
Impact of FPGA Architecture on
Resource Sharing in High-Level Synthesis

Stefan Hadjis1, Andrew Canis1, Jason Anderson1, Jongsok Choi1,
Kevin Nam1, Stephen Brown1, and Tomasz Czajkowski‡

1ECE Department, University of Toronto, Toronto, ON, Canada
‡ Altera Toronto Technology Centre, Toronto, ON, Canada

http://www.ece.utoronto.ca/�

Introduction

• High Level Synthesis (HLS) tools are capable of targeting multiple
devices and logic element architectures

• E.g. LegUp HLS Tool (www.legup.org)
– C Verilog synthesis
– Targets Cyclone II (4-LUT) and Stratix IV (Adaptive LUT)

• How should HLS be adapted for different target architectures?
• We modify the Binding Phase of HLS, in which operations in the

high-level circuit specification (C) are assigned to specific
functional units in the hardware

http://www.legup.org/�

Resource Sharing in High Level Synthesis

• Resource Sharing is an area-reduction optimization in binding
which involves assigning multiple operations to the same
hardware unit

• E.g. consider a C program which performs division twice:

a b c d

 z w

/ /

Resource Sharing in High Level Synthesis

• Resource Sharing is an area-reduction optimization in binding
which involves assigning multiple operations to the same
hardware unit

• E.g. consider a C program which performs division twice:
 a c b d

a b c d

 z w
 z, w

/ /
/

Resource Sharing in High Level Synthesis

• Resource Sharing is an area-reduction optimization in binding
which involves assigning multiple operations to the same
hardware unit

• Different resource sharing tradeoffs exist depending on the target
architecture

Example: 4 Bit Adder

Example: 4 Bit Adder

• Consider a C program which performs two additions

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING

+
4

4

+
4

4

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

+
4

4
+

4

4

+
4

4
VS.

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

• The answer depends on the architecture

+
4

4
+

4

4

+
4

4
VS.

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

• Ripple Carry implementation

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

2-LUT

• Ripple Carry implementation

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

2-LUT

• Ripple Carry implementation

2- or 3-LUT

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

2-LUT

• Ripple Carry implementation

2- or 3-LUT
2- or 3-LUT

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

2-LUT

• Ripple Carry implementation

2- or 3-LUT
2- or 3-LUT

2- or 3-LUT

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

• Ripple Carry implementation: Four LUTs, all with 2-3 inputs

2-LUT

2- or 3-LUT
2- or 3-LUT

2- or 3-LUT

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

2-LUT

2- or 3-LUT
2- or 3-LUT

2- or 3-LUT

• Ripple Carry implementation: Four LUTs, all with 2-3 inputs

 Cyclone II 4 LEs
 Stratix IV 2 ALMs

• Ripple Carry implementation: Four LUTs, all with 2-3 inputs
For TWO adders:
 Cyclone II 8 LEs
 Stratix IV 4 ALMs

METHOD 1: NOT SHARING (a single 4-bit adder)

1

1

1

2-LUT

2- or 3-LUT
2- or 3-LUT

2- or 3-LUT

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

+
4

4
+

4

4

+
4

4
VS.

 Cyclone II 8 LEs
 Stratix IV 4 ALMs

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

+
4

4
+

4

4

+
4

4
VS.

 Cyclone II 8 LEs Cyclone II ?? LEs
 Stratix IV 4 ALMs

METHOD 2: SHARING (Cyclone II)

METHOD 2: SHARING (Cyclone II)

Eight 2-to-1 MUXes
(3-LUTs)

METHOD 2: SHARING (Cyclone II)

Eight 2-to-1 MUXes
(3-LUTs)

Same four as before

METHOD 2: SHARING (Cyclone II)

• Total: 12 LEs

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

+
4

4
+

4

4

+
4

4
VS.

 Cyclone II 8 LEs Cyclone II 12 LEs
 Stratix IV 4 ALMs

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

+
4

4
+

4

4

+
4

4
VS.

 Cyclone II 8 LEs Cyclone II 12 LEs
 Stratix IV 4 ALMs

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

+
4

4
+

4

4

+
4

4
VS.

 Cyclone II 8 LEs Cyclone II 12 LEs
 Stratix IV 4 ALMs Stratix IV ?? ALMs

METHOD 2: SHARING (Stratix IV)

