB is located in both HBM and UVM, we map
both partitions to the GPU whose HBM is utilized. This constraint
is formulated as follows:

mejZl Vje]
m

VmeM Vje]

@)

pmj € {0,1} ®)

Pmj is a binary variable indicating whether EMB j is assigned to
GPU m, and Constraint 2 ensures that each EMB is assigned to
exactly one GPU.

When determining the EMB-to-GPU mappings, RecShard must
also decide how many, or if any at all, of each EMB’s rows should
be placed in HBM. To do so, RecShard uses each EMB’s post-hash
value frequency CDF to estimate the trade-off between the number
of rows placed in HBM and the corresponding percentage of EMB
accesses covered. To use the CDF within the MILP, RecShard first
converts the CDF to its inverse, or ICDF, so that it can map the per-
centage of accesses covered to the corresponding number of EMBs
rows. RecShard then produces a piece-wise linear approximation of
the ICDF - as the ICDF is a non-linear function, it cannot be used
directly within the MILP. To do so, 100 steps are uniformly selected
with respect to the ICDF’s x values, where each step i corresponds
to a cumulative access percentage between 0 and 100%. To capture
both the x and y values of the ICDF, the constraints are formulated
as follows:

le-j * ICDF; (i) * dim; = bytes; = mem; Vie] @
i

i

ij % — = pctj Vj 5

Dt = VeS 6

inj=1 vieJ (6)
i

xij€{0,1} i=0,.,100 Vje] (7)

xij is a binary variable indicating whether step i was chosen for
EMB j. Constraint 6 ensures that one and only one step from the
ICDF can be selected per EMB (i.e. there is a single split point
separating the EMB rows mapped to HBM from those mapped to
UVM). Constraint 5 converts the chosen step value for each EMB
into the corresponding percentage — the ICDF’s corresponding x
value. For each EMB, this percentage represents the cumulative
percentage of accesses covered by the chosen split, and its value is
stored as pct;. Finally, Constraint 4 translates each EMB’s chosen
split into the number of bytes needed to store its rows, mem; — the
per-EMB HBM usage.

Given the constraints for encoding per-EMB HBM usage, con-
straints are added to guarantee per-GPU memory capacity limits
are not violated.

hash_sizej * dimj » bytesj = EMB; Vje]J (8)
mej*memj < Capp VmeM 9)
J

mej * (EMBj — memj) < Capg Vme M (10)

J

Constraint 9 accomplishes this for per-GPU HBM by summing the
memory capacity requirements of all EMB portions assigned to
each GPU m and ensuring that ensuring that no GPU exceeds its
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HBM capacity of Capp. Constraint 10 accomplishes this similarly
for per-GPU host DRAM capacity limits, Capy.

With the EMB partitioning and placement assignments properly
constrained, RecShard can formulate the estimated per-GPU EMB
cost.

(avg_pool;j = dim; = bytes;j * B)x
g_poolj j * bytes;

1 1
((petj + ————) + ((1 = petj) * ——))
P BWermw P BWovm
=c; VjeJ (1)
mej*coveragej*Cjzcm VmeM (12)
J

Constraint 11 estimates the cost of each EMB during a single for-
ward pass of DLRM training. This is achieved by first calculating
each EMB’s approximate per-training step memory demand using
the EMB’s average pooling factor, embedding vector dimension,
size (in bytes) of its embedding vector entries, and batch size. Per-
step demand is then multiplied by: (1) the percentage of EMB rows
that are estimated to be sourced from HBM (pct;) along with a
bandwidth based scaling factor ( BWII-IBM ); and (2) the percentage
that are estimated to be sourced from UVM (1 — pct;) along with
its scaling factor ( BWLIIVM
an estimate of an EMB’s cost to perform a single step lookup on
average.

Constraint 12 formulates the per-GPU cost for the MILP’s ob-
jective function. Instead of simply summing the per-EMB costs
assigned to a GPU, we sum the product of the per-EMB cost and
the corresponding EMB’s coverage. This is because the per-EMB
CDF presents a normalized view of accesses over a particular EMB,
and the average pooling factor estimates the EMB’s memory per-
formance requirement over the samples it is present in. Therefore, to
provide a global view of bandwidth requirements across all EMBs,
RecShard weights each EMB’s cost by its coverage.

