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Introduction

High Level Synthesis (HLS) tools are capable of targeting multiple
devices and logic element architectures

E.g. LegUp HLS Tool (www.legup.org)

— C = Verilog synthesis
— Targets Cyclone Il (4-LUT) and Stratix IV (Adaptive LUT)
How should HLS be adapted for different target architectures?

We modify the Binding Phase of HLS, in which operations in the
high-level circuit specification (C) are assigned to specific
functional units in the hardware


http://www.legup.org/�

Resource Sharing in High Level Synthesis

 Resource Sharing is an area-reduction optimization in binding
which involves assigning multiple operations to the same
hardware unit

e E.g.consider a C program which performs division twice:
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Resource Sharing in High Level Synthesis

* Resource Sharing is an area-reduction optimization in binding
which involves assigning multiple operations to the same
hardware unit

e Different resource sharing tradeoffs exist depending on the target
architecture



Example: 4 Bit Adder



Example: 4 Bit Adder

e Consider a C program which performs two additions



Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

METHOD 1: NOT SHARING



Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

VS.

4 4 4

METHOD 1: NOT SHARING METHOD 2: SHARING



Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

VS.

4 4 4
METHOD 1: NOT SHARING METHOD 2: SHARING

e The answer depends on the architecture
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METHOD 1: NOT SHARING (a single 4-bit adder)
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METHOD 1: NOT SHARING (a single 4-bit adder)
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Stratix IV 4 ALMs
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Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 A
VS.
4 4 A
METHOD 1: NOT SHARING METHOD 2: SHARING
Cyclone Il 8 LEs Cyclone |l ?? LEs

Stratix IV 4 ALMs
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METHOD 2: SHARING (Cyclone Il)
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Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 A
VS.
4 4 A
METHOD 1: NOT SHARING METHOD 2: SHARING
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METHOD 2: SHARING (Stratix IV%\/IUX + adder
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METHOD 2: SHARING (Stratix IV%\/IUX
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METHOD 2: SHARING (Stratix IV)
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e Two 3-LUTs, Two 4-LUTs, Two 5-LUTs

e Quartus Il maps this to only 3 ALMs: One with two 4-LUTs, and Two
with a 3-LUT and a 5-LUT
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Example: 4 Bit Adder

e Consider a C program which performs two additions
e Which hardware implementation is preferred?

4 4 c A
4 4 f
METH HARING [ METHOD 2: SHARING ]
Cyclone Il 8 LEs Cyclone |l 12 LEs

Stratix IV 4 ALMs Stratix IV 3 ALMs
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e This procedure was performed for all operators (32-bit) and on
both architectures




Evaluating Area of Single Operators

e |solated operators which reduce area when shared:

Cyclone Il Stratix IV
Div/Mod Div/Mod
Multipliers Multipliers
Barrel Shifters Barrel Shifters
Add/Subtract
Bitwise Operations (OR, XOR, AND)



Sharing Composite Operators



Sharing Computational Patterns

e The focus of this work is on sharing patterns of smaller operators
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Pattern Sharing in LegUp



Pattern Sharing Algorithm

LegUp’s Pattern Sharing Algorithm:

1. Find all computational patterns in the software program
(up to pattern size of 10)

2. Group together patterns which can be implemented
using the same hardware

3. Select pairs of equivalent patterns from step 2 to be
implemented using the same hardware



Pattern Representation

e Computational patterns are represented as Directed Graphs, with a
single output (“root”) node:

e Each node is an instruction

Input Input Input Input

Size 5 Graph



1. Finding all Computational Patterns

LegUp uses a Data Flow Graph (DFG) to represent each

compiled C Program

The first step of the pattern sharing algorithm is to find all
subgraphs of this DFG which are candidates for sharing:



1. Finding all Computational Patterns

Consider the following DFG produced by LegUp:
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1. Finding all Computational Patterns
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2. Sorting Patterns by Isomorphic Equivalence

a) A Graph with a re-converging path b) This graph can be implemented with the same
hardware as (a) but is topologically different due
to commutativity



2. Sorting Patterns by Isomorphic Equivalence

As opposed to just topological

a) A Graph with a re-converging path b) This graph can be implemented with the same
hardware as (a) but is topologically different due
to commutativity



3. Decide which Pattern Instances to Share

e So far, steps 1 and 2 have provided sets of equivalent pattern graphs
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3. Decide which Pattern Instances to Share

e So far, steps 1 and 2 have provided sets of equivalent pattern graphs
 For example, we may have found 4 graphs for this pattern:

Y

A B C D

e Qur goalis to split these 4 into pairs (create groups of 2) so that each
hardware unit will implement two patterns




