
Formal Methods in Computer-Aided Design 2021

Scaling Up Hardware Accelerator Verification using
A-QED with Functional Decomposition

Saranyu Chattopadhyay∗, Florian Lonsing ∗, Luca Piccolboni †, Deepraj Soni¶, Peng Wei§, Xiaofan Zhang‖,
Yuan Zhou‡, Luca Carloni†, Deming Chen ‖, Jason Cong §, Ramesh Karri¶, Zhiru Zhang‡, Caroline Trippel∗,

Clark Barrett ∗, Subhasish Mitra∗
∗Stanford University, †Columbia University, ‡Cornell University, §University of California, Los Angeles,

¶New York University, ‖University of Illinois, Urbana-Champaign

Abstract—Hardware accelerators (HAs) are essential building
blocks for fast and energy-efficient computing systems. Accelera-
tor Quick Error Detection (A-QED) is a recent formal technique
which uses Bounded Model Checking for pre-silicon verification
of HAs. A-QED checks an HA for self-consistency, i.e., whether
identical inputs within a sequence of operations always produce
the same output. Under modest assumptions, A-QED is both
sound and complete. However, as is well-known, large design
sizes significantly limit the scalability of formal verification,
including A-QED. We overcome this scalability challenge through
a new decomposition technique for A-QED, called A-QED with
Decomposition (A-QED2). A-QED2 systematically decomposes an
HA into smaller, functional sub-modules, called sub-accelerators,
which are then verified independently using A-QED. We prove
completeness of A-QED2; in particular, if the full HA under
verification contains a bug, then A-QED2 ensures detection of
that bug during A-QED verification of the corresponding sub-
accelerators. Results on over 100 (buggy) versions of a wide
variety of HAs with millions of logic gates demonstrate the
effectiveness and practicality of A-QED2.

I. INTRODUCTION

Hardware accelerators (HAs) are critical building blocks
of energy-efficient System-on-Chip (SoC) platforms [1]–[3].
Unlike general-purpose processors, HAs implement a set of
domain-specific functions (e.g., encryption, 3D Rendering,
deep learning inference), referred to as actions in this paper,
for improved energy and throughput. Today’s SoCs integrate
dozens of diverse HAs (e.g., 40+ HAs in Apple’s A12 mobile
SoC [4]).

Unfortunately, the energy and throughput improvements en-
abled by HAs come at the cost of increased design complexity.
Ensuring that a given SoC will behave correctly and reliably
requires verifying each and every constituent HA. Furthermore,
HAs must achieve short design-to-deployment timelines in
order to meet the needs of a wide variety of evolving appli-
cations [5]. Using conventional formal verification techniques
to verify HAs faces several key challenges. Manually crafting
extensive design-specific formal properties or full abstract
functional specifications can be time-consuming and error-
prone [6], [7]. Moreover, scaling verification to large HAs
(with millions of logic gates) is difficult or even infeasible
using off-the-shelf formal tools.

A recent formal verification technique targeting HAs,
Accelerator-Quick Error Detection (A-QED) [8], overcomes
the first challenge above. A-QED is readily applicable for a

popular class of HAs: loosely-coupled accelerators (LCAs) [9],
[10] (i.e., HAs that are not integrated as part of a central
processing unit (CPU), but via an SoC’s network-on-chip
or a bus) that are also non-interfering. Non-interfering HAs
produce the same result for a given action independent of
their context within a sequence of actions (not to be confused
with combinational circuits). In other words, the state of the
accelerator does not affect future computations, and each
computation is independent from previous computations. In
contrast, computations of interfering HAs depend on state
that is the result of previous computations. A-QED uses
Bounded Model Checking (BMC) [11] to symbolically check
sequences of actions for self-consistency. Specifically, it checks
for functional consistency (FC), the property that identical
inputs within a sequence of operations always produce the same
outputs. It was shown that FC checks, together with response
bound (RB) checks and single-action correctness (SAC) checks,
provide a thorough verification technique for non-interfering
LCAs [8]. However, despite its success in discovering bugs
in moderately-sized HA designs, A-QED suffers from the
scalability challenges of formal tools. For example, A-QED
(backed by off-the-shelf formal verification tools) times out
after 12 hours when run on NVDLA, NVIDIA’s deep-learning
HA [12] with approximately 16 million logic gates.

In this paper, we present a new verification approach called
A-QED with Decomposition (A-QED2) to address the scalability
challenge. First, we introduce a new, more general formal model
of HA execution, which captures both interfering and non-
interfering LCAs. We then show how A-QED2 can decompose
a large LCA into smaller sub-accelerators in such a way that
both FC and RB checks can be directly applied to the sub-
accelerators. Unlike conventional verification approaches based
on decomposition, no new properties need to be devised to
apply FC and RB to the decomposed sub-accelerators. Existing
decomposition approaches can be leveraged to additionally
check SAC of the sub-accelerators. A-QED2 is complementary
to verification approaches that rely on design abstraction, which
can be used to further improve scalability and to simplify the
effort required for SAC checks on decomposed sub-accelerators.

This paper presents both a formal foundation of A-QED2

and an empirical evaluation that demonstrates its bug-finding
capabilities in practice. We prove that A-QED’s completeness
guarantees [8] continue to hold for A-QED2—if the full HA

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_12 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-5715-7231
https://orcid.org/0000-0003-0094-4960
https://orcid.org/0000-0002-3016-0270
https://orcid.org/0000-0003-2887-6963
https://orcid.org/0000-0002-9522-3084
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_12
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_12
https://creativecommons.org/licenses/by/4.0/

under verification contains a bug, then A-QED2 will detect
that bug. Furthermore, we apply A-QED2 to a wide variety of
non-interfering LCAs (although our theoretical proofs apply
to interfering LCAs as well): 109 different (buggy) versions
of large open-source HAs of up to 200 million logic gates
(including industrial HAs). Our empirical results focus on
designs which are described in a high-level language (e.g.,
C/C++) and then translated to Register-Transfer-Level (RTL)
designs (e.g., Verilog) using High-Level Synthesis (HLS)
flows, where appropriate optimizations like pipelining and
parallelism are instantiated. Such HLS-based HA design flows
are becoming increasingly common in industry. However, A-
QED2 is not restricted to these specific HA design styles. Our
empirical results show:

1) Off-the-shelf formal tools cannot handle large HAs with
millions of logic gates, even when the HAs are expressed
as high-level C/C++ designs. In our experiments, A-QED
verification of many such HAs times out after 12 hours
or runs out of memory.

2) A-QED2 is broadly applicable to a wide variety of HAs
and detects all bugs detected by conventional simulation-
based verification. For very large HAs with several
million (up to over 200 million) logic gates, A-QED2

detects bugs in less than 30 minutes in the worst case
and in a few seconds in most cases.

3) A-QED2 is thorough – it detected all bugs that were
detected by conventional (simulation-based) verification
techniques. At the same time, A-QED2 improves verifi-
cation effort significantly compared to simulation-based
verification – ∼ 5X improvement on average, with ∼ 9X
improvement (one person month with A-QED2 vs. 9
person months with conventional verification flows) for
the large, industrial designs.

The rest of this paper is organized as follows. Sec. II
presents related work. Sec. III presents a formal model of
the accelerators targeted by A-QED2 and our decomposition
technique. Sec. IV details the A-QED2 algorithms. Results are
presented in Sec. V, and Sec. VI concludes.

II. RELATED WORK

Conventional formal HA verification, e.g., [13]–[16], re-
quires a specification, typically in the form of manually written,
design-specific properties. These are then combined with a
formal model of the design and handed to a formal tool, which
attempts to prove the properties or find counter-examples. For
the verification of latency-insensitive designs, an approach was
developed to automatically derive and check properties from
the RTL synthesized in HLS flows [17]. However, these derived
properties are targeted at specific types of bugs.

Large design sizes have always been a challenge for formal
techniques, and various approaches to this problem have
been proposed. Among techniques to improve scalability are
abstraction [18] and compositional reasoning (cf. [19]). The
former removes details of the design, gaining scalability at
the cost of possible false errors. Finding a scalable abstraction
that does not generate false errors can be difficult and may be

impossible in some cases. The latter uses assume-guarantee
reasoning (e.g., [20]–[25]) and can be applied to decompose a
large HA into smaller sub-modules. Importantly, the property
p of the HA to be verified must also be decomposed into
properties of the sub-modules. The properties of the sub-
modules are verified individually under certain assumptions
about the behavior of the other sub-modules. If all the properties
of the sub-modules hold under the respective assumptions, then
it can be concluded that p holds. However, finding the right
properties for this decomposition can be very challenging.