With the constraints in place to formulate the per-GPU EMB cost,

¢m, the MILP solver considers all possible combinations of EMB
partitioning and placement decisions based on RecShard’s EMB sta-
tistics and the bandwidth characteristics of the underlying memory
hierarchy (supplied via the BW parameters in Constraint 11). In
doing so, the MILP solver can compute an optimal sharding strategy
that minimizes the model’s largest single GPU EMB cost.
Key Properties of RecShard’s MILP  We address a number of
key properties pertaining to RecShard’s MILP formulation. First,
when constructing its placements, RecShard’s MILP begins by as-
signing each EMB to a single GPU. This design decision, and others
which follow from it (such as per-GPU host DRAM capacity limits,
Cappy), is done to simplify the handling of sharding across many
GPUs and nodes. By splitting resources uniformly and constructing
assignments on an abstract per-GPU basis, the resulting sharding
assignment will not be tied to a specific system GPU (i.e. GPU 3 in
the MILP can be mapped to any GPU in the system).

Second, RecShard’s MILP features summation of the expected
HBM and UVM lookup times to form a cost. Another operator, such
as max, may be used, depending on the target system architecture.
We use summation in our implementation of RecShard because,
when accessed within the same kernel, the memory latency of
performing mixed reads from HBM and UVM on current GPUs is

)- The two products are summed to form
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approximately equal to the time to perform each read separately.
However, if the target system architecture supports concurrent
reads fully from mixed memories, the estimated EMB cost can be
approximated using max.

Third, while RecShard performs partitioning and placement for
DLRM training, it only estimates embedding operation latencies
of the forward pass in the MILP. This is because the timing perfor-
mance of the backward pass is roughly proportional to its forward
pass performance. By doing so, it simplifies the MILP formulation
and lowers the solver time.

In our experiments in Section 6, RecShard’s MILP features 47,276
variables, and is solved in 21 seconds when UVM is not needed
(RM1), and in 42 seconds when used (RM2/RM3), with a state-of-
the-art solver (Gurobi [12]). It is important to note that solving time
is not impacted by model size, but instead in terms of the number of
trainers (e.g. GPUs), and the steps used to approximate the ICDF. In
our experiments solving time tended to scale approximately linearly
with number of trainers and steps.

4.3 Remapping Layer

Once the MILP solver produces a sharding strategy, RecShard de-
termines the number of rows to be placed in HBM for each EMB
via the activated x;; variable and the corresponding location on the
EMB’s ICDF, ICDF; (i).

These selected rows cannot be placed directly in HBM and must
go through a remapping stage. This step is necessary as EMBs are
typically allocated contiguously in memory, with an EMB index
also serving as the memory offset to access the underlying storage
directly. As the EMB rows selected by the MILP to be placed in HBM
are chosen based on their access frequency, they can be located at
arbitrary positions within the EMB and thus be non-contiguous. To
address this, RecShard creates a per-EMB remapping table, which
maps each EMB index to its corresponding location in either HBM
or UVM.

4.4 Expansion Beyond Two-Tiers

While the RecShard implementation is modeled after a two-tier
memory hierarchy consisting of GPU HBM and host DRAM ac-
cessed via UVM, RecShard can be easily expanded to support a
multi-tier memory hierarchy. At its core, each additional tier repre-
sents a new point on each EMB’s CDF, potentially producing an
additional split of EMB rows to be placed on the new memory tier.
As each memory tier has its own bandwidth specifications from
the view of the executing device (e.g. the GPU), the RecShard MILP
solver will automatically order the memory tiers via the bandwidth
scaling factors.

5 EXPERIMENTAL METHODOLOGY

Baselines: To evaluate the efficacy of RecShard, we compare
the performance of EMB operators under RecShard’s throughput
optimized sharding strategy with sharding schemes from prior work
on production DLRM training systems [1, 26, 31]. State-of-the art
sharding schemes typically follow a two-step approach. First, they
assign a fixed cost to each EMB based on a specific cost function.
Second, they apply a heuristic algorithm to incrementally assign
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Table 2: DLRM Specifications

Model | # Sparse Features | Total Hash Size | Emb. Dim. Size
RM1 397 1,331,656,544 64 318 GB
RM2 397 2,661,369,917 64 635 GB
RM3 397 5,320,796,628 64 1270 GB

EMBs to GPUs while attempting to minimize the maximum cost
across all GPUs (a measure of load balancing).

