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Abstract—We present the first open-source TensorFlow to
FPGA tool capable of running state-of-the-art DNNs. Running
TensorFlow on the Amazon cloud FPGA instances, we provide
competitive performance and higher accuracy compared to a
proprietary tool, thus providing a public framework for re-
search exploration in the DNN inference space. We also detail
the optimizations needed to map modern DNN frameworks to
FPGAs, provide novel analysis of design tradeoffs for FPGA DNN
accelerators and present experiments across a range of DNNs.

I. INTRODUCTION

Deep Neural Networks (DNNs) provide state-of-the-art re-
sults in many industries [1]. Many companies have turned to
custom hardware accelerators for DNN processing to achieve
improved throughput, latency and power compared to GPUs
and CPUs [2], [3]. In particular, programmable accelerators
like FPGAs are useful because computations vary across
DNNs and algorithms often change. However, designing pro-
grammable accelerators requires a long development process,
and DNN accelerators pose unique challenges due to the size
of their design space and the complexity of modern DNNs.

The first challenge is that designing an accelerator for
a given DNN requires a number of choices, ranging from
accelerator architecture to memory management. In addition,
design decisions change based on properties of the DNN, such
as layer types and data structure sizes. Exploring architectures
to optimize for these considerations involves a large design
space and complex implementation process.

In addition, due to their complexity, DNN applications
are almost always developed using high-level frameworks.
TensorFlow [4] from Google is the most popular. As of 2019
it is the top machine learning framework on GitHub.com. This
leads to a second challenge, because efficiently running a DNN
expressed at a high-level on a low-level programmable hard-
ware target requires optimization at many levels of abstraction.

To solve these problems, we develop an end-to-end
toolchain to go from high-level DNN models to low-level
hardware. The input is a TensorFlow model and the output is
an optimized FPGA design. Formats from other frameworks
also can be swapped in. Our toolchain supports FPGAs from
multiple vendors, but here we focus on the recently announced,
publicly available Amazon cloud FPGAs [5], [6].

This solves both problems above: it allows easily exper-
imenting with architectures and algorithms to explore large
design spaces, and it performs the required optimizations at
each level of the stack so DNNs expressed in a high-level
framework can be efficiently deployed to hardware. We hope

that our toolchain, which allows DNNs to be expressed in
modern formats and targets public hardware, can help the
FPGA community research DNN accelerators. The code is
linked below1. We make the following contributions:

1) We study the optimizations needed to start from a modern
DNN framework and efficiently map to FPGAs. This includes
DNN optimizations overlooked in the FPGA literature and
recommendations to improve existing tools.

2) We provide novel experimental analysis of tradeoffs in
the FPGA DNN accelerator design space, providing insights
into generating efficient DNN FPGA hardware.

3) We provide an open, end-to-end toolchain to accelerate
TensorFlow DNNs on FPGAs. It is capable of running on
publicly-available cloud FPGAs and compiles DNNs achieving
state-of-the-art accuracy (the first open-source TensorFlow to
FPGA compiler to do either of these). It also automatically
performs state-of-the-art optimizations from the literature,
allowing it to be used as a research tool for design exploration.

Next we describe the space when designing an FPGA
accelerator for a given DNN, and how design choices are
impacted by various factors.

II. TRADEOFF SPACE FOR DNN ACCELERATORS

Given a DNN to accelerate, this section discusses acceler-
ator design choices and factors influencing them. DNNs are
composed of layers arranged in a dataflow graph. The number
of layers can range from a dozen to hundreds. Example layers
include convolution and pooling [1]. Each layer transforms an
input tensor (multi-dimensional data array) to an output tensor.
These tensors of data are also called “activations”. Some layers
also contain model parameters (sometimes called weights or
kernels) which are read-only, e.g. convolution filters.

For clarity we partition the design space into three compo-
nents: architecture, memory management and accuracy trade-
offs. In this work we focus on the first two. Accuracy tradeoffs
include approximations like lowering precision or changing
the DNN model, which may give speedups but also impact
correctness. We discuss precision in Section 5, but otherwise
this work focuses on accelerating a DNN as-given.

