Impact of FPGA Architecture on
Resource Sharing in High-Level Synthesis

Stefan Hadjis!, Andrew Canis?, Jason Anderson?, Jongsok Choi?,
o Kevin Nam?, Stephen Brown?, and Tomasz Czajkowski*
a

'ECE Department, University of Toronto, Toronto, ON, Canada fiteet
* Altera Toronto Technology Centre, Toronto, ON, Canada ENGINEERING

http://www.ece.utoronto.ca/�

Introduction

High Level Synthesis (HLS) tools are capable of targeting multiple
devices and logic element architectures

E.g. LegUp HLS Tool (www.legup.org)

— C = Verilog synthesis
— Targets Cyclone Il (4-LUT) and Stratix IV (Adaptive LUT)
How should HLS be adapted for different target architectures?

We modify the Binding Phase of HLS, in which operations in the
high-level circuit specification (C) are assigned to specific
functional units in the hardware

http://www.legup.org/�

Resource Sharing in High Level Synthesis

 Resource Sharing is an area-reduction optimization in binding
which involves assigning multiple operations to the same
hardware unit

e E.g.consider a C program which performs division twice:

Resource Sharing in High Level Synthesis

 Resource Sharing is an area-reduction optimization in binding
which involves assigning multiple operations to the same
hardware unit

e E.g.consider a C program which performs division twice:
a c b d

Resource Sharing in High Level Synthesis

* Resource Sharing is an area-reduction optimization in binding
which involves assigning multiple operations to the same
hardware unit

e Different resource sharing tradeoffs exist depending on the target
architecture

Example: 4 Bit Adder

Example: 4 Bit Adder

e Consider a C program which performs two additions

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

METHOD 1: NOT SHARING

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

VS.

4 4 4

METHOD 1: NOT SHARING METHOD 2: SHARING

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

VS.

4 4 4
METHOD 1: NOT SHARING METHOD 2: SHARING

e The answer depends on the architecture

METHOD 1: NOT SHARING (a single 4-bit adder)

£
f

o
o

T

L

ol o o] ol

METHOD 1: NOT SHARING (a single 4-bit adder)

B . =
- «E

ifufufuls

o5 o v i 4
'

A

I

 Ripple Carry implementation

METHOD 1: NOT SHARING (a single 4-bit adder)
2-LUT

\:6 o -::'_
— | a:ao%‘e; | il | a:ao'.?‘{z]a"e

o a datzouf{]-reg0
— R . Tk

=

1 [
ey ol e) e) e
'

 Ripple Carry implementation

METHOD 1: NOT SHARING (a single 4-bit adder)
2-LUT

i [==
|~L1 |I._

1 ¥ 2- or 3-LUT

E|’6
i

i

. JJ_D—'_DT
§ =1 ﬁﬁ .

 Ripple Carry implementation

METHOD 1: NOT SHARING (a single 4-bit adder)
2-LUT

_ | datao! | ca:ao'%'e;a | ca:ao'.?‘{z]a"e;a

T EE P " 2-0r 3-LUT | © -

@ :Ti) 2 - o r 3 = L U T
datah_reaf1] ! - =

B _; 1 {:D"_D_'_D |—V —) - =

== Y

a3 regld]
I J =~
= 1 uij’Er
=

 Ripple Carry implementation

METHOD 1: NOT SHARING (a single 4-bit adder)
2-LUT

_ == e | — ||__ Q _H \—m I

i]| 2-or3-LUT

B : 2- or 3-LUT
~ ; — 2- or

=i i — 1= || —

B = *

= &l 1 H

=’ |

=

 Ripple Carry implementation

METHOD 1: NOT SHARING (a single 4-bit adder)
2-LUT

_ == e | — ||__ Q _H \—m I

i]| 2-or3-LUT

B : 2- or 3-LUT
~ ; — 2- or

=i i — 1= || —

B = *

= &l 1 H

=’ |

=

 Ripple Carry implementation: Four LUTs, all with 2-3 inputs

METHOD 1: NOT SHARING (a single 4-bit adder)
2-LUT

T e T 2-0r 3-LUT | ©

= : 2-or3-LUT |, .