Unlike for general compositional reasoning, the two main
components of A-QED2 (FC and RB) do not require decom-
posing properties. FC, in particular, leverages a universal self-
consistency property. Self-consistency expresses the property
that a design is expected to produce the same outputs whenever
it is provided with the same inputs [26]. In A-QED2, self-
consistency is checked independently for each sub-module
(sub-accelerator in our case). Importantly, these aspects of A-
QED2 do not require complex assumptions about the behavior
of the other sub-modules.

It is challenging to establish general completeness guarantees
for conventional formal verification techniques [27]–[31], since
completeness depends on the set of properties being checked.
Designer-guided approaches [32], [33] require manual effort.
Automatic generation of properties is usually incomplete and
depends on abstract design descriptions [34] or models [35],
or analysis of simulation traces [36], which may be difficult.
In contrast, we have general completeness results for A-QED2.

A-QED2 builds on A-QED [8] and leverages BMC [11],
[37]. Similar approaches based on self-consistency have been
successfully applied to other classes of hardware designs, such
as processor verification (as symbolic quick error detection
(SQED) [38]–[43]), as well as to hardware security [44]–[49].

III. FORMAL MODEL AND THEORETICAL RESULTS

In this section, we introduce a formal model for HAs,
define functional consistency (FC), single-action correctness
(SAC), and responsiveness for the model, and show how these
properties provide correctness guarantees. We then define a
notion of functional composition for our model and show how
the above properties can be applied in a compositional way.

Our formal model differs from the one in previous work [8] in
several important ways. It allows multiple inputs to be provided
simultaneously by explicitly modeling the notion of input
batches. The HAs we consider are batch-mode accelerators
as they process input batches and produce output batches.
Modeling batches is useful because it more closely matches
the interfaces of real HAs. Moreover, input batches enable
intra-batch checks for FC checking, as we describe below.
With intra-batch checks, only one input batch is used for FC
checking. Intra-batch checks are more restricted than general
FC checks. However, they are easier to set up and run in
practice, and they are highly effective at finding bugs, as we
demonstrate empirically.

Our model also explicitly separates control states and mem-
ory states. Control states represent control-flow information

43

such as, e.g., program counters in HLS models of HAs. Memory
states represent all other state-holding elements, e.g., program
variables.

In our model we distinguish starting and ending control
states in which inputs are provided and the computed outputs
are ready, respectively. This makes the formulation simpler
and is also a better match for HLS designs written in a high-
level language, which is our main target in the experimental
evaluation. Further, our model enables us to formulate the
notion of strong FC, which leads to a complete approach to
bug-finding with only two input batches.

In previous work [8], a ready-valid protocol was used to
model input/output transactions in RTL designs. In contrast,
our focus is on HLS designs. Finally, we distinguish so-called
relevant states, which are parts of the state space that can affect
output values. This makes it possible to model interfering as
well as non-interfering HAs. In our experiments we focus on
non-interfering HAs.

Before presenting formal definitions, we illustrate terminol-
ogy informally with an example of a non-interfering batch-
mode HA as shown in Listing 1 (a slightly modified excerpt
of an HA implementing AES encryption [50]).

Function fun of the HA has two sub-accelerators in lines
8-10 and 13-14 which are identified and verified by A-QED2.
Each sub-accelerator applies a certain operation to all inputs
in an input batch of HA. In general, the batch size of an
HA is the number of inputs in each batch, which is 256 for
this HA. The first sub-accelerator ACC1 processes an input
batch provided via data and stores its output batch in buf.
The second sub-accelerator ACC2 takes its input batch from
buf, where it also stores the output batch it produces. The
control state of the HA is only implicitly represented by the
program counter when executing function fun. Variables key
and local_key are global and determine the relevant state of
the HA on which the result of the encryption operation depends.
The HA is non-interfering because key and local_key are
left unchanged by ACC1 and ACC2 . Constants BS, UF, and
US are used in HLS to configure the generated RTL.

Listing 1: HA Example (AES Encryption)
1 # d e f i n e BS ((1) << 12) / / BUF_SIZE
2 # d e f i n e UF 2 / / UNROLL_FACTOR
3 # d e f i n e US BS / UF / / UNROLL_SIZE
4

5 void fun (i n t d a t a [BS] , i n t buf [UF] [US] , i n t key [2]) {
6 i n t j , k ;
7 // ===ACC1 START===
8 f o r (j =0 ; j <UF ; j ++)
9 f o r (k = 0 ; k < BS / UF ; k ++)

10 buf [j] [k] = *(d a t a + i *BS + j *US + k) ^ key [0] ;
11 // ===ACC1 END===
12 // ===ACC2 START===
13 f o r (j =0 ; j <UF ; j ++) {
14 a e s 2 5 6 _ e n c r y p t (l o c a l _ k e y [j] , buf [j]) ; }
15 // ===ACC2 END===
16 }

Definition 1. A batch-mode hardware accelerator (HA)
is a finite state transition system [51], [52] Acc :=
(b, A,D , O, S, sc,I , sc,F , Sm,I , T), where
• b ∈ N with b ≥ 1 is the batch size,

• A is a finite set of actions,
• D is a finite set of data values,
• O is a finite set of outputs,
• S=SC×SM is the set of states consisting of control states
SC and memory states SM =SIn×SOut×SR×SN , where

– SIn = (A×D)b are the input states,
– SOut = Ob are the output states,
– SR are the relevant states, and
– SN are the non-relevant states,

• sc,I ∈ SC is the unique initial control state, which defines
the set SI = {sc,I} × SM of initial states,

• sc,F ∈ SC is the unique final control state, which defines
the set SF = {sc,F } × SM of final states,

• Sm,I is the set of allowable initial memory states, which
defines the set SCI = {sc,I}×Sm,I of concrete initial
states,

• and T : S → S is the state transition function.

When referring to different HAs, e.g., Acc0 and Acc1, we use
subscript notation to identify their components, e.g., Acc0 :=
(b0, A0,D0, O0, S0, sc,I,0, sc,F,0, Sm,I,0, T0).

We use v = 〈v1, . . . , v|v|〉 to denote a sequence with
elements denoted vi and length |v|. We concatenate sequences
(and for simplicity of notation, single elements with sequences)
using ’·’, e.g., v = v1 · v′, where v′ = 〈v2, . . . , v|v|〉. We will
sometimes identify a sequence v with the corresponding tuple,
and we write v ∈ v to denote that v appears in v. We denote
the i-th element of a tuple t as t(i).

An HA Acc operates on a set I b of input batches, where b
is the batch size and I = A×D . An input batch in ∈ I b has
b batch elements, each consisting of a pair (a, d) containing
an action a ∈ A to be executed and data d ∈ D (the data on
which action a operates).

A state s ∈ S of Acc with s = (sc, sm) consists of a
control state sc ∈ SC and a memory state sm ∈ SM . The
control state sc represents control-flow-related state (e.g., the
program counter in an execution of a high-level model of Acc).
In a run of Acc, the control state starts at a distinguished initial
state sc,I and ends at a distinguished final state sc,F .

The memory state represents all other state-holding elements
of Acc (including, e.g., global variables, local variables,
function parameters, and memory elements). The memory state
sm = (sin , sout , sr, sn) is divided into four parts. The first part,
sin ∈ SIn , contains the input to Acc. More precisely, in a run of
Acc, the value of sin in the initial state is considered the input
for that run. Similarly, at the end of a run of Acc, sout ∈ SOut

contains the outputs for that run (i.e., the values computed by
Acc based on the inputs present at the start of the run).

The relevant state sr represents those state elements (other
than sin) that can influence the values of the outputs. Any
part of the state that can affect the output value in at least
one execution should be included in the relevant state. As an
example of when this is needed, consider an encryption HA
with actions for setting the encryption key and for encrypting
data. The internal state that stores the key is part of the relevant
state because it affects the way the output is computed from the

44

input. The non-relevant state sn is everything else. We write
ctrl(s), mem(s), inp(s), out(s), rel(s), and nrel(s) to denote
the components sc, sm, sin , sout , sr, and sn, respectively. We
overload the latter four operators to apply to memory states as
well, and we lift the notation to sequences of states.

The set SI of initial states contains all states resulting from
combining a memory state in SM with the unique initial control
state sc,I . The concrete initial states, SCI , are a subset of SI ,
and essentially represent the reset state(s) of the HA. They
play a role in defining the reachable states (see Definition 3,
below). The set SF of final states contains all states resulting
from combining a memory state in SM with the unique final
control state sc,F . Finally, the transition function T defines the
successor state for any given state in S.