Fig. 1 describes the design space related to architecture
and memory management, as well as factors which impact
design choices. Architecture design determines the coarse-
grained computations the architecture must support (e.g. which
DNN layers) as well as core computational units of the acceler-
ator’s processing elements, for instance whether convolutions

1https://github.com/stanford-ppl/spatial-multiverse
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Fig. 1. An overview of common choices when designing DNN accelerators
as well as factors influencing these choices.

should be performed as dot products or a sliding window
(stencil). Another decision is whether different types of DNN
layers should be implemented by specialized processors or
whether multiple layer types should share a single, more
general processor. Whereas an ASIC DNN accelerator must
support a variety of DNNs [7], the reconfigurability of FPGAs
allows accelerator designs to be specialized for a specific
DNN. Therefore the number of DNN layers, the types of
computations they perform and the degree of layer variability
impact architecture design choices.

Memory management choices include where data structures
should be stored in memory, the formatting of these data
structures in memory and the amount of parallelism in the
memory system to eliminate memory bottlenecks. Different
DNN layers have different locality properties and arithmetic
intensity [2],therefore the types of DNN layers as well as the
sizes of their data structures also impact design choices.

The space is large, and our next step is to design an end-
to-end toolchain which can explore this design space starting
from a high level of abstraction.

III. OVERVIEW OF COMPILER

Our compiler allows DNNs developed in high-level frame-
works to be efficiently deployed to FPGA hardware, and
performs the required optimizations at each level of the stack.
It contains three Optimization Levels, shown in Fig. 2.

A. Level 1: DNN-Specific Optimizations

Level 1 processes the DNN graph to perform optimizations
that will later help hardware generation. DNN frameworks
represent a DNN as a data-flow graph (DFG), where nodes are
operations (e.g. Convolution) and edges are data tensors passed
between them. TensorFlow and other modern frameworks (e.g.
ONNX) contain utility tools to perform graph optimizations,
e.g. constant folding. However, it is often not obvious to
the DNN framework that certain optimizations apply and the
burden is placed on the user to perform graph processing.

Table I shows an example of how various optimizations
simplify the TensorFlow DFG for the popular ResNet-50 [8], a
state-of-the-art CNN. Each row corresponds to an optimization
run by our script. The first row is the downloaded model after
using TensorFlow’s API to create the inference graph, which
freezes variables to constants and removes training nodes.

TABLE I
OPTIMIZATIONS ON THE RESNET-50 TENSORFLOW GRAPH

Description # DFG Nodes Needs RSqrt Needs Scale
Freeze for Inference 460 Yes Yes
Fold Constants 354 No Yes
Fold BatchNorms 301 No No

Next we run optimization passes. These are not automat-
ically performed by TensorFlow (or ONNX) when freezing
for inference so they need to be run separately. In the ResNet
example, two optimizations help for custom hardware. Both
are related to constant folding and regard the layer pattern
of Convolution followed by Batch Normalization (BN), which
occurs 53×. When converting variables to constants, folding
opportunities arise for operations which differ in the forward
pass of training vs. inference, such as Dropout or BN.

The first optimization is noted by prior FPGA work [9],
[10]. It eliminates reciprocal square roots and other operations
on tensors of constants: BN computes statistics on the data but
during inference these are constants and can fold into a linear
function. The result is shown in the second row of Table I.

The second optimization however is overlooked by prior
FPGA work. It eliminates the tensor scaling operation of
BN by folding the constant scaling factors of BN into the
Convolution before the BN. This updates the already-trained
Convolution weights to incorporate the BN scaling factors,
and replaces BN with a simpler bias addition which requires
no multiplication. The third row shows this final result. Prior
FPGA work computes both the scaling and addition compo-
nents of BN, e.g. recent work still remarks how BN needs
“multipliers that are expensive” [11]. We therefore suggest
FPGA tools move to modern frameworks to get these benefits.

Finally, optimization utilities can fail for DNNs with control
paths, e.g. when selecting operations that differ from training
to inference. In such cases our scripts also perform a traversal
to first fold constant branch inputs through control nodes
(Switch, Merge) and eliminate unused subgraphs.

B. Level 2: Optimizations for DNN Hardware Accelerators

Level 2 contains the majority of the optimization and is
the focus of Section 4. It converts the optimized DNN graph
from Level 1 into a Hardware IR describing the circuit. This
specifies the exact architecture layout of the DNN on-chip.