[F-uzﬂ asz redl] { ol _t‘L.
053 =l | g [R
r i

a3 regld]
I J =~
= 1 uij’Er
=

 Ripple Carry implementation: Four LUTs, all with 2-3 inputs

Cyclone Il 4 LEs
Stratix IV 2 ALMs

METHOD 1: NOT SHARING (a single 4-bit adder)
2-LUT

T e T 2-0r 3-LUT | ©

= : 2-or3-LUT |, .

[F-'zﬂ asz redl] { ol _t‘L.
053 =l | g [R
r i

a3 regld]
I J =~
= 1 uij’Er
=

 Ripple Carry implementation: Four LUTs, all with 2-3 inputs
For TWO adders:

Cyclone ll 8 LEs

Stratix IV 4 ALMs

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 4
VS.
4 4 4
METHOD 1: NOT SHARING METHOD 2: SHARING
Cyclone ll 8 LEs

Stratix IV 4 ALMs

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 A
VS.
4 4 A
METHOD 1: NOT SHARING METHOD 2: SHARING
Cyclone Il 8 LEs Cyclone |l ?? LEs

Stratix IV 4 ALMs

METHOD 2: SHARING (Cyclone Il)

1 _— 1
— (EW F W =
=

METHOD 2: SHARING (Cyclone Il)

| Em i |_- o
F3 1

:%L%HJ 4 8
= EB—M Hic=as
| = S

Eight 2-to-1 MUXes

(3-LUTs)

METHOD 2: SHARING (Cyclone Il)

=i el

Same four as before

Eight 2-to-1 MUXes

(3-LUTs)

METHOD 2: SHARING (Cyclone Il)

3@%
B
e Total: 12 LEs

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 A
VS.
4 4 A
METHOD 1: NOT SHARING METHOD 2: SHARING
Cyclone Il 8 LEs Cyclone |l 12 LEs

Stratix IV 4 ALMs

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

METHOD 1: NOT SHARING ME ARING

Cyclone Il 8 LEs Cyclone |l 12 LEs
Stratix IV 4 ALMs

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 A
VS.
4 4 A
METHOD 1: NOT SHARING METHOD 2: SHARING
Cyclone Il 8 LEs Cyclone |l 12 LEs

Stratix IV 4 ALMs Stratix IV ?? ALMs

METHOD 2: SHARING (Stratix IV)

o

e R

METHOD 2: SHARING (Stratix IV)

MUX (3-LUT)

aooen

o

JJJJJ

Ay by ey

aooen

o

i ety ol

|
MUX (3-LUT)

METHOD 2: SHARING (Stratix IV%\/IUX + adder

MUX (3-LUT)

(4-LUT)

o

JJJJJ

Ay by ey

aooen

aooen

o

i ety ol

|
MUX (3-LUT)

MUX + adder

(4-LUT)

METHOD 2: SHARING (Stratix IV%\/IUX

+ adder

(4-LUT)

MUX (3-LUT) 2 MUXes + adder
(5-LUT) (4-LUT)

i iia== N N

7 B ==
L]
L =7 =T

B Dl =y

|
MUX (3-LUT) MUX + adder 2 MUXes + adder

(5-LUT)

METHOD 2: SHARING (Stratix IV)

B

I T

Lg_'—_p | _HLDDTD
|

e Two 3-LUTs, Two 4-LUTs, Two 5-LUTs

e Quartus Il maps this to only 3 ALMs: One with two 4-LUTs, and Two
with a 3-LUT and a 5-LUT

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 A
VS.
4 4 A
METHOD 1: NOT SHARING METHOD 2: SHARING
Cyclone Il 8 LEs Cyclone |l 12 LEs

Stratix IV 4 ALMs Stratix IV 3 ALMs

Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 c A
4 4 f
METH HARING [METHOD 2: SHARING]
Cyclone Il 8 LEs Cyclone |l 12 LEs

Stratix IV 4 ALMs Stratix IV 3 ALMs

Sharing Single Operators

Evaluating Area of Single Operators

e This procedure was performed for all operators (32-bit) and on
both architectures

32

VS.