Given an input batch in ∈ I b , the HA produces an output
batch o ∈ Ob as follows. Let s0 ∈ SI be an initial state
with inp(s0) = in , and let s = T (s0) = 〈s1, . . . , sk〉 denote
the sequence of |s| = k successor states generated by the
transition function T , where si = T (si−1) for 1 ≤ i ≤ k, such
that sk ∈ SF is a final state (and no earlier states in s are
final states). We also assume, without loss of generality, that
ctrl(si) 6= sc,I for i > 0. The final state sk holds the output
batch out(sk) = o with o ∈ Ob that is produced for the input
batch inp(s0) = in . Given a sequence s, we write initsym(s)
and final(s) to denote the subsequence of s containing all
initial and final states that occur in s, respectively.

Given a sequence of input batches, an HA generates a
sequence of output batches based on concatenating executions
for each input batch.

Definition 2. Let in be a sequence of inputs with n = |in |,
and let s0 ∈ SI . Then, StateSeq(in , s0) denotes the sequence
of successor states of s0 that result from executing in , which
is defined as follows.
• Let s′0 be the result of replacing inp(s0) with in1 in s0.

Let s′ = s′0 · T (s′0).
• If |in | = 1 then StateSeq(in , s0) = s′

• If |in | > 1, then
– let sf = final(s′) (which is unique),
– let si = (sc,I ,mem(sf)),
– let s′′ = StateSeq(〈in2, . . . , inn〉, si).
– Then, StateSeq(in , s0) = s′ · s′′.

In Definition 2, the state si from which each subsequent
input batch is executed is obtained from the final state sf
produced from executing the previous input batch. Given an
HA Acc, we write StateSeq(Acc, in , s0) to explicitly refer to
the successor states of s0 generated by Acc. If Acc is clear
from the context, we omit it.

Definition 3. A state s ∈ S is reachable if s ∈ SCI or if there
exists a concrete initial state s0 ∈ SCI and sequence in of
input batches such that s ∈ StateSeq(in , s0). A relevant state
sr is reachable if sr = rel(s) for some reachable state s.

Note that the initial states SI are not necessarily all reachable.
Next, we define an abstract specification for an HA function.

Note that we use this to define correctness, but one of the

features of A-QED is that the specification is not needed for
the main verification technique.

Definition 4 (Abstract Specification). For an HA Acc, let
Spec : I × SR → O be an abstract specification function.

Definition 4 states that the value of an output computed by
an HA is completely determined by the corresponding input
and the relevant part of the memory state when the HA was
started. Note that the inclusion of the relevant memory state
makes the definition general enough to model interfering HAs.
To model non-interfering HAs, we can either make the output
dependent on only the input batch, or require that the relevant
state does not change in state transitions.

Based on the abstract specification, we define the functional
correctness of an HA in terms of the output batches that are
produced for given input batches as follows.

Definition 5 (Functional Correctness). An HA Acc is function-
ally correct with respect to an abstract specification Spec if,
for all concrete initial states s0 ∈ SCI and all sequences in
of input batches, if
• in = 〈in1, . . . , inn〉,
• s = StateSeq(in , s0),
• sI = initsym(s) = 〈sI ,1, . . . , sI ,n〉,
• o = out(final(s)) = 〈o1, . . . , on〉,

then ∀ j ∈ [1 . . . b]. on(j) = Spec(inn(j), rel(sI ,n)).

A bug is simply a failure of functional correctness.
As mentioned above, even without a formal specification,

we can apply the core technique of A-QED. To do so, we
leverage the concept of functional consistency, the notion that
under modest assumptions, two identical inputs will always
produce the same outputs.

Definition 6 (Functional Consistency (FC)). An HA Acc is
functionally consistent if, for all concrete initial states s0 ∈
SCI and for all sequences in of input batches, if
• in = 〈in1, . . . , inn〉, s = StateSeq(in , s0),
• sI = initsym(s) = 〈sI ,1, . . . , sI ,n〉,
• o = out(final(s)) = 〈o1, . . . , on〉,

then ∀ i ∈ [1, n], j, j′ ∈ [1, b].
ini(j)= inn(j

′)∧rel(sI ,i)=rel(sI ,n)→ oi(j)=on(j
′).

Definition 6 illustrates the need for the relevant designation
for memory states. It essentially says that two inputs, even
if started at different times and in different batch positions,
should produce the same output, as long as the relevant part
of the memory is the same when the two inputs are sent
in. The following lemma is straightforward (see the online
appendix [53] for proofs of this and other results).

Lemma 1 (Soundness of FC). If an HA is functionally correct,
then it is functionally consistent.

Checking FC requires running BMC over multiple iterations
of the HA and may be computationally prohibitive for large
designs or for large values of n. Often, it is possible to verify
a stronger property, which only requires checking consistency
across two runs of the HA.

45

Definition 7 (Strong FC). An HA Acc is strongly functionally
consistent if, for all reachable initial states s0, s′0 and input
batches in, in ′, if

• s = StateSeq(〈in〉, s0), s′ = StateSeq(〈in ′〉, s′0),
• sF = final(s) = 〈sF 〉, sF ′ = final(s′) = 〈s′F 〉,
• o = out(sF) = 〈o〉, o′ = out(sF

′) = 〈o′〉,
then ∀ j, j′ ∈ [1, b].

in(j) = in ′(j′) ∧ rel(s0) = rel(s′0)→ o(j) = o′(j′).

The main difference between FC and strong FC is that the
initial states s0 and s′0 can be any reachable states. In contrast
to that, the initial state s0 ∈ SCI in the definition of FC is a
concrete one. It is easy to see that strong FC implies FC, but
the reverse is not true in general. This is because it may not be
possible for two reachable initial states s0 and s′0 chosen in a
strong FC check to both appear in a single sequence of states
resulting from executing a sequence of input batches starting
in a concrete initial state. Similar to previous work on A-QED
for non-batch-mode HAs [8], FC checking relies on sequences
of input batches to reach all reachable states from a concrete
initial state. For strong FC checking, on the other hand, two
individual input batches are sufficient because the two initial
states s0 and s′0 can be arbitrarily chosen from the reachable
states. Like FC, strong FC is a sound approach.

Lemma 2 (Soundness of Strong FC). If an HA is functionally
correct then it is strongly functionally consistent.

A challenge with using strong FC is that it requires starting
with reachable initial states. However, we found that in practice
(cf., Section V), it is seldom necessary to add any constraints
on the initial states. This may seem surprising given the well-
known problem of spurious counterexamples that arises when
using formal to prove functional correctness without properly
constraining initial states. There are at least two reasons for
this. First, many HAs have less dependence on internal state
(none for non-interfering HAs) than other kinds of designs. But
second, and more importantly, FC is a much more forgiving
property than design-specific correctness. Many designs are
functionally consistent, even when run from unreachable states.
In fact, we believe that this is a natural outcome of good
design and that designing for FC is a sweet spot in the trade-
off between design for verification and other design goals. If
designers take care to ensure FC, even from unreachable states,
then strong FC is both sound and easy to formulate.

Even simpler versions of the checks above can be obtained
by making them intra-batch checks. An HA is intra-batch
functionally consistent if it is functionally consistent when
i = n = 1. That is, intra-batch FC checks are based on
sending a single input batch to the HA. Consequently, it is
not necessary to identify and compare the relevant parts of
the initial states (cf. Definition 6) as there is precisely one
initial state being used. Similarly, an HA is intra-batch strongly
functionally consistent if it is strongly functionally consistent
when s0 = s′0 and in = in ′. Again, only one input batch is
sent to the HA and the relevant parts of the initial states are
thus always equal. As we will show in Section V, intra-batch

checks can be a very effective approach for cheaply finding
bugs. Intra-batch checks are applicable only to batch-mode
HAs; i.e., they are not applicable in the context of A-QED
targeted at HAs processing sequences of single inputs [8] rather
than input batches.

While functional consistency alone can find many bugs,
it becomes a complete technique (i.e., it finds all bugs) by
combining it with single-action checks.

Definition 8 (Single-Action Correctness (SAC)). An HA Acc
is single-action correct (SAC) with respect to an abstract
specification Spec if, for every batch element (a, d) and for
every reachable relevant state sr, there exists some reachable
initial state s, such that inp(s)(j) = (a, d) for some j,
rel(s) = sr, and out(final(T (s)))(j) = Spec((a, d), sr).