3. Decide which Pattern Instances to Share

e But which combination of pairs is best?
e Consider the bit widths of the operators



32

32

32

Operator Bit Widths
B

32 32 32

32

32

32



Operator Bit Widths
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Operator Bit Widths

A B
32 32 32 32 32
32 32

32-bit adder 32-bit adder

C 6-bit adder

6'b111111

 Adder C would be optimized by synthesis tools because only 6
outputs bits are needed

e Sharing adder C with A or B would force a 6-bit addition to be
implemented using a 32-bit adder
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Operator Bit Widths
A B C

32 32 32 32

32 32

Adder C would be optimized by synthesis tools because only 6
outputs bits are needed

Sharing adder C with A or B would force a 6-bit addition to be
implemented using a 32-bit adder



3. Decide which Pattern Instances to Share
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Sharing Cost of P1, P2= Z lwidth(nl) — width(n2)|
nle Pl,n2c P2
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3. Decide which Pattern Instances to Share

e Cost function for sharing two pattern graphs:

Given two pattern graphs P1 and P2 with nodes n1 and n2 respectively,

Sharing Cost of P1, P2= Z lwidth(nl) — width(n2)|
nle Pl,n2c P2
e Cost is then adjusted based on preferential sharing conditions

 For each graph a greedy algorithm selects its sharing-partner
with the lowest cost

 Once pairs are determined, the Binding phase of LegUp implements
pairs with the same hardware



Independent Variable Lifetimes
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Results



Stratix IV ALMs (Normalized)

1.05

M No Sharing

1.00
B 0.95
(]
N h
- M Sharin
£ 0.90 191N
= Div/Mod
o
=
— 0.85
=
= 0.80

' W Sharing

07 Div/Mod +

| Q& 5 X > QD & o % . o » e Patterns

. N 5 . .
F T ELS G E § & TS
N <« S
Benchmark

e 4% area reduction (geomean) for sharing dividers/modulus
 An additional 4.9% reduction from sharing patterns
e 12% improvement when using LUT-based multipliers
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e 3% area reduction (geomean) for sharing dividers/modulus
 An additional 4.2% reduction from sharing patterns
e 16% improvement when using LUT-based multipliers



Summary

 FPGA logic architecture has significant impact on resource sharing

e Pattern sharing can provide >10% area reduction

e Future work: alter scheduling to favor creation of certain patterns
— Provide more sharing opportunities



Summary

e (Questions?
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Motivation

e Circuits created by LegUp use mostly 2 and 3 input LUTs

Proportion of ALUT Sizes for the CHStone Benchmarks (Stratix IV)
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Example — Sharing a Bitwise AND

This seems like a bad idea:
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Consider a Bitwise AND:

2 Input LUT



Example — Sharing a Bitwise AND

Consider a Bitwise AND: And a 2-to-1 MUX:

0 . ll/J

2 Input LUT 3-input LUT
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Example — Sharing a Bitwise AND

Consider a 32-bit Bitwise AND
e Requires 32 LUTs for 32 output bits
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32 e o

64 LUTs
(all 2-input LUTSs)

_/
32

32

32 LUTs
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Sharing Single Operations

In the example of bitwise operations, we can reduce the number
of LUTs by half at the expense of increasing their size

However, if a circuits contains mostly small LUTs, ALMs are being
under-utilized and can incorporate these larger logic functions

Therefore, sharing even small operations reduces ALUT
and ALM usage



Variable Liveness Analysis

e Consider next if each bitwise AND had its output stored in
a register:
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Variable Liveness Analysis

e Consider next if each bitwise AND had its output stored in
a register:

_/
OO0
32 32 32

> > >
64 Registers 32 Registers

(if lifetimes are independent)
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Table 5: Cyclone II resource sharing area results. Values in the table are LEs. Values in parentheses represent

ratios relative to the no sharing case.