32

32

Evaluating Area of Single Operators

e This procedure was performed for all operators (32-bit) and on
both architectures

32

VS.

32

32

Evaluating Area of Single Operators

e This procedure was performed for all operators (32-bit) and on
both architectures

32

VS.

32

32

Evaluating Area of Single Operators

e This procedure was performed for all operators (32-bit) and on
both architectures

Evaluating Area of Single Operators

e |solated operators which reduce area when shared:

Cyclone Il Stratix IV
Div/Mod Div/Mod
Multipliers Multipliers
Barrel Shifters Barrel Shifters
Add/Subtract
Bitwise Operations (OR, XOR, AND)

Sharing Composite Operators

Sharing Computational Patterns

e The focus of this work is on sharing patterns of smaller operators

Sharing Computational Patterns

e The focus of this work is on sharing patterns of smaller operators

ety

Sharing Computational Patterns

e The focus of this work is on sharing patterns of smaller operators

Sharing Computational Patterns

e The focus of this work is on sharing patterns of smaller operators

o e%e;%
> thib

‘VUWLH
W

Sharing Computational Patterns

e The focus of this work is on sharing patterns of smaller operators

R B R

¢

Sharing Computational Patterns

e The focus of this work is on sharing patterns of smaller operators

ety

Pattern Sharing in LegUp

Pattern Sharing Algorithm

LegUp’s Pattern Sharing Algorithm:

1. Find all computational patterns in the software program
(up to pattern size of 10)

2. Group together patterns which can be implemented
using the same hardware

3. Select pairs of equivalent patterns from step 2 to be
implemented using the same hardware

Pattern Representation

e Computational patterns are represented as Directed Graphs, with a
single output (“root”) node:

e Each node is an instruction

Input Input Input Input

Size 5 Graph

1. Finding all Computational Patterns

LegUp uses a Data Flow Graph (DFG) to represent each

compiled C Program

The first step of the pattern sharing algorithm is to find all
subgraphs of this DFG which are candidates for sharing:

1. Finding all Computational Patterns

Consider the following DFG produced by LegUp:

const

O O

const

1. Finding all Computational Patterns

const

RED = “Invalid”

(e.g. Branch instruction) const
const ‘

const
‘ const

const

1. Finding all Computational Patterns

const
const
const
const
const
const

o

Size: 1 PICK A ROOT

1. Finding all Computational Patterns

const
const

Perform a BFS of all
the predecessors of r
to find all subgraphs const
rooted at r

const

const
const

Size: 2

1. Finding all Computational Patterns

const
const

Perform a BFS of all
the predecessors of r
to find all subgraphs const
rooted at r

const

const
const

Size: 3

1. Finding all Computational Patterns

const
const

Perform a BFS of all
the predecessors of r
to find all subgraphs const
rooted at r

const

const
const

Size: 3

1. Finding all Computational Patterns

const
const
All subgraphs rooted at const
r have been found
const
const
const

Size: 4

1. Finding all Computational Patterns

const
const
const
const
const
const

Size : 1 REPEAT FOR EVERY OTHER NODE

1. Finding all Computational Patterns

const
const
const
const
const
const

Size: 2

1. Finding all Computational Patterns

const
const
const
const
const
const

Size: 3

2. Sorting Patterns by Isomorphic Equivalence

a) A Graph with a re-converging path b) This graph can be implemented with the same
hardware as (a) but is topologically different due
to commutativity

2. Sorting Patterns by Isomorphic Equivalence

As opposed to just topological

a) A Graph with a re-converging path b) This graph can be implemented with the same
hardware as (a) but is topologically different due
to commutativity

3. Decide which Pattern Instances to Share

e So far, steps 1 and 2 have provided sets of equivalent pattern graphs

3. Decide which Pattern Instances to Share

e So far, steps 1 and 2 have provided sets of equivalent pattern graphs
 For example, we may have found 4 graphs for this pattern:

Y

A B C D

3. Decide which Pattern Instances to Share

e So far, steps 1 and 2 have provided sets of equivalent pattern graphs
 For example, we may have found 4 graphs for this pattern:

3. Decide which Pattern Instances to Share

e So far, steps 1 and 2 have provided sets of equivalent pattern graphs
 For example, we may have found 4 graphs for this pattern:

i

3. Decide which Pattern Instances to Share

e So far, steps 1 and 2 have provided sets of equivalent pattern graphs
 For example, we may have found 4 graphs for this pattern:

Y

A B C D

3. Decide which Pattern Instances to Share

e So far, steps 1 and 2 have provided sets of equivalent pattern graphs
 For example, we may have found 4 graphs for this pattern:

Y

A B C D

e Qur goalis to split these 4 into pairs (create groups of 2) so that each
hardware unit will implement two patterns

3. Decide which Pattern Instances to Share

e But which combination of pairs is best?
e Consider the bit widths of the operators

32

32

32

Operator Bit Widths
B

32 32 32

32

32

32

Operator Bit Widths

A B
32 32 32 32 32
32 32

Mask first
siX bits

Operator Bit Widths

A B
32 32 32 32 32
32 32

32-bit adder 32-bit adder

C 6-bit adder

6'b111111

 Adder C would be optimized by synthesis tools because only 6
outputs bits are needed

e Sharing adder C with A or B would force a 6-bit addition to be
implemented using a 32-bit adder

Operator Bit Widths
A B C

32 32 B2 32

32 32

Adder C would be optimized by synthesis tools because only 6
outputs bits are needed

Sharing adder C with A or B would force a 6-bit addition to be
implemented using a 32-bit adder

Operator Bit Widths
A B C

32 32 32 32

32 32

Adder C would be optimized by synthesis tools because only 6
outputs bits are needed

Sharing adder C with A or B would force a 6-bit addition to be
implemented using a 32-bit adder

3. Decide which Pattern Instances to Share

e Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

Sharing Cost of P1, P2= Z lwidth(nl) — width(n2)|
nle Pl,n2c P2

3. Decide which Pattern Instances to Share

e Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

Sharing Cost of P1, P2= Z lwidth(nl) — width(n2)|
nle Pl,n2c P2

e Cost is then adjusted based on preferential sharing conditions

3. Decide which Pattern Instances to Share

e Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

Sharing Cost of P1, P2= Z lwidth(nl) — width(n2)|
nle Pl,n2c P2
e Cost is then adjusted based on preferential sharing conditions

 For each graph a greedy algorithm selects its sharing-partner
with the lowest cost

3. Decide which Pattern Instances to Share

e Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

Sharing Cost of P1, P2= Z lwidth(nl) — width(n2)|
nle Pl,n2c P2
e Cost is then adjusted based on preferential sharing conditions

 For each graph a greedy algorithm selects its sharing-partner
with the lowest cost

 Once pairs are determined, the Binding phase of LegUp implements
pairs with the same hardware

Independent Variable Lifetimes

P1 / Ej P1

1L X j E ! Prefer to share patterns

@ @Jy with non-overlapping
2, lifetimes

— Saves registers.
% g

4 4
A\ A\
P2 P2
5 \ / 5 /
®

6 6

a) Values A,B have b) Values A,B have non-
overlapping lifetimes overlapping lifetimes

Independent Variable Lifetimes

B (F

(0)
Y

4 4
A\ A\
P2 P2
B

Prefer to share patterns
with non-overlapping
lifetimes

— Saves registers.