C. Level 3: DNN-agnostic, Target-specific Optimizations

Level 3 compiles the Hardware IR into synthesizable
Verilog and makes optimizations for the target FPGA. Our
compiler uses the open-source High-Level Design language
Spatial [12] as the Hardware IR. It provides hardware-specific
abstractions, i.e. it is more like a high-level HDL than a
high-level synthesis (HLS) tool. We chose Spatial because
these abstractions allow fast prototyping without sacrificing
knowledge of the synthesized circuit, e.g. by allowing users
to explicitly control memory hierarchy (DRAM, SRAM, FFs).
While a strength of HLS is that it allows software engineers
to make fast progress, for our toolchain the user’s entry point
is already TensorFlow. We therefore opted for an IR which
gives more control over the underlying circuit.



(or other 
frameworks)

DNN Graph 
Optimization
Run scripts that 
use TensorFlow 
API and utilities

DNN Graph in 
Modern Framework

DNN Graph optimized 
for inference

Specify DNN Hardware Architecture Target-specific 
optimizations
Generate HDL 
using area / 
timing models 

Fuse layers 
into coarser 
operations

Algorithm 
selection 
for fused 
operations

Assign operations to 
hardware (determine 
level of specialization, 
select parallelizations)

Design specified in 
Hardware IR (Spatial)

(or other 
FPGAs)

Input DNN Optimization Level 1 Optimization Level 2 Optimization Level 3 Deploy

Verilog Design and 
C++ Host Program

Compile
Design
Vivado,    
gcc

Fig. 2. A detailed view of the compiler flow, showing optimizations at each level of the stack.

At the same time, because the goal is to explore algorithms
and architectures, describing hardware at a higher level than
Verilog is helpful. Spatial facilitates this by performing opti-
mizations like pipeline scheduling to exploit parallelism and
memory banking to reduce on-chip memory usage. It also
performs automated tuning of parameters such as operator
latencies based on FPGA-specific timing models. Finally, it
is open-source and supports FPGAs from multiple vendors,
including being one of few tools to support the Amazon cloud
FPGAs. The output of Spatial is a Verilog design for the FPGA
and a C++ program which runs the design from the host CPU.

Our DNNs were larger than previous Spatial applications
however, so modifications were needed to improve perfor-
mance. First, we modified Spatial’s interface between the
application and the Amazon-provided shell to delete unused
IPs, reducing LUT and BRAM utilization by 8% and 19%
of the total available. Second, we wrote an analysis pass
to assign SRAM data structures with size > 1024 words
to UltraRAMs (URAMs), which are deeper block RAMs on
Xilinx UltraScale+ FPGAs that were unused by Spatial. Third,
a challenge in designing CNN hardware is that irregular size
parameters are ubiquitous (e.g. 3×3 convolution kernels, 7×7
feature maps). These odd numbers lead to complex access
patterns when performing sliding window computations which
Spatial was not optimized for. This resulted in large LUT
overheads after SRAM banking because banking schemes
using non-powers of 2 were selected, which used expensive
integer division and modulus to calculate addressing. Our
DNNs drove improvements to Spatial’s banking, including (1)
banking support for more general access patterns to eliminate
unnecessary crossbars and address calculation, and (2) modi-
fications to Spatial’s banking algorithm to automatically bank
multi-dimensional SRAMs with parallel accesses. These led
to a more than 2× reduction in LUTs for some applications
and are now part of Spatial’s official repository.

In Summary, compiler Levels 1 and 3 leverage and im-
prove third-party, open-source tools to improve DNN hardware
performance. Level 2 is entirely within our framework and
converts the optimized TensorFlow DFG to a program in the
Spatial Language. We now describe Level 2 in more detail.

IV. DNN-HARDWARE OPTIMIZATIONS AND DESIGN
EXPLORATION

Optimization Level 2 converts the DNN DFG to Hardware
IR. It involves three steps, shown in Fig. 2 (center). We now
describes these, with emphasis on exploring design tradeoffs.
As a running example we consider the ResNet-50 CNN [8].
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Fig. 3. An example of a frequently occurring layer pattern in CNNs. It is
more efficient to fuse this into a single coarse-grained operation.
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Fused Conv 7x7, Stride 2 1

Fused Conv 1x1, Stride 1 30

Fused Conv 3x3, Stride 1 16

Fused Conv 1x1, Stride 2 6

Tensor Add 16

Fully-Connected 1

Layer Count

Conv 7x7, Stride 2 1
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Conv 3x3, Stride 1 16

Conv 1x1, Stride 2 6

Pool (Avg, Max) 2

Batch Norm 53

ReLU 49

Tensor Add 16

Fully-Connected 1

Fig. 4. ResNet-50 layers (left) and the coarse-grained operations they are
grouped into after fusion (right).