METHOD 2: SHARING (Stratix IV)

MUX (3-LUT)

MUX (3-LUT)

METHOD 2: SHARING (Stratix IV)

MUX + adder
(4-LUT)

MUX (3-LUT)

MUX (3-LUT) MUX + adder
(4-LUT)

METHOD 2: SHARING (Stratix IV)

2 MUXes + adder
(5-LUT) MUX (3-LUT)

MUX (3-LUT) 2 MUXes + adder
(5-LUT)

MUX + adder
(4-LUT)

MUX + adder
(4-LUT)

METHOD 2: SHARING (Stratix IV)

• Two 3-LUTs, Two 4-LUTs, Two 5-LUTs
• Quartus II maps this to only 3 ALMs: One with two 4-LUTs, and Two

with a 3-LUT and a 5-LUT

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

+
4

4
+

4

4

+
4

4
VS.

 Cyclone II 8 LEs Cyclone II 12 LEs
 Stratix IV 4 ALMs Stratix IV 3 ALMs

Example: 4 Bit Adder

• Consider a C program which performs two additions
• Which hardware implementation is preferred?

 METHOD 1: NOT SHARING METHOD 2: SHARING

+
4

4
+

4

4

+
4

4
VS.

 Cyclone II 8 LEs Cyclone II 12 LEs
 Stratix IV 4 ALMs Stratix IV 3 ALMs

Sharing Single Operators

Evaluating Area of Single Operators

• This procedure was performed for all operators (32-bit) and on
both architectures

+
32

32 +
32

VS.

Evaluating Area of Single Operators

• This procedure was performed for all operators (32-bit) and on
both architectures

/
32

32 /
32

VS.

Evaluating Area of Single Operators

• This procedure was performed for all operators (32-bit) and on
both architectures

*
32

32
*

32

VS.

Evaluating Area of Single Operators

• This procedure was performed for all operators (32-bit) and on
both architectures

&
32

32 &
32

VS.

Evaluating Area of Single Operators

• Isolated operators which reduce area when shared:

Cyclone II
Div/Mod
Multipliers
Barrel Shifters

Stratix IV
Div/Mod
Multipliers
Barrel Shifters
Add/Subtract
Bitwise Operations (OR, XOR, AND)

Sharing Composite Operators

Sharing Computational Patterns

• The focus of this work is on sharing patterns of smaller operators

&

+

+

–

Sharing Computational Patterns

• The focus of this work is on sharing patterns of smaller operators

&

+

+

– &

+

+

–

Sharing Computational Patterns

• The focus of this work is on sharing patterns of smaller operators

&

+

+

–
& –

+ +

Sharing Computational Patterns

• The focus of this work is on sharing patterns of smaller operators

&

+

+

–
&

+

–

+

Sharing Computational Patterns

• The focus of this work is on sharing patterns of smaller operators

&

+

+

–
&

+

–

+

Sharing Computational Patterns

• The focus of this work is on sharing patterns of smaller operators

&

+

+

– &

+

+

–

Pattern Sharing in LegUp

LegUp’s Pattern Sharing Algorithm:

1. Find all computational patterns in the software program

 (up to pattern size of 10)
2. Group together patterns which can be implemented

 using the same hardware
3. Select pairs of equivalent patterns from step 2 to be

 implemented using the same hardware

Pattern Sharing Algorithm

• Computational patterns are represented as Directed Graphs, with a
single output (“root”) node:

• Each node is an instruction
 Input Input Input Input

 Input

 Size 5 Graph

 Output

Pattern Representation

+

– *

+

&

• LegUp uses a Data Flow Graph (DFG) to represent each
compiled C Program

• The first step of the pattern sharing algorithm is to find all
subgraphs of this DFG which are candidates for sharing:

1. Finding all Computational Patterns

1. Finding all Computational Patterns

const

const

const

const
const

const

Consider the following DFG produced by LegUp:

1. Finding all Computational Patterns

const

const

const

const
const

const

RED = “Invalid”
(e.g. Branch instruction)