&
6 \& J

a) Values A,B have b) Values A,B have non-

overlapping lifetimes overlapping lifetimes

Results

Stratix IV ALMs (Normalized)

1.05

M No Sharing

1.00
B 0.95
(]
N h
- M Sharin
£ 0.90 191N
= Div/Mod
o
=
— 0.85
=
= 0.80

' W Sharing

07 Div/Mod +

| Q& 5 X > QD & o % . o » e Patterns

. N 5 . .
F T ELS G E § & TS
N <« S
Benchmark

e 4% area reduction (geomean) for sharing dividers/modulus
 An additional 4.9% reduction from sharing patterns
e 12% improvement when using LUT-based multipliers

Cyclone Il LEs (Normalized)

1.05

M No Sharing
1.00
< 0.95
v
-E
© M Sharin
£ 0.90 1anng
= Div/Mod
o
=
— 0.85
Ll
—
0.80 W Sharing
07 Div/Mod +
| Q& 5 X > QD & o % . o » e Patterns
. N 5 . .
& T E S G S T
2> ‘Q\O & \(\g*

Benchmark

e 3% area reduction (geomean) for sharing dividers/modulus
 An additional 4.2% reduction from sharing patterns
e 16% improvement when using LUT-based multipliers

Summary

 FPGA logic architecture has significant impact on resource sharing

e Pattern sharing can provide >10% area reduction

e Future work: alter scheduling to favor creation of certain patterns
— Provide more sharing opportunities

Summary

e (Questions?

Extra Slides

Motivation

e Circuits created by LegUp use mostly 2 and 3 input LUTs

Proportion of ALUT Sizes for the CHStone Benchmarks (Stratix IV)

10000
0,
9000 57A
0,
8000 P 70A’
71%
7000 - .
78% ALUT Size
. 6000 - m<=3
E] 0,
S 5000 - 45% w4
[
2 w5
< 4000 -~
L9
3000 - m7
2000 -
48%
1000 -~ I
0 .
adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm mips motion sha
Benchmark

Average: 62%

Example — Sharing a Bitwise AND

This seems like a bad idea:

Example — Sharing a Bitwise AND

Consider a Bitwise AND:

Example — Sharing a Bitwise AND

Consider a Bitwise AND:

2 Input LUT

Example — Sharing a Bitwise AND

Consider a Bitwise AND: And a 2-to-1 MUX:

0 . ll/J

2 Input LUT 3-input LUT

Example — Sharing a Bitwise AND

Consider a 32-bit Bitwise AND

(&)

32

Example — Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
e Requires 32 LUTs for 32 output bits

(&)

32

32 LUTs

Example — Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
e Requires 32 LUTs for 32 output bits

(&)

32

32 LUTs
(all 2-input LUTSs)

Example — Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
e Requires 32 LUTs for 32 output bits

ONNON
32 32

64 LUTs
(all 2-input LUTSs)

Example — Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
e Requires 32 LUTs for 32 output bits

&) (&)
32 e o

64 LUTs
(all 2-input LUTSs)

_/
32

32

32 LUTs
(5-input LUTSs)

Sharing Single Operations

In the example of bitwise operations, we can reduce the number
of LUTs by half at the expense of increasing their size

However, if a circuits contains mostly small LUTs, ALMs are being
under-utilized and can incorporate these larger logic functions

Therefore, sharing even small operations reduces ALUT
and ALM usage

Variable Liveness Analysis

e Consider next if each bitwise AND had its output stored in
a register:

32 32

Variable Liveness Analysis

e Consider next if each bitwise AND had its output stored in
a register:

32 32

= =

64 Registers

Variable Liveness Analysis

e Consider next if each bitwise AND had its output stored in
a register:

_/
OO0
32 32 32

> > >
64 Registers 32 Registers

(if lifetimes are independent)

ALUTs

8000

7000

6000

5000

4000 -

3000 -

2000 -

1000 -

Proportion of ALUT Sizes for CHStone Benchmarks (Sharing)

adpcm

aes

blowfish

dfadd

dfdiv

dfmul

Benchmark

dfsin

gsm

mips

motion

sha

m<=3

Average: 45%
(was 62%)

Table 5: Cyclone II resource sharing area results. Values in the table are LEs. Values in parentheses represent

ratios relative to the no sharing case.