Step I-Cost Functions: We implement the following three
cost functions — two representing the state-of-the-art and a third
derived from the first two — and compare their impact on EMB
training throughput with RecShard:

e Size [1, 26]: An EMB’s cost is the product of its hash size
and its embedding dimension (latent vector length).

e Lookup [1, 26]: An EMB’s cost is the product of its average
pooling factor and its embedding dimension.

o Size-and-Lookup: An EMB’s cost is the product of its lookup
based cost (above) and the log of its hash size -
logio(hash_sizegpp) — adding a non-linear function that at-
temps to capture potential caching effects of smaller EMBs.

In comparison, RecShard considers EMB access distributions, av-
erage pooling factor, coverage, hash function, hash size, and the
memory bandwidth characteristics of the target system.

Step II-Heuristic Sharding Algorithms: To shard EMBs
once assigned a cost, we implement a greedy heuristic algo-
rithm [31] that works as follows. After receiving the list of EMBs
to shard along with their associated costs, the greedy heuristic
first sorts EMBs in descending cost order. It then descends the list,
starting with the highest-cost EMB, and iteratively assigns EMBs
to GPUs one-by-one. The heuristic continues down the sorted list
of EMBs, placing each successive EMB on the GPU with the cur-
rent lowest sum of costs. When GPU HBM has been saturated,
the heuristic then allocates the remaining EMBs in UVM. In com-
parison, RecShard considers cost on a per-EMB entry basis and
optimizes the placement of all EMB rows simultaneously, in one
shot.

5.1 DLRM Specification

We evaluate the performance of the different sharding strategies on
a system running a modified version of open-source DLRM [7, 33].
The implementation is modified to support the use of multi-hot
encoded training data samples and the open-source implementa-
tion of the high-performance embedding operator in the PyTorch
FBGEMM library!.

We implement the RecShard remapping layer as a custom Py-
Torch C++ operator which is executed as a transform during the
data loading stage. This allows remapping to be performed in paral-
lel with training iterations, thus removing it from the critical path
of model execution.

We evaluate RecShard using three production-scale DLRMs: RM1,
RM2, and RM3, summarized in Table 2. All three RMs feature the
same underlying DLRM architecture, implementing a large number

!https://github.com/pytorch/FBGEMM/tree/master/fbgemm_gpu
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of sparse features (397) and spanning a breadth of feature character-
istics: categorical value distributions, pooling factors, and coverage;
which collectively determine the locality characteristics of embed-
ding accesses (Section 3). The difference between the RMs is the
approximate doubling of the hash size for each EMB from RM1 to
RM2, and furthermore from RM2 to RM3.

We generate different workloads by having a large, constant
number of features and scaling the hash sizes for two key reasons.
First, the complexity of the sharding problem directly scales with
the number of features to be sharded and their characteristics;
thus, a large number of features maximizes sharding complexity.
Second, as has been observed internally at our company, and in
prior evaluations of industry-scale DLRMs [1, 22, 46], increasing
the hash size of an embedding table and thereby reducing collisions
between sparse feature values is a simple, yet effective method of
realizing accuracy improvements.

Based on the system specification discussed in the next section,
RM1 requires 14 GPUs to completely fit all EMBs in reserved HBM,
while RM2 requires 27 GPUs, and RM3 requires 53 GPUs.

5.2 Training System Specification

We evaluate the timing performance for all three sharding strategies
on a two-socket server-node. Each socket features an Intel Xeon
Platinum 8339HC CPU, 376GB of DDR4 DRAM, and 8x NVIDIA
A100 (40GB) GPUs, connected to host DRAM via PCle 3.0x16 for
UVM support. As the scale of the RMs exceeds that of the memory
capacity of the training nodes, during benchmarking we run each
model-parallel section separately and extract the EMB performance
metrics.

When implementing the training sharding strategies from prior
work [1, 26] (our baselines for comparison), we use a batch size of
16,384 and limit each sharding strategy to use at most: (1) 24GB of
HBM per GPU as the reserved memory for EMBs; (2) 128GB of host
DRAM for usage per GPU for UVM allocated EMBs. The remain-
ing HBM/DRAM capacity reserved for other model parameters,
computation, and training overheads.