Essentially, SAC requires that for each action a, data d, and
reachable relevant state sr, we have checked that the result is
computed correctly when starting from some reachable initial
state s whose relevant state matches sr. For every batch element
(a, d) and sr, it is sufficient to run a single check where we
can choose (a, d) to be at any arbitrary position j in the batch
inp(s). Checking SAC does require using the specification
explicitly, but these kinds of checks typically already exist in
unit or regression tests. SAC may even be possible to verify
using simulation. As we show in Section V, many bugs can
be discovered without checking SAC at all.

When formalizing single-action checks, we again advocate
using an over-approximation for reachability and encourage
the design of HAs with simple over-approximations for the set
of reachable relevant states. For the encryption example we
gave above, the set of reachable relevant states is just the set
of valid keys, which should be easy to specify.

In earlier work, using a slightly different HA model, we
showed that SAC and functional consistency ensure correctness
only when the HA is strongly connected (SC), that is, when
there exists a sequence of state transitions from every reachable
state to every other reachable state. The same is true here.

Lemma 3 (Completeness of SAC + FC + SC). If an HA is
strongly connected and single-action correct and has a bug,
then it is not functionally consistent.

However, strong functional consistency leads to an even
stronger result.

Lemma 4 (Completeness of SAC + Strong FC). If an HA is
single-action correct and has a bug, then it is not strongly
functionally consistent.

Finally, to address timeliness of results in addition to
correctness, we define a notion of responsiveness for our model.

Definition 9 (Responsiveness). An HA is responsive with
respect to bound n if, for all concrete initial states s0 ∈ SCI ,
sequences in of input batches, and input batches in , if
• s = StateSeq(in , s0) = 〈s0, . . . , sm〉 and
• s′ = StateSeq(in · in, s0) = 〈s0, . . . , sm+l〉,

then l ≤ n.

46

A. Decomposition for FC Checking

We now show how FC of a decomposed design can be
derived from FC of its parts. We first give conditions under
which two HAs can be composed.

Definition 10 (Functionally Composable). Acc1 and Acc2 are
functionally composable if: (i) b1 = b2; (ii) O1 = A2 × D2;
(iii) SC,1 ∩ SC,2 = ∅; (iv) SR,1 = SR,2; and (v) SN,1 =
SOut,2 × S′N and SN,2 = SIn,1 × S′N for some S′N .

Note in particular that composability requires that the outputs
of Acc1 match the inputs of Acc2. We also require that the
two HAs have isomorphic memory states, which is ensured by
including SOut,2 in the non-relevant states of Acc1 and SIn,1 in
the non-relevant states of Acc2. In order to map a memory state
of Acc1 to the corresponding memory state in Acc2, we define
a mapping function α : SM,1 → SM,2 as follows: α(sm) =
(out(sm),nrel(sm)(1), rel(sm), (inp(sm),nrel(sm)(2))). We
next define functional composition.

Definition 11 (Functional Composition, Sub-Accelerators).
Given functionally composable HAs Acc1 and Acc2, we define
the functional composition Acc0 = Acc2 ◦ Acc1 (Acc1 and
Acc2 are called sub-accelerators of Acc0) as follows: b0 = b1,
A0 = A1, D0 = D1, O0 = O2, SC,0 = SC,1 ∪ SC,2, SM,0 =
SM,1, sc,I,0 = sc,I,1, sc,F,0 = sc,F,2, Sm,I,0 = Sm,I,1. The
transition function is defined as follows. T0(sc, sm) =

(i) if sc ∈ SC,1 and sc 6= sc,F,1 then T1(sc, sm);
(ii) if sc ∈ SC,2 then T2(sc, α(sm)); and

(iii) if sc = sc,F,1 then (sc,I,2, α(sm)).

Definition 11 essentially states that an execution of Acc0 =
Acc2 ◦Acc1 is obtained by first running Acc1 to completion,
then passing the outputs of Acc1 to the inputs of Acc2, and
then running Acc2 to completion. As a variant of Definition 11,
it is also possible to define functional composition where
the sub-accelerators operate in parallel. This way, the sub-
accelerators process non-overlapping parts of a given input
batch and produce the respective non-overlapping parts of the
output batch.

We now introduce a compositional version of FC.

Definition 12 (Strong FC for Decomposition (FCD)). An
HA Acc is strongly functionally consistent for decomposition
(strongly FCD) if it is strongly functionally consistent and,
in addition to o(j) = o′(j′), the property rel(sF) = rel(s′F)
holds in the conclusion of the implication in Definition 7.

Note that strong FCD is stronger than strong FC. In order to
stitch together results on sub-accelerators, we need to establish
that not only the output but also the relevant memory state is
the same after processing identical inputs. The following is
clear from the definition.

Corollary 1. If an HA Acc is strongly FCD, then Acc is
strongly FC.

We now show that composition preserves strong FCD and
then state our main result.

Lemma 5 (Functional Composition and Strong FCD). Let
Acc0 = Acc2 ◦Acc1. If both Acc1 and Acc2 are strongly FCD
then Acc0 is strongly FCD.

Theorem 1 (Completeness of A-QED2). Let Acc0,Acc1, and
Acc2 be HAs such that Acc0 = Acc2 ◦ Acc1 and Acc0 is
single-action correct. If Acc1 and Acc2 are strongly FCD then
Acc0 is functionally correct.

Theorem 1 states that A-QED2 is complete. That is, by
contraposition, if an HA Acc0 has a bug, i.e., it is not
functionally correct, then either Acc1 or Acc2 is not strongly
FCD, and thus the bug can be detected by A-QED2.

Note that there is no corresponding soundness result. This is
because it is possible to decompose a functionally consistent
HA into functionally inconsistent sub-accelerators. However,
as shown in Section V, this appears to be rare in practice, and
here again we reiterate our position on design for verification
and advocate that also sub-accelerators should be designed
with functional consistency in mind.

Functional composition can easily be generalized to more
than two sub-accelerators. Moreover, it can be applied re-
cursively to further decompose sub-accelerators. If functional
decomposition based on Definition 11 is not applicable to
further decompose a sub-accelerator, then such a sub-accelerator
can be decomposed using existing formal decomposition
approaches, though these require significant manual effort. Our
approach identifies conditions under which simple, automatable
decomposition of FC checking is possible.

IV. A-QED2 FUNCTIONAL DECOMPOSITION IN PRACTICE

We now present our implementation of A-QED2, which
builds on the theoretical framework of the previous section.
We combine functional decomposition with checks for FC
(dFC), SAC (dSAC), and responsiveness (dRB).

A. Decomposition for FC: dFC

dFC takes as input a non-interfering LCA design Acc
(satisfying Definitions 1 and 2) together with designer-provided
annotations (explained in this section). dFC decomposes Acc
into sub-accelerators (following Definition 11). FC checks
are run on the sub-accelerators and any counterexamples
are reported. Note that the way in which Acc is actually
decomposed into sub-accelerators has no influence on the
completeness of A-QED2 (Theorem 1). That said, FC checks
may scale better for certain decompositions. While failing FC
checks expose consistency issues at the sub-accelerator level,
it is possible that they do not cause incorrect behaviors at the
full Acc level. However, we did not observe any instances of
this in our experiments.

Our dFC implementation relies on identifying batch opera-
tions in a given Acc. A batch operation operates on a vector of
inputs, applying some action to each input in order to produce
a vector of outputs. The input to a batch operation could be
an intermediate output batch of another sub-accelerator or an
input batch to Acc itself. A batch operation produces either an

47

intermediate output batch which is subsequently processed by
another sub-accelerator or an output batch of Acc itself.

We assume that Acc is expressed in a high-level language,
specifically as a C/C++ program1 that implements sequential
computation of Acc outputs from Acc inputs.2 Batch operations
in the C/C++ program are identified by finding contiguous
C/C++ statements called functional blocks that implement
those batch operations. Each functional block represents a
sub-accelerator.

We have developed a set of annotations by which the designer
can help identify these functional blocks. Examples of such
annotations are given in Listing 2 (extends Listing 1). It has
two functional blocks corresponding to batch operations: lines
15-17 and 32-33.

Annotations are defined by particular keywords that are
prefixed by “%” (and denoted in blue) in Listing 2. These
annotations describe the compute and memory access patterns
of the functional block as it transforms an input batch into
an output batch. In practice, hardware designers already use
similar annotations frequently, e.g., to express parallelization
opportunities for HLS to generate efficient hardware. As a
result, we expect manageable effort in creating such annotations
to support dFC. The HLS research community is actively
developing new techniques to automatically explore the HA
design space and derive optimal design points together with
appropriate parallelization and pipelining [54]–[56]. With tight
integration of A-QED2 with HLS, we expect that it will be
possible to generate dFC annotations with low effort.