Multiplication Using Embedded Mults

Multiplication Using LUT-Based Multipliers

Sharing Sharing Sharing
Sharing Div/Mod + Sharing Div/Mod + Div/Mod +
Benchmark No Sharing Div/Mod Patterns No Sharing Div/Mod Mult Mult + Patterns
adpcm 22541 21476 (0.95) 19049 (0.85) 46702 45696 (0.98) 23802 (0.51) 24933 (0.53)
aes 18923 15418 (0.81) 15477 (0.82) 18923 15418 (0.81) 15418 (0.81) 15342 (0.81)
blowfish 11571 11571 (1.00) 9306 (0.80) 11571 11571 (1.00) 11571 (1.00) 9306 (0.80)
dfadd 7012 7012 (1.00) 6364 (0.91) 7012 7012 (1.00) 7012 (1.00) 6258 (0.89)
dfdiv 15286 13267 (0.87) 13195 (0.86) 22404 20421 (0.91) 19217 (0.86) 19151 (0.85)
dfmul 3903 3903 (1.00) 3797 (0.97) 8669 8669 (1.00) 8669 (1.00) 8613 (0.99)
dfsin 27860 27982 (1.00) 26996 (0.97) 40353 38449 (0.95) 37277 (0.92) 36407 (0.90)
gsm 10479 10479 (1.00) 10659 (1.02) 18203 18203 (1.00) 13584 (0.75) 13762 (0.76)
jpeg 35792 34981 (0.98) 34316 (0.96) 49218 48388 (0.98) 38755 (0.79) 38273 (0.78)
mips 3103 3103 (1.00) 2086 (0.96) 5732 5732 (1.00) 4377 (0.76) 4114 (0.72)
motion 4049 4049 (1.00) 3897 (0.96) 4049 4049 (1.00) 4036 (1.00) 4228 (1.04)
sha 11932 11932 (1.00) 12307 (1.03) 11932 11932 (1.00) 12069 (1.01) 12449 (1.04)
dhrystone 5277 5277 (1.00) 5277 (1.00) 5201 5201 (1.00) 5351 (1.01) 5351 (1.01)
Geomean: 10419.82 10093.65 9677.25 13921.41 13515.54 12034.45 11752.99
Ratio: 1.00 0.97 0.93 1.00 0.97 0.86 0.84
Ratio: 1.00 0.96 1.00 0.89 0.87
Ratio: 1.00 0.98

Table 6: Stratix IV resource sharing area results.

represent ratios relative to the no sharing case.

Values in the table are ALMs.

Values in parentheses

Multiplication Using DSP Blocks

Multiplication Using LUT-Based Multipliers

Sharing Sharing Sharing
Sharing Div/Mod + Sharing Div/Mod + Div/Mod +
Benchmark No Sharing Div/Mod Patterns No Sharing Div/Mod Mult Mult 4 Patterns
adpcm R585 8064 (0.04) 7943 (0.93) 18051 18438 (0.07) 11909 (0.63) 11722 (0.62)
aes 9582 8136 (0.85) 7929 (0.83) 9582 8136 (0.85) 8136 (0.85) 7929 (0.83)
blowfish 6082 6082 (1.00) 5215 (0.86) 6082 6082 (1.00) 6082 (1.00) 5215 (0.86)
dfadd 3327 3327 (1.00) 2966 (0.89) 3327 3327 (1.00) 3327 (1.00) 2966 (0.89)
dfdiv 7043 5049 (0.84) 5915 (0.84) 9352 8277 (0.89) 8203 (0.88) 8204 (0.88)
dfmul 1893 1893 (1.00) 1824 (0.96) 3170 3170 (1.00) 3170 (1.00) 3105 (0.98)
dfsin 12630 11529 (0.91) 11094 (0.88) 16631 15418 (0.93) 15523 (0.93) 15129 (0.91)
gsm 4914 4914 (1.00) 4537 (0.92) 7630 7630 (1.00) 6252 (0.82) 6043 (0.79)
jpeg 17148 16703 (0.97) 16246 (0.95) 22349 21853 (0.98) 19592 (0.88) 19127 (0.86)
mips 1610 1610 (1.00) 1493 (0.93) 2471 2471 (1.00) 2299 (0.93) 2210 (0.89)
motion 1988 1988 (1.00) 1878 (0.94) 1988 1988 (1.00) 1982 (1.00) 1930 (0.97)
sha 5909 5909 (1.00) 5856 (0.99) 5909 5009 (1.00) 5047 (1.01) 5917 (1.00)
dhrystone 2598 2598 (1.00) 2598 (1.00) 2602 2602 (1.00) 2607 (1.00) 2607 (1.00)
Geomean: 4980.59 4788.06 4558.11 6273.87 6078.47 5709.30 5499.92
Ratio: 1.00 0.96 0.92 1.00 0.97 0.91 0.88
Ratio: 1.00 0.95 1.00 0.94 0.90
Ratio: 1.00 0.96