Performance Profiling: As the goal of RecShard is to im-
prove per-iteration EMB latency, due to the large percentage of
total run-times they constitute for many types of DLRMs [1, 11, 46],
we evaluate execution time by tracing each GPUs execution and ex-
tracting all kernel run times related to the embedding operator. We
do this by using the integrated PyTorch profiler, torch.profiler,
which allows for tracing to begin after a specified waiting and
warm-up period. We specify a waiting period of 10 iterations, a
warm-up period of 5 iterations, and trace for 20 iterations.

6 EVALUATION RESULTS AND ANALYSIS

Overall, RecShard achieves an average of 5x EMB training itera-
tion time improvement across RM1, RM2, and RM3 in the 16-GPU
setting, covering a wide range of memory demands. Figure 11 illus-
trates that RecShard improves the EMB training iteration time by
2.58x, 5.26x, and 7.41x for RM1, RM2, and RM3, respectively, over
the next fastest sharding strategy. Table 3 summarizes the timing
results for RecShard and the state-of-the-art schemes.
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Figure 11: EMB training performance improvement of dif-
ferent sharding strategies normalized to slowest strategy in
group. RM1, RM2, and RM3 evaluated using 16 GPUs.

6.1 RecShard Workload Balance Analysis

A major factor contributing to RecShard’s significant performance
improvement comes from its ability to achieve better load balance
across the GPU trainers. In particular, the EMB memory footprint
of RM1 is approximately 318GB, allowing all EMBs to fit entirely
in HBM when distributed among the 16 available GPUs. RecShard
improves EMB training throughput for RM1 by over 2.5x with
respect to the next fastest sharding strategy (Size). It does so with
an almost 9 times improvement in the standard-deviation of the
iteration time across all GPUs, providing a much more uniform
distribution of work (Table 3).

RecShard’s ability to better load balance comes from two key
aspects of its design. First, RecShard’s hash analysis allows it to ef-
fectively determine which portion of each EMB is unused or sparsely
used during training. The sparse regions are effectively assigned
a cost of zero and thus can be allocated last. Second, RecShard’s
formulation of the EMB sharding problem as a MILP allows it to
globally balance EMB operations across all GPUs simultaneously, in
one shot. Since RM1 does not require UVM for EMB placement, the
sharding cost formulation reduces to a function that is similar to
the Lookup cost function of Section 5.1. However, when used with
the greedy heuristic, the Lookup sharding strategy performs 46%
worse than the Size strategy (the best baseline RM1 strategy). This
result highlights the performance improvements that stem from
RecShard’s fine-grained, data-driven MILP approach to embedding
vector placement.

6.2 RecShard Embedding Placement Analysis

As DLRM sizes grow beyond the capacity of available GPU HBM,
as is the case for RM2 and RM3, sharding pressure moves beyond
simply load balancing across HBM and into load balancing across
HBM and UVM. With orders of magnitude difference in the memory
performance of HBM and UVM, incorrect EMB placements on
UVM come with severe performance penalties. In this scenario, the
state-of-the-art sharding strategies can significantly under-perform
RecShard. This is exemplified with RM2’s and RM3’s results.
RecShard uses feature and EMB statistics to dynamically estimate
EMB cost at the row granularity, enabling it to intelligently break
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Table 3: Min/Max/Mean/StdDev EMB training iteration time (in ms) across all GPUs based on per GPU averages for all sharding
strategies on 16 GPUs. Training performance is bound by the slowest (i.e. max) EMB time, therefore lowest max iteration
time is better. Load balanced is embodied by the standard deviation, with lower standard deviation signifying more balanced

execution.
Model Size-Based Lookup-Based Size-Based-Lookup RecShard
RM1 7.12/21.23/13.06/4.01 5.08/30.97/12.99/5.59 5.55/26.03/12.91/4.72 | 6.53/8.21/7.48/0.45
RM2 20.52/49.65/33.82/7.37 | 10.40/55.85/32.47/9.87 | 7.47/56.66/32.95/10.26 | 6.52/9.44/7.75/0.78
RM3 | 40.43/76.15/56.45/10.86 | 3.37/73.30/55.27/18.53 | 5.10/85.01/56.04/20.39 | 6.83/9.90/8.31/0.69
Table 4: Percent of EMB rows allocated in UVM (resp. HBM)
§ L0 by each baseline strategy which RecShard places in HBM
2 o8 (resp. UVM). RM2 and RM3 require UVM for training on 16
§ GPUs, whereas RM1 does not. LB and SBL assign the same
?d 0.6 EMBs to HBM and UVM, but their exact GPU assignments
s differ. SB, LB, and SBL stand for Size-Based, Lookup-Based,
; 0.4 and Size-Based-Lookup, respectively.
=
w 02 ‘ Model | Disparity SB LB SBL
2 00 | h avy |UVM->HBM [ N/A | N/A | N/A
SS288588855888 38 HBM—=UVM | N/A | N/A | N/A
O = &N N T N O 0VDHDO - NN T N -
222222 2 E: SBEHS S 58 RM2 UVM->HBM | 28.67% | 28.26% | 28.26%
COOOOOCOUOOEEF3 30 HBM->UVM | 39.93% | 39.99% | 39.99%
RM3 UVM->HBM | 23.29% | 23.21% | 23.21%
Figure 12: Partitions and Placements made by RecShard for HBM->UVM | 58.34% | 59.36% | 59.36%