1. Finding all Computational Patterns

const

const

const

const
const

const

Size: 1
r

PICK A ROOT

1. Finding all Computational Patterns

const

const

const

const
const

const

Size: 2
r

Perform a BFS of all
the predecessors of r
to find all subgraphs
rooted at r

1. Finding all Computational Patterns

const

const

const

const
const

const

Size: 3
r

Perform a BFS of all
the predecessors of r
to find all subgraphs
rooted at r

1. Finding all Computational Patterns

const

const

const

const
const

const

Size: 3
r

Perform a BFS of all
the predecessors of r
to find all subgraphs
rooted at r

1. Finding all Computational Patterns

const

const

const

const
const

const

Size: 4
r

STOP
All subgraphs rooted at
r have been found

1. Finding all Computational Patterns

const

const

const

const
const

const

Size: 1

r

REPEAT FOR EVERY OTHER NODE

1. Finding all Computational Patterns

const

const

const

const
const

const

Size: 2

r

1. Finding all Computational Patterns

const

const

const

const
const

const

Size: 3

r

2. Sorting Patterns by Isomorphic Equivalence

+
– <<

+

&

A

B C
D E

+
–

<<

+

&

A

B C
D E

a) A Graph with a re-converging path b) This graph can be implemented with the same
hardware as (a) but is topologically different due
to commutativity

2. Sorting Patterns by Isomorphic Equivalence

+
– <<

+

&

A

B C
D E

+
–

<<

+

&

A

B C
D E

a) A Graph with a re-converging path b) This graph can be implemented with the same
hardware as (a) but is topologically different due
to commutativity

As opposed to just topological

• So far, steps 1 and 2 have provided sets of equivalent pattern graphs

3. Decide which Pattern Instances to Share

• So far, steps 1 and 2 have provided sets of equivalent pattern graphs
• For example, we may have found 4 graphs for this pattern:

 A B C D

3. Decide which Pattern Instances to Share

–

+

– – –

+ + +

• So far, steps 1 and 2 have provided sets of equivalent pattern graphs
• For example, we may have found 4 graphs for this pattern:

3. Decide which Pattern Instances to Share

– –

+ +

• So far, steps 1 and 2 have provided sets of equivalent pattern graphs
• For example, we may have found 4 graphs for this pattern:

3. Decide which Pattern Instances to Share

– – –
+ + +

• So far, steps 1 and 2 have provided sets of equivalent pattern graphs
• For example, we may have found 4 graphs for this pattern:

 A B C D

3. Decide which Pattern Instances to Share

– – – –
+ + + +

• So far, steps 1 and 2 have provided sets of equivalent pattern graphs
• For example, we may have found 4 graphs for this pattern:

 A B C D

• Our goal is to split these 4 into pairs (create groups of 2) so that each
hardware unit will implement two patterns

3. Decide which Pattern Instances to Share

– – – –
+ + + +

• But which combination of pairs is best?
• Consider the bit widths of the operators

3. Decide which Pattern Instances to Share

Operator Bit Widths

+
32

32

+
32

… …

32

 A B C

32 32
+

32

…

32 32

Operator Bit Widths

+

&
6

32

32

 A B C

6’b111111

6

+
32

32

+
32

… …

32 32 32

Mask first
six bits

• Adder C would be optimized by synthesis tools because only 6
outputs bits are needed

• Sharing adder C with A or B would force a 6-bit addition to be
implemented using a 32-bit adder

Operator Bit Widths

+

&
6

6’b111111

32

32

 A B C

32-bit adder 32-bit adder

6-bit adder

6

+
32

32

+
32

… …

32 32 32

• Adder C would be optimized by synthesis tools because only 6
outputs bits are needed

• Sharing adder C with A or B would force a 6-bit addition to be
implemented using a 32-bit adder

Operator Bit Widths

+

&
6

32

32

 A B C

+
32

32

+
32

… …

32 32 32
6’b111111

6

• Adder C would be optimized by synthesis tools because only 6
outputs bits are needed

• Sharing adder C with A or B would force a 6-bit addition to be
implemented using a 32-bit adder