Pattern Sharing Conclusions

e The most frequently occurring patterns in 13 HLS Benchmarks
(CHStone Benchmark suite and dhrystone) were analyzed

e Benefits of pattern sharing improve as pattern size increases, but
LUT-underutilization is the major factor

— allows MUXes to be incorporated into the same LUTs
as the operator

— sharing is thus more advantageous if registers are present in

patterns as they prevent an efficient mapping of operators
into LUTs

=< 120.00

Geomean Fma
o0
o
o
o

Stratix IV Speed Performance

1

No sharing Sharing Sharing No sharing Sharing Sharing Sharing
(DSPs) div/mod div/mod+ (no DSPs) div/mod (no div/mod+ div/mod +
(DSPs) patterns DSPs) mult (no mults +
(DSPs) DSPs) patterns (no
DSPs)

Cyclone Il Speed Performance

80.00

70.00

?60.00
40.00 -
30.00
20.00 -
10.00 -
0.00 | | |

No sharing Sharing Sharing No sharing Sharing Sharing Sharing
(Embedded div/mod div/mod + (no div/mod (no div/mod+ div/mod +
Mult) (Embedded patterns Embedded Embedded mult (no mults +
Mult) (Embedded Mult) Mult) Embedded patterns (no
Mult) Mult) Embedded
Mult)

ul

o

o

o
|

Geomean Fmax (MH

	Slide Number 1
	Introduction
	Resource Sharing in High Level Synthesis
	Resource Sharing in High Level Synthesis
	Resource Sharing in High Level Synthesis
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	METHOD 1: NOT SHARING (a single 4-bit adder)
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	METHOD 2: SHARING (Cyclone II)
	METHOD 2: SHARING (Cyclone II)
	METHOD 2: SHARING (Cyclone II)
	METHOD 2: SHARING (Cyclone II)
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	METHOD 2: SHARING (Stratix IV)
	METHOD 2: SHARING (Stratix IV)
	METHOD 2: SHARING (Stratix IV)
	METHOD 2: SHARING (Stratix IV)
	METHOD 2: SHARING (Stratix IV)
	Example: 4 Bit Adder
	Example: 4 Bit Adder
	Sharing Single Operators
	Evaluating Area of Single Operators
	Evaluating Area of Single Operators
	Evaluating Area of Single Operators
	Evaluating Area of Single Operators
	Evaluating Area of Single Operators
	Sharing Composite Operators
	Sharing Computational Patterns
	Sharing Computational Patterns
	Sharing Computational Patterns
	Sharing Computational Patterns
	Sharing Computational Patterns
	Sharing Computational Patterns
	Pattern Sharing in LegUp
	Pattern Sharing Algorithm
	Pattern Representation
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	1. Finding all Computational Patterns
	2. Sorting Patterns by Isomorphic Equivalence
	2. Sorting Patterns by Isomorphic Equivalence
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	3. Decide which Pattern Instances to Share
	Independent Variable Lifetimes
	Slide Number 82
	Results
	Slide Number 84
	Slide Number 85
	Summary
	Summary
	Slide Number 88
	Extra Slides
	Motivation
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Example – Sharing a Bitwise AND
	Sharing Single Operations
	Variable Liveness Analysis
	Variable Liveness Analysis
	Variable Liveness Analysis
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Pattern Sharing Conclusions
	Stratix IV Speed Performance
	Cyclone II Speed Performance