A. Identify coarse-grained operations (fusion)

The first step selects the granularity of hardware operations
to compose the DNN. Often, DNN layers occur in repeating
patterns. Fig. 3 shows a common example in CNNs: Convolu-
tion/BN/ReLU/Pool. This pattern appears twice in ResNet-50
and the smaller pattern of Conv/BN/ReLU appears 53×.

Fusion is a state-of-the-art technique for DNN accelerators
which minimizes DRAM bandwidth [13], [14]. As Fig. 3
shows, all but the Convolutional layer contain little computa-
tion and are bound by the time to access DRAM. It is therefore
beneficial to fuse these layers into a single, more coarse-
grained operation. This loads the data from DRAM once,
performs all the layers in the operation without separately
materializing the output of each, then stores the result after
only the final layer. In this way, fused layers communicate
using SRAM and registers to minimize DRAM bandwidth.

Our compiler performs fusion by matching for common
patterns within the graph. Once a layer pattern is matched,
the layers are replaced with the fused operation. Fig. 4 shows
how the operations change in ResNet-50 after fusion. With
these fusions applied, the arithmetic intensity of ResNet-50
inference, measured in Ops/byte (as in the Roofline models
used by [2], [15]), improves by 2.55x.

B. Algorithm-Level Transformations

The next step considers algorithm-level transformations on
fused operations to identify efficient hardware for each. Revis-
iting the example from Fig. 4, note there are two major types of
operations: 1x1 and 3x3 convolutions (Tensor Add is compu-
tationally inexpensive and also can be fused into other layers).
“1x1” and “3x3” refer to the filter size (rows×columns). Other
modern DNNs also primarily use smaller convolutions, and
these sizes (1x1, 3x3) have become most common.
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1x1 convolutions have lower arithmetic intensity and some
locality in the 2D spatial dimension (rows×columns). 3x3
convolutions have higher arithmetic intensity and more locality
in the 2D spatial dimension. Recall that convolutions in CNNs
operate on 3D tensors of data, which consist of a series of 2D
“channels” or “feature maps”. The convolution involves sliding
a series of filters across the rows/columns of each channel,
creating 2D locality. Moreover, at each step of the sliding
window, a 2D dot product (e.g. 3x3) is performed, further
increasing locality. The convolved results of each channel are
then added together to produce a single channel of output
(output feature map). This sum now creates locality in the
channel dimension. Finally, the process is repeated for multiple
sets of filters to produce multiple output channels.

While the loops comprising this algorithm have been studied
for DNN accelerators [16], [17], prior work often overlooks
the storage format of these 3D tensors. Fig. 5 shows the
two popular data storage formats in DRAM used by DNN
frameworks and accelerators: row-major and channel-major.

Each format is better suited to a different algorithm for
convolution. Row-major (rows contiguous in DRAM) is better
suited to convolution as sliding window, due to locality in the
rows/columns. Here the inner loops implement the 2D stencil
sliding across the rows/columns, and then the outer loops
sum each 2D result. Sliding window was used by [10], [14].
Channel-major (channels contiguous in DRAM) is also useful,
due to locality in the channels (convolution results from each
channel are summed). In this case the outer loops implement
the 2D sliding window, while the inner loop performs a 1D
dot product along each activation and kernel channel [17].

Fig. 6 shows the architecture for row-major format, which
uses sliding window convolution. Each PE loads input feature
maps from DRAM and performs convolution with a block
of kernels. The core computation (dot product) is each 2D
window reduction. The partial output feature maps from each
PE are then summed across channels to produce a block of
output feature maps. The architecture for channel-major is very
similar, except that the dot products are 1D, and performed
along the channels of the kernels and activations. As a result
the accumulation across channels is performed within each PE
as part of the dot product rather than in the outer-loop.