Operator Bit Widths

+

&
6

32

32

 A B C

+
32

32

+
32

… …

32 32 32
6’b111111

6

• Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

 Sharing Cost of P1, P2=

3. Decide which Pattern Instances to Share

• Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

 Sharing Cost of P1, P2=

• Cost is then adjusted based on preferential sharing conditions

3. Decide which Pattern Instances to Share

• Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

 Sharing Cost of P1, P2=

• Cost is then adjusted based on preferential sharing conditions
• For each graph a greedy algorithm selects its sharing-partner

with the lowest cost

3. Decide which Pattern Instances to Share

• Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

 Sharing Cost of P1, P2=

• Cost is then adjusted based on preferential sharing conditions
• For each graph a greedy algorithm selects its sharing-partner

with the lowest cost
• Once pairs are determined, the Binding phase of LegUp implements

pairs with the same hardware

3. Decide which Pattern Instances to Share

Independent Variable Lifetimes

 Prefer to share patterns
with non-overlapping
lifetimes
– Saves registers.

–

+

–

+

% &

1

2

3

4

5

6

A

B

P1

P2

–

+

–

+

%

&

1

2

3

4

5

6

A

B

P1

P2

a) Values A,B have
overlapping lifetimes

b) Values A,B have non-
overlapping lifetimes

 Prefer to share patterns
with non-overlapping
lifetimes
– Saves registers.

–

+

–

+

% &

1

2

3

4

5

6

A

B

P1

P2

–

+

–

+

%

&

1

2

3

4

5

6

A

B

P1

P2

a) Values A,B have
overlapping lifetimes

b) Values A,B have non-
overlapping lifetimes

Independent Variable Lifetimes

Results

• 4% area reduction (geomean) for sharing dividers/modulus
• An additional 4.9% reduction from sharing patterns
• 12% improvement when using LUT-based multipliers

0.75

0.80

0.85

0.90

0.95

1.00

1.05

AL
M

s (
no

rm
al

ize
d)

Benchmark

Stratix IV ALMs (Normalized)

No Sharing

Sharing
Div/Mod

Sharing
Div/Mod +
Patterns

0.75

0.80

0.85

0.90

0.95

1.00

1.05

LE
s (

no
rm

al
ize

d)

Benchmark

Cyclone II LEs (Normalized)

No Sharing

Sharing
Div/Mod

Sharing
Div/Mod +
Patterns

• 3% area reduction (geomean) for sharing dividers/modulus
• An additional 4.2% reduction from sharing patterns
• 16% improvement when using LUT-based multipliers

• FPGA logic architecture has significant impact on resource sharing
• Pattern sharing can provide >10% area reduction
• Future work: alter scheduling to favor creation of certain patterns

– Provide more sharing opportunities

Summary

• Questions?

Summary

Extra Slides

• Circuits created by LegUp use mostly 2 and 3 input LUTs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm mips motion sha

AL
U

T
Co

un
t

Benchmark

Proportion of ALUT Sizes for the CHStone Benchmarks (Stratix IV)

<=3

4

5

6

7

ALUT Size
71%

70%

78%
45%

48%

57%

65%

55%
53%

75%

Average: 62%

Motivation

Example – Sharing a Bitwise AND

This seems like a bad idea:

&

Example – Sharing a Bitwise AND

Consider a Bitwise AND:

&

Example – Sharing a Bitwise AND

Consider a Bitwise AND:

 2 Input LUT

&

Example – Sharing a Bitwise AND

Consider a Bitwise AND: And a 2-to-1 MUX:

 2 Input LUT 3-input LUT

&

Example – Sharing a Bitwise AND

Consider a 32-bit Bitwise AND

&
32

32

Example – Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
• Requires 32 LUTs for 32 output bits

 32 LUTs

&
32

32

Example – Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
• Requires 32 LUTs for 32 output bits

 32 LUTs
 (all 2-input LUTs)

&
32

32

Example – Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
• Requires 32 LUTs for 32 output bits

 64 LUTs
 (all 2-input LUTs)

&
32

32

&
32

32

Example – Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
• Requires 32 LUTs for 32 output bits

 64 LUTs 32 LUTs
 (all 2-input LUTs) (5-input LUTs)

&
32

32

&
32

32

&
32

32

Sharing Single Operations

• In the example of bitwise operations, we can reduce the number
of LUTs by half at the expense of increasing their size

