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Introduction 

• High Level Synthesis (HLS) tools are capable of targeting multiple 
devices and logic element architectures 

• E.g. LegUp HLS Tool (www.legup.org) 
– C  Verilog synthesis 
– Targets Cyclone II (4-LUT) and Stratix IV (Adaptive LUT)  

• How should HLS be adapted for different target architectures? 
• We modify the Binding Phase of HLS, in which operations in the 

high-level circuit specification (C) are assigned to specific 
functional units in the hardware 

http://www.legup.org/�


Resource Sharing in High Level Synthesis 

• Resource Sharing is an area-reduction optimization in binding 
which involves assigning multiple operations to the same 
hardware unit 

• E.g. consider a C program which performs division twice: 
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Resource Sharing in High Level Synthesis 

• Resource Sharing is an area-reduction optimization in binding 
which involves assigning multiple operations to the same 
hardware unit 

• Different resource sharing tradeoffs exist depending on the target 
architecture 
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METHOD 2: SHARING (Cyclone II) 

Eight 2-to-1 MUXes  
(3-LUTs) 

Same four as before 



METHOD 2: SHARING (Cyclone II) 

• Total: 12 LEs 
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METHOD 2: SHARING (Stratix IV) 
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METHOD 2: SHARING (Stratix IV) 

• Two 3-LUTs, Two 4-LUTs, Two 5-LUTs 
• Quartus II maps this to only 3 ALMs: One with two 4-LUTs, and Two 

with a 3-LUT and a 5-LUT 
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both architectures 

 
 

+ 
32 

32 + 
32 

VS. 



Evaluating Area of Single Operators 

• This procedure was performed for all operators (32-bit) and on 
both architectures 

 
 

/ 
32 

32 / 
32 

VS. 



Evaluating Area of Single Operators 

• This procedure was performed for all operators (32-bit) and on 
both architectures 

 
 

* 
32 

32 
* 

32 

VS. 



Evaluating Area of Single Operators 

• This procedure was performed for all operators (32-bit) and on 
both architectures 

 
 

& 
32 

32 & 
32 

VS. 



Evaluating Area of Single Operators 

• Isolated operators which reduce area when shared: 
 
  

Cyclone II 
Div/Mod 
Multipliers 
Barrel Shifters 

 
Stratix IV 
Div/Mod 
Multipliers 
Barrel Shifters 
Add/Subtract 
Bitwise Operations (OR, XOR, AND) 



Sharing Composite Operators 
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Pattern Sharing in LegUp 



LegUp’s Pattern Sharing Algorithm: 
 
1.  Find all computational patterns in the software program 

 (up to pattern size of 10) 
2.  Group together patterns which can be implemented  

 using the same hardware 
3.  Select pairs of equivalent patterns from step 2 to be 

 implemented using the same hardware 

Pattern Sharing Algorithm 



• Computational patterns are represented as Directed Graphs, with a 
single output (“root”) node: 

• Each node is an instruction 
    Input    Input   Input  Input 
 

     
                  Input 

          
      Size 5 Graph 
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Pattern Representation 
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• LegUp uses a Data Flow Graph (DFG) to represent each 
compiled C Program 

• The first step of the pattern sharing algorithm is to find all 
subgraphs of this DFG which are candidates for sharing: 

1. Finding all Computational Patterns 
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• So far, steps 1 and 2 have provided sets of equivalent pattern graphs 
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• So far, steps 1 and 2 have provided sets of equivalent pattern graphs 
• For example, we may have found 4 graphs for this pattern: 

 
 
 
 
 

 
   A                                 B                            C                            D 
 

• Our goal is to split these 4 into pairs (create groups of 2) so that each 
hardware unit will implement two patterns 
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• But which combination of pairs is best? 
• Consider the bit widths of the operators 
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• Adder C would be optimized by synthesis tools because only 6 
outputs bits are needed 

• Sharing adder C with A or B would force a 6-bit addition to be 
implemented using a 32-bit adder 
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• Cost function for sharing two pattern graphs: 
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• Cost function for sharing two pattern graphs: 
 

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,  
 
 Sharing Cost  of P1, P2=  
 
• Cost is then adjusted based on preferential sharing conditions 
• For each graph a greedy algorithm selects its sharing-partner  

with the lowest cost 
• Once pairs are determined, the Binding phase of LegUp implements 

pairs with the same hardware 
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Results 



• 4% area reduction (geomean) for sharing dividers/modulus 
• An additional 4.9% reduction from sharing patterns 
• 12% improvement when using LUT-based multipliers 
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• 3% area reduction (geomean) for sharing dividers/modulus 
• An additional 4.2% reduction from sharing patterns 
• 16% improvement when using LUT-based multipliers 

 



• FPGA logic architecture has significant impact on resource sharing 
• Pattern sharing can provide >10% area reduction 
• Future work: alter scheduling to favor creation of certain patterns 

– Provide more sharing opportunities 
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• Questions? 

Summary 
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• Circuits created by LegUp use mostly 2 and 3 input LUTs 
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Example – Sharing a Bitwise AND 

This seems like a bad idea: 
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Example – Sharing a Bitwise AND 

Consider a 32-bit Bitwise AND 
• Requires 32 LUTs for 32 output bits 
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Sharing Single Operations 

• In the example of bitwise operations, we can reduce the number 
of LUTs by half at the expense of increasing their size 

• However, if a circuits contains mostly small LUTs, ALMs are being 
under-utilized and can incorporate these larger logic functions 

• Therefore, sharing even small operations reduces ALUT  
and ALM usage 



Variable Liveness Analysis 

• Consider next if each bitwise AND had its output stored in 
a register: 
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Variable Liveness Analysis 

• Consider next if each bitwise AND had its output stored in 
a register: 
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Pattern Sharing Conclusions 

• The most frequently occurring patterns in 13 HLS Benchmarks 
(CHStone Benchmark suite and dhrystone) were analyzed  

• Benefits of pattern sharing improve as pattern size increases, but 
LUT-underutilization is the major factor 
– allows MUXes to be incorporated into the same LUTs  

as the operator 
– sharing is thus more advantageous if registers are present in 

patterns as they prevent an efficient mapping of operators 
into LUTs 
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