Listing 2: C/C++ Annotation Example (AES Encryption)
1 # d e f i n e BS ((1) << 12) / / BUF_SIZE
2 # d e f i n e UF 2 / / UNROLL_FACTOR
3 # d e f i n e US BS / UF / / UNROLL_SIZE
4

5 void fun (i n t d a t a [BS] , i n t buf [UF] [US] , i n t key [2]) {
6 i n t j , k ;
7

8 %IN_SIZE 16 / / v a r i a b l e s per i n p u t b a t c h e l e m e n t
9 %IN_BATCH_SIZE BS / IN_SIZE / / i n p u t b a t c h s i z e

10 %BATCH_MEM_IN d a t a / / i n p u t b a t c h s o u r c e
11 %IN_ALLOC_RULE i n (x) add r r a n g e =
12 [i *BS + x*IN_SIZE :
13 i *BS + (x + 1) *IN_SIZE] / / BATCH_MEM_IN l a y o u t
14 // ===ACC1 START===
15 f o r (j =0 ; j <UF ; j ++)
16 f o r (k = 0 ; k < BS / UF ; k ++)
17 buf [j] [k] = *(d a t a + i *BS + j *US + k) ^ key [0] ;
18 // ===ACC1 END===
19 %OUT_SIZE 16 / / v a r i a b l e s per o u t p u t b a t c h e l e m e n t
20 %OUT_BATCH_SIZE BS / OUT_SIZE / / o u t p u t b a t c h s i z e
21 %BATCH_MEM_OUT buf / / o u t p u t b a t c h s o u r c e
22 %IN_ALLOC_RULE o u t (x) add r r a n g e =
23 [x / US] [(x%US) *OUT_SIZE :
24 ((x + 1)%US) *OUT_SIZE] / / BATCH_MEM_OUT l a y o u t
25

26 %IN_SIZE 16
27 %IN_BATCH_SIZE BS / IN_SIZE
28 %BATCH_MEM_IN buf
29 %IN_ALLOC_RULE i n (x) add r r a n g e =
30 [(x%US) *IN_SIZE : ((x +1)%US) *IN_SIZE] [x / US]

1HAs expressed in Verilog or SystemC can be converted into C/C++, and
then our dFC implementation can be applied. We do this in Sec. V.

2Existing HLS tools (e.g., Xilinx Vivado HLS, Mentor Catapult HLS) can
then optimize Acc, incorporate appropriate pipelining and parallelism, and
produce Verilog for subsequent logic synthesis and physical design steps. Such
HLS-based HA design flows are becoming increasingly common.

31 // ===ACC2 START===
32 f o r (j =0 ; j <UF ; j ++) {
33 a e s 2 5 6 _ e n c r y p t (l o c a l _ k e y [j] , buf [j]) ; }
34 // ===ACC2 END===
35 %OUT_SIZE 16
36 %OUT_BATCH_SIZE BS / OUT_SIZE
37 %BATCH_MEM_OUT buf
38 %OUT_ALLOC_RULE o u t (x) add r r a n g e =
39 [(x%US) *OUT_SIZE : ((x +1)%US) *OUT_SIZE] [x / US]
40 }

From the annotations, we create sub-accelerators. For exam-
ple, the annotations in Listing 2 generate two sub-accelerators:
Acc1 corresponding to the functional block in Lines 15-17 with
annotations in Lines 8-13 and 19-24, and Acc2 corresponding
to the functional block in Lines 32-33 with annotations in
Lines 26-30 and 35-39. For each sub-accelerator, we create
an A-QED2 module for FC checking.3 It generates symbolic
inputs for the sub-accelerator and symbolically executes the
corresponding functional block in order to produce symbolic
expressions for the outputs. For strong FC checks (Definitions 6
and 7), the relevant states (Definition 1) must additionally be
identified and explicitly constrained to be consistent across
sub-accelerator calls processing two input batches. Identifying
the relevant states is not necessary for intra-batch FC checks
(discussed in the context of Lemma 2). For example, in sub-
accelerator Acc1 in Listing 2, key[0] is a relevant state element
(distinct from the batch input data). Between two calls of Acc1
during a strong FC check, key[0] must be consistent. In our
implementation, we ignore reachability and allow all checks
to start from fully symbolic initial states. This does not lead
to spurious counterexamples in our experiments.

B. Decomposition for RB: dRB

The sub-accelerators for A-QED2’s RB checks (Definition 9)
can be (and often are) different from those for FC because
RB involves a much simpler check: some output is produced
within the response bound n. We expect n to be provided by
the designer for the top-level accelerator. We then use the same
bound n for each sub-accelerator. The rationale is that if a
sub-accelerator fails an RB check, then the full accelerator
would also fail the same RB check.

For dRB, we generate a static single assignment (SSA)
representation of the design. We then apply a sliding window
algorithm to dynamically generate sub-accelerators. Lines of
code in the SSA that fall within a certain window W form
the sub-accelerator. Due to SSA form, the inputs of this sub-
accelerator are variables that are never updated or assigned in
W while the outputs are the variables which update variables
outside W . The current size of W is given by the number of
LOCs that fit in W , and it changes dynamically during a run
of the algorithm to incorporate the largest sub-accelerator that
will fit the BMC tool. Once the sub-accelerator is verified, W
slides by δ LOCs (δ is a parameter) and adjusts its boundary
to get the next largest sub-accelerator that can be verified.
We synthesize that sub-accelerator using HLS (since some
responsiveness bugs only manifest after HLS) and then run
RB checks using BMC. The initial states of each generated

3See the online appendix [53] for details.

48

sub-accelerator are left unconstrained (i.e., fully symbolic) in
order to analyze all possible behaviors. The specific size of
W and its position in the SSA code change dynamically as
dRB proceeds. dRB terminates when W reaches the end of
the SSA code or if at any time an RB check fails.

C. Decomposition for SAC: dSAC

As mentioned above, and as will be shown in the next section,
many bugs can be detected using only dFC and dRB. The
advantage of this is that both of these checks can be run without
any functional specification. dSAC completes the story, but at
the cost of requiring specifications. We use standard functional
decomposition techniques (essentially, writing preconditions,
invariants, and postconditions) to decompose SAC checks. One
feature of dSAC is that only a single input in a batch needs be
checked—all other inputs in the batch can be set to constants
(we use zero in our experiments). This makes both writing the
properties and checking them much simpler. The non-input
part of the initial state for each check is again kept fully
symbolic for simplicity. If a sub-accelerator is too big, we
further decompose it using finer-grained functional blocks.

V. EXPERIMENTAL RESULTS

We demonstrate the practicality and effectiveness of A-QED2

for 109 (buggy) versions of several non-interfering LCAs,4

including open-source industrial designs [12]. We selected these
designs for the following reasons:
• They cover a wide variety of HAs (neural nets, image

processing, natural language processing, security). Most
are too large for existing off-the-shelf formal tools.

• They have been thoroughly verified (painstakingly) using
state-of-the-art simulation-based verification techniques.
Thus, we can quantify the thoroughness of A-QED2.

• With access to buggy versions, we did not have to artifi-
cially inject bugs. Bugs we encountered include incorrect
initialization, incorrect memory accesses, incorrect array
indexing, and unresponsiveness in HLS-generated designs.

Many of the designs were already available in sequential
C or C++. We converted Verilog and SystemC designs
into sequential C. To facilitate dFC, we manually inserted
annotations (like those in Listing 2). For A-QED FC, we used
CBMC for all designs originally represented in sequential C or
C++. For designs in Verilog and SystemC, we used Cadence
JasperGold (SystemC designs converted to Verilog via HLS).
For A-QED2 FC and SAC checks, we used CBMC version
5.10 [66]. For A-QED and A-QED2 RB checks, we used
Cadence JasperGold version 2016.09p002 on Verilog designs
generated by the HLS tools used by the designers. Lastly, we
used Frama-C [67] to check for initialization and out-of-bounds
bugs on the entire C/C++ designs. We ran all our experiments
on Intel Xeon E5-2640 v3 with 128GBytes of DRAM.

Tables I, II, and III summarize our results. We present
comparisons between A-QED2 (dFC, dRB, dSAC) and A-QED

4See the online appendix [53] for design details and the software artifact [65].

(FC, RB, SAC). Table I also compares A-QED2 intra-batch FC
vs. A-QED2 strong FC (cf. details in the online appendix [53]).

Observation 1: HAs from various domains (including
industry) show that non-interfering LCAs are highly common.

Observation 2: The vast majority of the studied HAs are
too big for existing off-the-shelf formal verification tools, for
both A-QED and conventional formal property verification.