RM2 on 16 GPUs. Each bar represents a single EMB. Bar
height is the percentage of a specific EMB that RecShard
placed on UVM. EMBs are grouped by the GPU they were as-
signed to (shown as colors). The number of EMBs assigned to
each GPU is shown in parentheses. As expected, the number
of EMBs assigned to each GPU is variable and the height of
each bar is unique to each EMB.

apart an EMB into non-contiguous memory blocks and place each
block independently across different tiers of the memory hierarchy.
By doing so, RecShard determines and places the least performance-
critical embedding portions of large DLRMs (i.e. RM2 and RM3)
onto UVM.

For RM2, RecShard places an average of 53.4% of rows per EMB
and a total of 61% of all EMB rows on UVM. For RM3, it places an
average of 64.8% of rows per EMB and a total of 61% of all EMB
rows on UVM. Figure 12 illustrates the partitioning decisions for
RM2 using RecShard.

To further understand the difference in decision making between
the baseline strategies and RecShard, we compare the EMB assign-
ments and expected access counts for all strategies across RM2
and RM3. First, we explore how the individual EMB assignment
by the Size, Lookup, and Size-and-Lookup strategies differ from
RecShard’s placement. That is, if an EMB was assigned to HBM, we
examine the degree of overlap for the rows placed on UVM between
the state-of-the-art strategy and RecShard. Table 4 summarizes this
analysis. The rows labeled ‘UVM->HBM’ quantify the difference in
the percentage of EMB rows placed in UVM for RM2 and RM3 by
the state-of-the-art strategies versus RecShard. RecShard’s ability
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Table 5: Average number of HBM and UVM accesses per-GPU,
per-iteration for each sharding strategy on RM2 and RM3
(batch-size of 16384 on 16 GPUs). RM1 does not not require
UVM. Baseline strategies source on average 20.3% (RM2) and
36.3% (RM3) of EMB accesses from UVM. RecShard sources
0.2% (RM2) and 0.5% (RM3) of EMB accesses from UVM. LB
and SBL assign the same EMBs to HBM and UVM, but their
exact GPU assignments differ. SB, LB, and SBL stand for Size-
Based, Lookup-Based, and Size-Based-Lookup, respectively.

Model | Location SB LB SBL RecShard
RM1 HBM 88.74M | 88.74M | 88.74M 88.74M
UVM 0 0 0 0
RM2 HBM 70.32M | 70.90M | 70.90M 88.48M
UVM 18.42M | 17.84M | 17.84M 259K
RM3 HBM 55.82M | 56.85M | 56.85M 88.29M
UvM 32.92M | 31.89M | 31.89M 450K

to place more performance-critical, frequently-accessed embedding
vectors onto HBM across all EMBs is the primary reason for its
significantly higher performance.

6.3 RecShard Scalability Analysis

As model sizes increase, as expected, RecShard sees little perfor-
mance degradation. This comes from the asymmetric impact on
memory access statistics and memory usage that hash size scaling
causes. The state-of-the-art strategies experience an average of 3.07
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Figure 13: Slowdown of each sharding strategy on max EMB
iteration time as model sizes scale 2x and 4x from RM1 to
RM2, and RM1 to RM3, respectively. While heuristic based
fixed-cost strategies suffer over a 3x slowdown on average
from RM1 to RM3, RecShard is less sensitive to performance
degradation from model size scaling and only experiences a
1.2x slowdown.

times performance slowdown in the EMB training iteration time
between the largest DLRM (RM3) and RM1. However, RecShard
only observes a 20.6% increase in the EMB training iteration time
over the same model size growth (Figure 13).