Multiplication Using Embedded Mults

Multiplication Using LUT-Based Multipliers

Sharing Sharing Sharing
Sharing Div/Mod + Sharing Div/Mod + Div/Mod +
Benchmark No Sharing Div/Mod Patterns No Sharing Div/Mod Mult Mult + Patterns
adpcm 22541 21476 (0.95) 19049 (0.85) 46702 45696 (0.98) 23802 (0.51) 24933 (0.53)
aes 18923 15418 (0.81) 15477 (0.82) 18923 15418 (0.81) 15418 (0.81) 15342 (0.81)
blowfish 11571 11571 (1.00) 9306 (0.80) 11571 11571 (1.00) 11571 (1.00) 9306 (0.80)
dfadd 7012 7012 (1.00) 6364 (0.91) 7012 7012 (1.00) 7012 (1.00) 6258 (0.89)
dfdiv 15286 13267 (0.87) 13195 (0.86) 22404 20421 (0.91) 19217 (0.86) 19151 (0.85)
dfmul 3903 3903 (1.00) 3797 (0.97) 8669 8669 (1.00) 8669 (1.00) 8613 (0.99)
dfsin 27860 27982 (1.00) 26996 (0.97) 40353 38449 (0.95) 37277 (0.92) 36407 (0.90)
gsm 10479 10479 (1.00) 10659 (1.02) 18203 18203 (1.00) 13584 (0.75) 13762 (0.76)
jpeg 35792 34981 (0.98) 34316 (0.96) 49218 48388 (0.98) 38755 (0.79) 38273 (0.78)
mips 3103 3103 (1.00) 2086 (0.96) 5732 5732 (1.00) 4377 (0.76) 4114 (0.72)
motion 4049 4049 (1.00) 3897 (0.96) 4049 4049 (1.00) 4036 (1.00) 4228 (1.04)
sha 11932 11932 (1.00) 12307 (1.03) 11932 11932 (1.00) 12069 (1.01) 12449 (1.04)
dhrystone 5277 5277 (1.00) 5277 (1.00) 5201 5201 (1.00) 5351 (1.01) 5351 (1.01)
Geomean: 10419.82 10093.65 9677.25 13921.41 13515.54 12034.45 11752.99
Ratio: 1.00 0.97 0.93 1.00 0.97 0.86 0.84
Ratio: 1.00 0.96 1.00 0.89 0.87
Ratio: 1.00 0.98




Table 6: Stratix IV resource sharing area results.

represent ratios relative to the no sharing case.

Values in the table are ALMs.

Values in parentheses

Multiplication Using DSP Blocks

Multiplication Using LUT-Based Multipliers

Sharing Sharing Sharing
Sharing Div/Mod + Sharing Div/Mod + Div/Mod +
Benchmark No Sharing Div/Mod Patterns No Sharing Div/Mod Mult Mult 4 Patterns
adpcm R585 8064 (0.04) 7943 (0.93) 18051 18438 (0.07) 11909 (0.63) 11722 (0.62)
aes 9582 8136 (0.85) 7929 (0.83) 9582 8136 (0.85) 8136 (0.85) 7929 (0.83)
blowfish 6082 6082 (1.00) 5215 (0.86) 6082 6082 (1.00) 6082 (1.00) 5215 (0.86)
dfadd 3327 3327 (1.00) 2966 (0.89) 3327 3327 (1.00) 3327 (1.00) 2966 (0.89)
dfdiv 7043 5049 (0.84) 5915 (0.84) 9352 8277 (0.89) 8203 (0.88) 8204 (0.88)
dfmul 1893 1893 (1.00) 1824 (0.96) 3170 3170 (1.00) 3170 (1.00) 3105 (0.98)
dfsin 12630 11529 (0.91) 11094 (0.88) 16631 15418 (0.93) 15523 (0.93) 15129 (0.91)
gsm 4914 4914 (1.00) 4537 (0.92) 7630 7630 (1.00) 6252 (0.82) 6043 (0.79)
jpeg 17148 16703 (0.97) 16246 (0.95) 22349 21853 (0.98) 19592 (0.88) 19127 (0.86)
mips 1610 1610 (1.00) 1493 (0.93) 2471 2471 (1.00) 2299 (0.93) 2210 (0.89)
motion 1988 1988 (1.00) 1878 (0.94) 1988 1988 (1.00) 1982 (1.00) 1930 (0.97)
sha 5909 5909 (1.00) 5856 (0.99) 5909 5009 (1.00) 5047 (1.01) 5917 (1.00)
dhrystone 2598 2598 (1.00) 2598 (1.00) 2602 2602 (1.00) 2607 (1.00) 2607 (1.00)
Geomean: 4980.59 4788.06 4558.11 6273.87 6078.47 5709.30 5499.92
Ratio: 1.00 0.96 0.92 1.00 0.97 0.91 0.88
Ratio: 1.00 0.95 1.00 0.94 0.90
Ratio: 1.00 0.96




Pattern Sharing Conclusions

e The most frequently occurring patterns in 13 HLS Benchmarks
(CHStone Benchmark suite and dhrystone) were analyzed

e Benefits of pattern sharing improve as pattern size increases, but
LUT-underutilization is the major factor

— allows MUXes to be incorporated into the same LUTs
as the operator

— sharing is thus more advantageous if registers are present in

patterns as they prevent an efficient mapping of operators
into LUTs
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