Observation 3: Table I shows that A-QED2 intra-batch
FC checks detected bugs inside sub-accelerators (with batch
sizes > 1) very quickly—under a minute for almost all of the
designs, and just over a minute for nv_large. For most batch-
mode sub-accelerators—except two for each of the following
four designs (amounting to eight sub-accelerators in total):
grayscale64, grayscale32, mean128, and mean32—intra-batch
dFC checks were easily completed using off-the-shelf formal
tools. Strong FC checks incur more complexity. Hence, the
formal tool timed out after 12 hours for 62 sub-accelerators
when running strong FC checks, distributed across multiple
designs. Empirically, we found that intra-batch FC checks
detected all bugs that were detected by strong FC checks.

Observation 4: A-QED2 RB and A-QED2 SAC are also
highly effective in detecting bugs inside sub-accelerators. For
the first 11 designs (AES to gsm) in Table II, we do not expect
unresponsiveness bugs (confirmed by simulations). Hence, A-
QED2 RB checks ran for 12 hours (for increasingly longer input
sequences) without detecting unresponsiveness. For designs
with RB bugs, A-QED2 RB checks on sub-accelerators were
able to detect those in less than 11 minutes on average. For
A-QED2 dSAC, we observed that a significant fraction (26
out of 46 bugs (56%)) of these bugs were also detected by
A-QED2 FC checks. Thus, FC alone is effective at catching a
wide variety of bugs.

Observation 5: A-QED2 detected all bugs that were detected
by conventional (simulation-based) verification techniques.
Further, all counterexamples produced from verifying sub-
accelerators corresponded to real accelerator-level bugs. Com-
pared with traditional simulation-based verification, we report
a ∼ 5X improvement in verification effort on the average,
with a ∼ 9X improvement for the large, industrial NVDLA
designs. The overhead of inserting our annotations for dFC
can be small compared to what designers already insert to
optimize the design. For ISmartDNN, for example, the total
number of annotations is 304, which is 2.8% of the total
lines of code of the design. In the code of the HLS designs
we considered, pragmas amount to 11% on average. We also
observe a ∼ 60X improvement in average verification runtime
compared to conventional simulations.5

VI. CONCLUSION

Our theoretical and experimental results demonstrate that
A-QED2 is an effective and practical approach for verification

5The conventional verification effort for NVDLA was based on start and end
commit dates in its nv_small Github repository. The conventional verification
runtime for NVDLA, ISmartDNN, and dnn HAs were obtained by running
the available simulation tests on our platform. The remaining runtime and
effort information were provided by the designers.

49

Design (#Gates) (#Versions)
94 versions in table, 15 in caption†

A-QED FC A-QED2 dFC: Intra-batch FC A-QED2 dFC: Strong FC
Avg. RT (min) Avg. RT (min) #Bugs #Sub-Acc.(T/P/C/B) Avg. Runtime (min) #Bugs #Sub-Acc.(T/P/C/B)

AES [50] (382k) (4) OOM 0.97 4 8 / 7 / 7 / 4 timeout 0 8 / 7 / 2 / 0
ISmartDNN [57] (42M) (3) timeout 0.10 2 38 / 5 / 5 / 2 0.18 2 38 / 5 / 2 / 2
grayscale128 [33] (351k) (5) timeout 0.03 3 3 / 3 / 2 / 2 0.07 3 3 / 3 / 2 / 2
grayscale64 [33] (194k) (5) timeout 0.02 3 3 / 3 / 2 / 2 0.02 3 3 / 3 / 2 / 2
grayscale32 [33] (106k) (5) 8.20 <0.01 5 3 / 3 / 3 / 3 0.30 5 3 / 3 / 3 / 3
mean128 [33] (202k) (5) timeout 0.35 3 3 / 3 / 2 / 2 0.17 3 3 / 3 / 2 / 2
mean64 [33] (104k) (5) timeout 0.38 3 3 / 3 / 2 / 2 0.13 3 3 / 3 / 2 / 2
mean32 [33] (54k) (5) 5.53 0.17 5 3 / 3 / 3 / 3 0.33 5 3 / 3 / 3 / 3
dnn [58] (2M) (11) timeout 0.03 5 34 / 14 / 14 / 5 0.13 5 34 / 14 / 8 / 5
nv_large [12] (16M) (23) timeout 1.17 11 89 / 46 / 46 / 11 2.93 9 89 / 46 / 21 / 9
nv_small [12] (1M) (23) timeout 0.07 11 89 / 46 / 46 / 11 1.03 11 89 / 46 / 26 / 11

TABLE I: Avg. RunTimes of FC checks for A-QED and A-QED2. For A-QED2, sub-accelerator counts are provided, including the Total
count that resulted from dFC decomposition, the count with batch sizes greater than one (i.e., Parallel), the count (with batch sizes greater
than one) for which FC checks were successful on 1 and 2 batches for intra-batch FC and strong FC respectively, and the count for which
Bugs were detected by FC checks. For A-QED FC, experiments could not complete FC check for a single batch in 12 hours (timeout) or
exhibited out-of-memory (OOM) errors before timeout. Average runtimes result from dividing the time to detect all bugs by the number of
bugs. †keypair [59], gsm [60], HLSCNN [61], FlexNLP [62], Dataflow [63], and Opticalflow [64] all time out for A-QED FC and do not
contain any sub-accelerators with batch size greater than one. One OOB bug was detected in gsm and one initialization bug in keypair.

Design (#Gates) (#Versions)
Total Versions = 109

A-QED RB A-QED2 dRB
Avg. RT

(min)
Avg. RT

(min) #Bugs #Sub-Acc.
(T/C/B)

AES [50] (382k) (4) timeout
No RB

bug detected
up to input
sequence

length
between

11 and 24
depending on

the design

13 / 13 / 0
ISmartDNN [57] (42M) (3) timeout 32 / 32 / 0
grayscale128 [33] (351k) (5) timeout 5 / 5 / 0
grayscale64 [33] (194k) (5) timeout 5 / 5 / 0
grayscale32 [33] (106k) (5) 3 / 3 / 0
mean128 [33] (202k) (5) timeout 5 / 5 / 0
mean64 [33] (104k) (5) timeout 3 / 3 / 0
mean32 [33] (54k) (5) 1 / 1 / 0
dnn [58] (2M) (11) timeout 5 / 5 / 0
keypair [59] (>200M) (1) timeout 21 / 21 / 0
gsm [60] (8.8k) (1) timeout 7 / 7 / 0
nv_large [12] (16M) (23) timeout No RB bugs expectednv_small [12] (1M) (23) timeout
HLSCNN [61] (323k) (2) timeout 2.33 1 25 / 25 / 1
FlexNLP [62] (567k) (9) timeout 10.77 9 15 / 15 / 9
Dataflow [63] (296k) (1) 0.45 0.25 1 9 / 9 / 1
Opticalflow [64] (555k) (1) timeout 0.17 1 3 / 3 / 1

TABLE II: RB checks for A-QED and A-QED2. For A-QED2,
sub-accelerator counts produced by dFC are provided, as in Table I.
A-QED2 RB checks are performed on all sub-accelerators regardless
of batch size, so P is omitted compared to Table I. For A-QED RB, RB
checks did not complete even for a input sequence length of 1 within
12 hours (timeout). Sub-accelerators for which RB checks for at
least input sequence length of 1 was completed were considered
Complete. For the first 11 designs, from AES to gsm, no bugs
related to unresponsiveness were detected by traditional simulation-
based verification. Results are omitted for nv_large and nv_small;
responsiveness related bugs generally result from parallelism and
pipelining, both of which were lost in our manual translation of
NVDLA from Verilog to sequential C code.

of large non-interfering LCAs. A-QED2 exploits A-QED princi-
ples to decompose a given HA design into sub-accelerators such
that A-QED can be naturally applied to the sub-accelerators.
A-QED2 is especially attractive for HLS-based HA design
flows. A-QED2 creates several promising research directions:

• Extension of our A-QED2 experiments to include inter-
fering LCAs (already covered by our theoretical results).

• Automation of dFC annotations via HLS techniques.
• dFC approaches beyond our current implementation.