We explored this sparsity in access count by analysing the num-
ber of HBM and UVM accesses made by the EMBs in each of the
sharding strategies in our training traces. We found (Table 5) that
when doubling the hash size from RM1 to RM2, the baseline shard-
ing strategies sourced on average 20.3% of their accesses per-GPU
per-iteration from UVM, while RecShard only sourced 0.2% — over
a 100x reduction. When hash size is quadrupled from RM1 to RM3
and sharding pressure doubles from RM2, the baseline sharding
strategies sourced on average 36.3% of their accesses per-GPU per-
iteration from UVM, while RecShard only sourced 0.5%. As HBM
capacity is already exceeded in RM2, the additional model capacity
(in bytes) of RM3 must be allocated in UVM. While the percentage
of accesses sourced from UVM for RecShard more than doubles
from RM2 to RM3, this value is still only 0.5% of the total accesses
(and over 70x less than the baseline strategies). This result highlights
the sparsity of memory access to the new memory regions allocated
by increased hash size.

6.4 End-to-End Training Time Improvement

While embedding operations can represent a significant portion
of many industry-scale DLRMs [11, 46], the actual percentage of
runtime varies based on model composition. RecShard improves
end-to-end training performance in proportion to the time spent
on embedding operations in the critical path of model execution
(which in the canonical DLRM architecture consists of all embed-
ding operations).

Knowing the runtime breakdown, the expected end-to-end DLRM
training performance improvement can be approximated using Am-
dahl’s law. With p being the percentage of total execution time spent
on critical path embedding operations, and s being the speedup in
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Table 6: RecShard Ablation. Average number of HBM and
UVM accesses per-GPU on RM3 (across 16 GPUs) over more
than 200 million training data samples for different RecShard
formulations. CDF only is the use of only the per-sparse
feature value CDF in the MILP (i.e. average pooling factor
and coverage are set 1). CDF + Coverage is the use of both
the CDF and coverage in the MILP; while CDF + Pooling is
the use of both the CDF and average pooling factor in the
MILP. RecShard (Full) is the access counts when all per-EMB
statistics are used simultaneously in the MILP.

Formulation HBM UVM
RecShard (Full) 69.07B 353M
CDF + Pooling 68.82B 604M
CDF + Coverage 68.54B 881M
CDF Only 67.79B 1.63B

embedding operation latency via improved sharding, the estimated
end-to-end speedup is el

As a concrete example, for memory-intensive models whose tim-
ing composition consists of 35-75% embedding operations [11, 23]
(with the remaining time being largely dominated by dense MLP
layers and communication), and for which RecShard improves em-
bedding performance by 2.5x, the expected end-to-end performance
benefit of RecShard is 1.27x to 1.82x. While the performance im-
provements afforded by RecShard are less pronounced for more
MLP-dominated DLRMs, the position of embedding operations on
the critical path of model execution and the scale of industry-DLRM
training time (on the order of days [1]) indicates the importance of
their acceleration.

6.5 RecShard Ablation

To better understand the impact the various sparse feature charac-
teristics used within RecShard have on the performance of the gen-
erated sharding, we performed an ablation study to measure their
significance on the number of HBM and UVM accesses made by
each GPU. We evaluate four different formulation of RecShard, each
differing by which per-EMB statistics are enabled for use within
the MILP. The results of this ablation on RM3 (with 16 GPUs) over
more than 200 million training data samples is shown in Table 6.
The four formulations of RecShard evaluated are:

o CDF only: Only the sparse feature value CDF is used in the
MILP and the average pooling factor and coverage for each
EMB are set to 1.

e CDF + Coverage: Both the CDF and the per-EMB coverage
are used in the MILP.

e CDF + Pooling: Both the CDF and the per-EMB average pool-
ing factor are used in the MILP.

o Full: All of the per-EMB statistics are used in the MILP si-
multaneously.

Similar to the results in Section 6.3, we observe that approxi-
mately 0.5% of accesses on average in the full formulation of Rec-
Shard are sourced from UVM, while the simplest RecShard formu-
lation, CDF only, sources approximately 2.4% of its accesses from
UVM. While this is still significantly less than the baseline sharding
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strategies, this nearly 5x increase over the full formulation is due
to the CDF providing no information about how often each EMB
will be accessed in a training data sample. Thus when evaluating
different potential partitioning and placement decisions, the MILP
in the CDF only formulation has no information which it can exploit
to accurately load balance EMBs across the GPUs based on their
expected number of accesses. Adding one piece of per-sample EMB
access information via the coverage almost halves the average UVM
sourced access percentage to approximately 1.3%, while using the
average pooling factor instead provides an even greater reduction
to approximately 0.9%.