• However, if a circuits contains mostly small LUTs, ALMs are being
under-utilized and can incorporate these larger logic functions

• Therefore, sharing even small operations reduces ALUT
and ALM usage

Variable Liveness Analysis

• Consider next if each bitwise AND had its output stored in
a register:

&
32

32

&
32

32

Variable Liveness Analysis

• Consider next if each bitwise AND had its output stored in
a register:

 64 Registers

&
32

32

&
32

32

Variable Liveness Analysis

• Consider next if each bitwise AND had its output stored in
a register:

 64 Registers 32 Registers
 (if lifetimes are independent)

&
32

32

&
32

32

&
32

32

0

1000

2000

3000

4000

5000

6000

7000

8000

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm mips motion sha

AL
U

Ts

Benchmark

Proportion of ALUT Sizes for CHStone Benchmarks (Sharing)

<=3

4

5

6

7

48%

57%

31% 41%

55%

43%

42%

40%

36%
44%

64%

Average: 45%
(was 62%)

Pattern Sharing Conclusions

• The most frequently occurring patterns in 13 HLS Benchmarks
(CHStone Benchmark suite and dhrystone) were analyzed

• Benefits of pattern sharing improve as pattern size increases, but
LUT-underutilization is the major factor
– allows MUXes to be incorporated into the same LUTs

as the operator
– sharing is thus more advantageous if registers are present in

patterns as they prevent an efficient mapping of operators
into LUTs

Stratix IV Speed Performance

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

No sharing
(DSPs)

Sharing
div/mod
(DSPs)

Sharing
div/mod +
patterns
(DSPs)

No sharing
(no DSPs)

Sharing
div/mod (no

DSPs)

Sharing
div/mod +
mult (no

DSPs)

Sharing
div/mod +

mults +
patterns (no

DSPs)

Ge
om

ea
n

Fm
ax

 (M
Hz

)

Cyclone II Speed Performance

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

No sharing
(Embedded

Mult)

Sharing
div/mod

(Embedded
Mult)

Sharing
div/mod +
patterns

(Embedded
Mult)

No sharing
(no

Embedded
Mult)

Sharing
div/mod (no
Embedded

Mult)

Sharing
div/mod +
mult (no

Embedded
Mult)

Sharing
div/mod +

mults +
patterns (no
Embedded

Mult)

Ge
om

ea
n

Fm
ax

 (M
Hz

)

	Slide Number 1
	Introduction
	Resource Sharing in High Level Synthesis
	Resource Sharing in High Level Synthesis
	Resource Sharing in High Level Synthesis
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	METHOD 2: SHARING (Cyclone II)
	METHOD 2: SHARING (Cyclone II)
	METHOD 2: SHARING (Cyclone II)
	METHOD 2: SHARING (Cyclone II)
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	METHOD 2: SHARING (Stratix IV)
	METHOD 2: SHARING (Stratix IV)
	METHOD 2: SHARING (Stratix IV)
	METHOD 2: SHARING (Stratix IV)
	METHOD 2: SHARING (Stratix IV)
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Sharing Single Operators
	Evaluating Area of Single Operators
	Evaluating Area of Single Operators
	Evaluating Area of Single Operators
	Evaluating Area of Single Operators
	Evaluating Area of Single Operators
	Sharing Composite Operators
	Sharing Computational Patterns
	Sharing Computational Patterns
	Sharing Computational Patterns
	Sharing Computational Patterns
	Sharing Computational Patterns
	Sharing Computational Patterns
	Pattern Sharing in LegUp
	Pattern Sharing Algorithm
	Pattern Representation
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	2. Sorting Patterns by Isomorphic Equivalence
	2. Sorting Patterns by Isomorphic Equivalence
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	Independent Variable Lifetimes
	Slide Number 82
	Results
	Slide Number 84
	Slide Number 85
	Summary
	Summary
	Slide Number 88
	Extra Slides
	Motivation
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Sharing Single Operations
	Variable Liveness Analysis
	Variable Liveness Analysis
	Variable Liveness Analysis
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Pattern Sharing Conclusions
	Stratix IV Speed Performance
	Cyclone II Speed Performance