Design (#Gates) (#Versions)
Total Versions = 109

A-QED2 dSAC
Avg. RT

(min) #Bugs Bug overlap
with dFC

#Sub-Acc.
(T/C/B)

AES [50] (382k) (4) 0.12 0 0 8 / 8 / 0
ISmartDNN [57] (42M) (3) 0.22 3 2 38 / 38 / 3
grayscale128 [33] (351k) (5) 0.04 2 2 3 / 2 / 2
grayscale64 [33] (194k) (5) 0.01 2 2 3 / 2 / 2
grayscale32 [33] (106k) (5) <0.01 2 2 3 / 3 / 2
mean128 [33] (202k) (5) 0.21 2 2 3 / 2 / 2
mean64 [33] (104k) (5) <0.01 2 2 3 / 2 / 2
mean32 [33] (54k) (5) <0.01 2 2 3 / 3 / 2
dnn [58] (2M) (11) 0.01 6 0 34 / 14 / 6
keypair [59] (>200M) (1) timeout 0 0 14 / 14 / 0
gsm [60] (8.8k) (1) timeout 0 0 5 / 5 / 0
nv_large [12] (16M) (23) 0.84 12 6 89 / 89 / 12
nv_small [12] (1M) (23) 0.11 12 6 89 / 50 / 12
HLSCNN [61] (323k) (2) 0.45 1 0 25 / 11 / 1
FlexNLP [62] (567k) (9) timeout 0 0 21 / 21 / 0
Dataflow [63] (296k) (1) timeout 0 0 8 / 8 / 0
Opticalflow [64] (555k) (1) timeout 0 0 14 / 14 / 0

TABLE III: SAC checks for A-QED2. Sub-accelerator counts
produced by dSAC are provided, as in Table I. A-QED2 SAC checks
were performed on all sub-accelerators regardless of batch size, so P
is omitted compared to Table I.

• Further A-QED2 scalability using abstraction.
• Extension of A-QED2 beyond sequential (C/C++) code

to include concurrent programs.
• Effectiveness of A-QED2 for RTL designs (without

converting them to sequential C/C++).
• Applicability of A-QED2 beyond functional bugs (e.g., to

detect security vulnerabilities in HAs).
• Comparison of A-QED2 and conventional decomposition.
• Identifying conditions under which A-QED2 is sound.

ACKNOWLEDGMENT

This work was supported by the DARPA POSH program
(grant FA8650-18-2-7854), NSF (grant A#:1764000), and the
Stanford SystemX Alliance. We thank Prof. David Brooks,
Thierry Tambe and Prof. Gu-Yeon Wei from Harvard University,
and Kartik Prabhu and Prof. Priyanka Raina from Stanford
University for their design contributions in our experiments.

50

REFERENCES

[1] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Rein-
man, “Accelerator-rich architectures: Opportunities and progresses,” in
Proc. DAC. IEEE, 2014, pp. 1–6.

[2] L. P. Carloni, “The Case for Embedded Scalable Platforms,” in Proc. DAC.
IEEE, 2016, pp. 1–6.

[3] W. J. Dally, Y. Turakhia, and S. Han, “Domain-Specific Hardware
Accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48–57,
2020.

[4] M. Hill and V. J. Reddi, “Accelerator-level Parallelism,” CoRR, vol.
abs/1907.02064, 2019, https://arxiv.org/abs/1907.02064.

[5] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young,
N. Jouppi, and D. Patterson, “The Design Process for Google’s Training
Chips: TPUv2 and TPUv3,” IEEE Micro, 2021.

[6] H. D. Foster, “Trends in functional verification: a 2014 industry study,”
in Proc. DAC. ACM, 2015, pp. 48:1–48:6.

[7] B. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and S. Malik,
“Instruction-level abstraction (ILA): A uniform specification for system-
on-chip (SoC) verification,” ACM Trans. Design Autom. Electr. Syst.,
vol. 24, no. 1, pp. 10:1–10:24, 2019.

[8] E. Singh, F. Lonsing, S. Chattopadhyay, M. Strange, P. Wei, X. Zhang,
Y. Zhou, D. Chen, J. Cong, P. Raina, Z. Zhang, C. W. Barrett, and
S. Mitra, “A-QED Verification of Hardware Accelerators,” in Proc. DAC.
IEEE, 2020, pp. 1–6.

[9] E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “An
Analysis of Accelerator Coupling in Heterogeneous Architectures,” in
Proc. DAC. ACM, 2015, pp. 202:1–202:6.

[10] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture support for accelerator-rich CMPs,” in Proc. DAC. ACM,
2012, pp. 843–849.

[11] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods in System Design, vol. 19,
no. 1, pp. 7–34, 2001.

[12] NVIDIA, “NVIDIA Deep Learning Accelerator,” http://nvdla.org/primer.
html, 2021, [Online]. Accessed: August 2021.

[13] K. A. Campbell, D. Lin, L. He, L. Yang, S. T. Gurumani, K. Rupnow,
S. Mitra, and D. Chen, “Hybrid Quick Error Detection: Validation and
Debug of SoCs Through High-Level Synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 7,
pp. 1345–1358, 2019.

[14] Y. Chi, Y. Choi, J. Cong, and J. Wang, “Rapid Cycle-Accurate Simulator
for High-Level Synthesis,” in Proc. FPGA. ACM, 2019, pp. 178–183.

[15] IEEE, “IEEE Standard for Universal Verification Methodology Language
Reference Manual,” IEEE Std 1800.2-2017, pp. 1–472, 2017.

[16] Y. Choi, Y. Chi, J. Wang, and J. Cong, “FLASH: Fast, Parallel, and
Accurate Simulator for HLS,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4828–4841,
2020.

[17] S. Dai, A. Klinefelter, H. Ren, R. Venkatesan, B. Keller, N. R. Pinckney,
and B. Khailany, “Verifying High-Level Latency-Insensitive Designs
with Formal Model Checking,” CoRR, vol. abs/2102.06326, 2021.
[Online]. Available: https://arxiv.org/abs/2102.06326

[18] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, 2003.

[19] D. Giannakopoulou, K. S. Namjoshi, and C. S. Pasareanu, “Compositional
Reasoning,” in Handbook of Model Checking. Springer, 2018, pp. 345–
383.

[20] D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh, “Assume-
Guarantee Verification of Source Code with Design-Level Assumptions,”
in Proc. ICSE. IEEE Computer Society, 2004, pp. 211–220.

[21] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu, “Learning
Assumptions for Compositional Verification,” in Proc. TACAS, ser. LNCS,
vol. 2619. Springer, 2003, pp. 331–346.

[22] A. Gupta, K. L. McMillan, and Z. Fu, “Automated assumption generation
for compositional verification,” Formal Methods in System Design, vol. 32,
no. 3, pp. 285–301, 2008.

[23] R. Jhala and K. L. McMillan, “Microarchitecture Verification by
Compositional Model Checking,” in Proc. CAV, ser. LNCS, vol. 2102.
Springer, 2001, pp. 396–410.

[24] C. Y. Cho, V. D’Silva, and D. Song, “BLITZ: Compositional bounded
model checking for real-world programs,” in Proc. ASE. IEEE, 2013,
pp. 136–146.

[25] H. Koo and P. Mishra, “Functional test generation using design and
property decomposition techniques,” ACM Trans. Embed. Comput. Syst.,
vol. 8, no. 4, pp. 32:1–32:33, 2009.

[26] R. B. Jones, C. H. Seger, and D. L. Dill, “Self-Consistency Checking,”
in Proc. FMCAD, ser. LNCS, vol. 1166. Springer, 1996, pp. 159–171.

[27] S. Katz, O. Grumberg, and D. Geist, “"Have I written enough Properties?"
- A Method of Comparison between Specification and Implementation,”
in Proc. CHARME, ser. LNCS, vol. 1703. Springer, 1999, pp. 280–297.

[28] K. Claessen, “A Coverage Analysis for Safety Property Lists,” in
Proc. FMCAD. IEEE, 2007, pp. 139–145.

[29] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage Metrics for
Temporal Logic Model Checking,” in Proc. TACAS, ser. LNCS, vol. 2031.
Springer, 2001, pp. 528–542.

[30] D. Große, U. Kühne, and R. Drechsler, “Estimating functional coverage
in bounded model checking,” in Proc. DATE. EDA Consortium, San
Jose, CA, USA, 2007, pp. 1176–1181.

[31] H. Chockler, D. Kroening, and M. Purandare, “Coverage in interpolation-
based model checking,” in Proc. DAC. ACM, 2010, pp. 182–187.

[32] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: a platform for high-level parametric hardware specification and
its modular verification,” Proc. ACM Program. Lang., vol. 1, no. ICFP,
pp. 24:1–24:30, 2017.

[33] L. Piccolboni, G. Di Guglielmo, and L. P. Carloni, “KAIROS: Incremental
Verification in High-Level Synthesis through Latency-Insensitive Design,”
in Proc. FMCAD. IEEE, 2019, pp. 105–109.

[34] U. Kühne, S. Beyer, J. Bormann, and J. Barstow, “Automated formal ver-
ification of processors based on architectural models,” in Proc. FMCAD.
IEEE, 2010, pp. 129–136.