6.6 RecShard Overhead

For all models studied in this work, the Gurobi solver [12] was able
to solve the placement and partitioning MILP in under 1 minute.
After which, generating the remapping tables takes approximately
20 seconds for each GPU and has a storage cost of 4 bytes per row
remapped (as the sign of the remapped index can be used to denote
whether the corresponding table is the HBM or UVM partition). For
the largest DLRM-RMS3, this is a total storage overhead of ~20GB for
over 5-billion rows remapped. In the scope of model training time
(many hours to potentially days depending on model and data size),
and model size (hundreds of GBs to multiple TBs), this overhead is
minimal, especially due to the performance improvements RecShard
provides.

Additionally RecShard incurs some overhead from training data
profiling due to the consumption of feature level statistics. How-
ever, besides only needing to sample a small portion (~1%) of large
training data stores to achieve statistical significance, as the statis-
tics are based on raw training data values and corresponding hash
sizes (which are generally constant across models within a size tier),
they can be shared across models and also updated in real-time as
training data arrives, amortizing the cost.

7 RELATED WORK

Power-law distributions are a well-known phenomenon of features
related to recommender systems [2, 8, 22, 42, 45]. This sparsity
characteristic is an important feature for a variety of DL system
performance optimizations. However, maintaining the long tail
is important because of the statistically significant accuracy im-
pact [46]. This has led to recent works attempting to balance the
trade-off between EMB sizes and model accuracy. One such cat-
egory of work explores scaling the dimension of an EMB, that is
the number of parameters used to encode an EMB row, based on
the frequency of accesses to individual rows—more frequently ac-
cessed rows are given more space through increased embedding
vector dimensions [8]. Another work explores the impact of hash-
ing, ranging from the use of multiple hash functions alongside a
1:1 mapping for frequent categorical values [45], to entirely re-
placing the hashing plus embedding table structure with its own
neural network [22]. In addition, other prior work proposes to
prioritize frequently-accessed embedding rows for model param-
eter checkpointing [28], in order to improve failure tolerance of
DLRM training. While prior work also tackles the problem of ever-
increasing EMB sizes, their primary focus is the size of EMB itself,
rather than on training throughput improvement.
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Recent work has also explored the performance of splitting EMBs
based on their frequency characteristics [2]. While similar in moti-
vation, the type of training data and the scale of DLRMs explored
in this paper are fundamentally different from the open-source
datasets used in the related work. Our DLRMs read multi-hot en-
coded sparse features resulting in order-of-magnitude higher mem-
ory bandwidth needs, and EMB sizes demanding model-parallel
training. In Criteo Terabyte (the largest of the open-source datasets),
all of the features are 1-hot encoded (meaning their pooling factor
is always 1), the number of features present is 26, and the total
number of un-hashed embedding table rows is approximately 266
million. Thus, for each of these properties, the scale of open-source
datasets/DLRMs [29, 35, 42] is an order of magnitude (or more) less
than our evaluated datasets/DLRMs. Furthermore, all open-source
datasets that we are aware of can fit entirely within a single GPU,
making sharding and model-parallel training unnecessary.

8 CONCLUSION

Deep learning recommendation systems are the backbone of a wide
variety of cloud services and products. Unlike other neural networks
with primarily convolution or fully-connected layers, recommenda-
tion model embedding tables demand orders-of-magnitude higher
memory capacity (>99% of the model capacity) and bandwidth,
and exhibit significantly lower compute-intensity. In this paper,
we perform an in-depth memory characterization analysis and we
identify five important memory characteristics for sparse features
of DLRMs. Building on the analysis, we propose RecShard, which
formulates the embedding table partitioning and placement prob-
lem for training systems with tiered memories. RecShard uses a
MILP to reach a partitioning and placement decision that minimizes
embedding access time under constrained memory capacities. We
implement and evaluate RecShard by training a modified version of
open-source DLRM with production data. RecShard can achieve an
average of over 5 times speedup for the embedding kernels of three
representative industry-scale recommendation models. We hope
our findings will lead to further memory optimization insights in
this important category of deep learning use cases.
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