[35] M. Soeken, U. Kühne, M. Freibothe, G. Fey, and R. Drechsler, “Automatic
property generation for the formal verification of bus bridges,” in
Proc. DDECS. IEEE, 2011, pp. 417–422.

[36] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rülke, “Advanced
verification by automatic property generation,” IET Comput. Digit. Tech.,
vol. 3, no. 4, pp. 338–353, 2009.

[37] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Proc. TACAS, ser. LNCS, vol. 1579.
Springer, 1999, pp. 193–207.

[38] D. Lin, E. Singh, C. Barrett, and S. Mitra, “A structured approach to
post-silicon validation and debug using symbolic quick error detection,”
in Proc. ITC. IEEE, 2015, pp. 1–10.

[39] E. Singh, D. Lin, C. Barrett, and S. Mitra, “Logic Bug Detection and
Localization Using Symbolic Quick Error Detection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2018.

[40] E. Singh, K. Devarajegowda, S. Simon, R. Schnieder, K. Ganesan, M. R.
Fadiheh, D. Stoffel, W. Kunz, C. W. Barrett, W. Ecker, and S. Mitra,
“Symbolic QED Pre-Silicon Verification for Automotive Microcontroller
Cores: Industrial Case Study,” in Proc. DATE. IEEE, 2019, pp. 1000–
1005.

[41] F. Lonsing, K. Ganesan, M. Mann, S. S. Nuthakki, E. Singh, M. Srouji,
Y. Yang, S. Mitra, and C. W. Barrett, “Unlocking the Power of Formal
Hardware Verification with CoSA and Symbolic QED: Invited Paper,”
in Proc ICCAD. ACM, 2019, pp. 1–8.

[42] M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel,
and W. Kunz, “Symbolic quick error detection using symbolic initial state
for pre-silicon verification,” in Proc. DATE. IEEE, 2018, pp. 55–60.

[43] K. Devarajegowda, M. R. Fadiheh, E. Singh, C. W. Barrett, S. Mitra,
W. Ecker, D. Stoffel, and W. Kunz, “Gap-free Processor Verification by
S2QED and Property Generation,” in Proc. DATE. IEEE, 2020, pp.
526–531.

[44] M. R. Fadiheh, D. Stoffel, C. W. Barrett, S. Mitra, and W. Kunz,
“Processor Hardware Security Vulnerabilities and their Detection by
Unique Program Execution Checking,” in Proc. DATE. IEEE, 2019,
pp. 994–999.

[45] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and
W. Kunz, “A Formal Approach for Detecting Vulnerabilities to Transient
Execution Attacks in Out-of-Order Processors,” in Proc. DAC. IEEE,
2020, pp. 1–6.

[46] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure Information Flow by
Self-Composition,” in Proc. CSFW-17. IEEE, 2004, pp. 100–114.

[47] G. Barthe, J. M. Crespo, and C. Kunz, “Relational Verification Using
Product Programs,” in Proc. FM, ser. LNCS, vol. 6664. Springer, 2011,
pp. 200–214.

51

https://arxiv.org/abs/1907.02064
http://nvdla.org/primer.html
http://nvdla.org/primer.html
https://arxiv.org/abs/2102.06326

[48] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying Constant-Time Implementations,” in Proc. USENIX. USENIX
Association, 2016, pp. 53–70.

[49] W. Yang, Y. Vizel, P. Subramanyan, A. Gupta, and S. Malik, “Lazy
Self-composition for Security Verification,” in Proc. CAV, ser. LNCS,
vol. 10982. Springer, 2018, pp. 136–156.

[50] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Bandwidth optimization through
on-chip memory restructuring for HLS,” in Proc. DAC. IEEE, 2017,
pp. 1–6.

[51] R. M. Keller, “Formal Verification of Parallel Programs,” Commun. ACM,
vol. 19, no. 7, pp. 371–384, 1976.

[52] ——, “A Fundamental Theorem of Asynchronous Parallel Computation,”
in Parallel Processing, Proc. Sagamore Computer Conference, ser. LNCS,
vol. 24. Springer, 1974, pp. 102–112.

[53] S. Chattopadhyay, F. Lonsing, L. Piccolboni, D. Soni, P. Wei,
X. Zhang, Y. Zhou, L. Carloni, D. Chen, J. Cong, R. Karri, Z. Zhang,
C. Trippel, C. Barrett, and S. Mitra, “Scaling Up Hardware Accelerator
Verification using A-QED with Functional Decomposition,” CoRR,
vol. abs/2108.06081, 2021, FMCAD 2021 proceedings version with
appendix. [Online]. Available: https://arxiv.org/abs/2108.06081

[54] S. Wang, Y. Liang, and W. Zhang, “FlexCL: An Analytical Performance
Model for OpenCL Workloads on Flexible FPGAs,” in Proc. DAC. ACM,
2017, pp. 27:1–27:6.

[55] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “COMBA:
A Comprehensive Model-Based Analysis Framework for High Level
Synthesis of Real Applications,” in Proc. ICCAD. IEEE, 2017, pp.
430–437.

[56] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer: a
high-level performance analysis tool for FPGA-based accelerators,” in
Proc. DAC. ACM, 2016, pp. 136:1–136:6.

[57] X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong,
T. S. Huang, H. Shi, W. Hwu, and D. Chen, “SkyNet: a Hardware-Efficient
Method for Object Detection and Tracking on Embedded Systems,” in
Proc. MLSys. mlsys.org, 2020.

[58] M. Giordano, K. Prabhu, K. Koul, R. M. Radway, A. Gural, R. Doshi,
Z. F. Khan, J. W. Kustin, T. Liu, G. B. Lopes, V. Turbiner, W.-S. Khwa,
Y.-D. Chih, M.-F. Chang, G. Lallement, B. Murmann, S. Mitra, and
P. Raina, “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator
with 2 MByte On-Chip Foundry Resistive RAM for Efficient Training
and Inference,” in Proc. VLSI. IEEE, 2021, pp. 1–2.

[59] K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST Post-Quantum
Cryptography- A Hardware Evaluation Study,” IACR Cryptology ePrint
Archive, Report 2019/047, 2019, https://eprint.iacr.org/2019/047.

[60] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “Chstone: A
benchmark program suite for practical c-based high-level synthesis,” in
Proc. ISCAS. IEEE, 2008, pp. 1192–1195.

[61] P. N. Whatmough, S. K. Lee, M. Donato, H. Hsueh, S. L. Xi, U. Gupta,
L. Pentecost, G. G. Ko, D. M. Brooks, and G. Wei, “A 16nm 25mm2
SoC with a 54.5x Flexibility-Efficiency Range from Dual-Core Arm
Cortex-A53 to eFPGA and Cache-Coherent Accelerators,” in Proc. VLSI.
IEEE, 2019, p. 34.

[62] T. Tambe, E. Yang, G. G. Ko, Y. Chai, C. Hooper, M. Donato, P. N.
Whatmough, A. M. Rush, D. Brooks, and G. Wei, “A 25mm2 SoC
for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via
Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence
DNN Speech Recognition in 16nm FinFET,” in Proc. ISSCC. IEEE,
2021, pp. 158–160.

[63] Y. Chi, Y. Choi, J. Cong, and J. Wang, “Rapid Cycle-Accurate Simulator
for High-Level Synthesis,” in Proc. FPGA. ACM, 2019, pp. 178–183.

[64] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. K. Srivastava, H. Jin,
J. Featherston, Y. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang,
“Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software
Programmable FPGAs,” in Proc. FPGA. ACM, 2018, pp. 269–278.

[65] “A-QED2 Software Artifact,” 2021. [Online]. Available: https:
//github.com/upscale-project/aqed-decomp-FMCAD2021/

[66] D. Kroening and M. Tautschnig, “CBMC - C bounded model checker
- (competition contribution),” in Proc. TACAS, ser. LNCS, vol. 8413.
Springer, 2014, pp. 389–391.

[67] “Frama-C,” https://frama-c.com/, 2021, [Online]. Accessed: August 2021.

52

https://arxiv.org/abs/2108.06081
https://eprint.iacr.org/2019/047
https://github.com/upscale-project/aqed-decomp-FMCAD2021/
https://github.com/upscale-project/aqed-decomp-FMCAD2021/
https://frama-c.com/

	Introduction
	Related Work
	Formal Model and Theoretical Results
	Decomposition for FC Checking

	A-QED2 Functional Decomposition in Practice
	Decomposition for FC: dFC
	Decomposition for RB: dRB
	Decomposition for SAC: dSAC

	Experimental Results
	Conclusion
	References