Fig. 7 shows experiments with the different data formats for
both major operation types in ResNet-50: 1×1 (left) and 3×3
(right) convolution. The performance requirement is set to 1ms
for 1×1 and 2ms for 3×3, and since tensor dimensions change
along the depth of a DNN, designs must meet this latency for
sizes ranging from (rows, columns, in channels, out channels)
= (56, 56, 64, 64) to (7, 7, 512, 512), which is common for
DNNs. For each layer type, we compare the two data formats
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Fig. 6. Architecture overview for tensors stored in row-major format.

and their associated algorithm.
For 1x1 convolution, both formats use similar resources as

there is locality both in the channels as well as rows/columns.
For 3x3 convolution, now row-major benefits from ad-

ditional locality in the rows and columns. With channel-
major, overlapping regions of the sliding window need to
be loaded multiple times from DRAM, increasing bandwidth
requirements. To meet the same performance, larger buffers
were needed for channel-major to store more kernels on-chip
at once. This reduced the number of times the data is re-loaded
from DRAM, but increased logic and memory utilization.
Overall, due to locality, row-major is more efficient for larger
convolution sizes. Choosing this incorrectly results in a > 2×
increase in BRAM/URAM end-to-end for ResNet.

There is some prior work which also finds the data formats
best-suited to their architecture [9], [18], but we are the first
to quantify the costs of choosing incorrectly by comparing
formats experimentally. Also, [9] focused on small DNNs
with small input images (32×32). Such smaller data structures
may not reflect real-world applications and could change the
locality analysis. Our work compares data structure formats
experimentally for larger inputs used by modern DNNs, and
we are the first to measure how format impacts different al-
gorithms and convolution sizes based on locality, in particular
for convolutions of the sizes used by ResNet-like DNNs.

Based on these experiments, our compiler selects default
settings for data format and algorithm. While we described one
algorithm tradeoff related to memory format, our toolchain can
be used to explore others, e.g. FFT or Winograd convolutions.
We also observed while optimizing for each format that some-
times algorithms ran into memory bottlenecks, yet were not at
the intrinsic DRAM bandwidth. This was because bottlenecks
were in memory access logic, e.g. generating addresses and
dequeuing from FIFOs. The customizability of FPGAs allowed
us to solve this by introducing parallelism into the memory
system, e.g. creating parallel channels to the DRAM controller
and allowing PEs to issue simultaneous DRAM commands
to hide memory access latencies. This eliminated memory
bottlenecks and made execution compute-bound, allowing us
to use a static model for runtime and resources to select
parallelizations. We describe this in the following subsection.
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C. Assign Operations to Hardware

The final step assigns operations to hardware and schedules
their execution. This involves determining the right degree of
specialized hardware per DNN operation. We build on the
strategy from [17], which takes advantage of the FPGA’s flex-
ibility to instantiate a specialized processor for each operation
type. They show that specializing portions of the FPGA for
different convolutions increases performance more than 2×
over a single, more general architecture shared by all layers,
and that this gap grows for larger FPGAs (like on the Amazon
cloud). A limitation of [17] however was that the approach
was not detailed for the deeper, state-of-the-art networks like
ResNet. Moreover, it considered only convolutional layers
simulated in isolation and not entire DNNs running end-to-end
in hardware. We therefore extend their analysis and explore to
what degree this strategy applies to entire, modern DNNs.

Returning again to the ResNet-50 example of Fig. 4, note
that 6/36 of the 1x1 convolutions have stride=2. The hardware
of Fig. 6 is the same regardless of stride as it just skips com-
putations in the sliding window, therefore all 1x1 operations
map to a single processor with no overhead. Stride was not
discussed by [17], and so we here report that different strides
can map to the same processor without penalty.

We also mapped the 1x1 and 3x3 convolutions to a single
processor, but there was no net area reduction from merging
these two. While merging did instantiate one less processor,
it added extra overhead due to the differences in control logic
(Fig. 6c) needed when performing the window reduction for
3x3 and 1x1. Separate processors also helped routability across
stacked dies of the device. This extends the finding of [17] that
kernel specialization is still beneficial in modern DNNs.

Our compiler therefore distinguishes operations by their
fused layer types, treating convolutions of different kernel
sizes as separate types. It then instantiate one processor per
operation type, each like Fig. 6 and specialized to its operation,
and creates an FSM which executes the fused operations
sequentially on their associated processor, writing intermediate
data to DRAM. The architecture for the ResNet example is
shown in Fig. 8. Our compiler statically calculates the number
of total multiply-accumulates (MACs) contributed by each
operation type, and allocates DSP resources proportional to
that (rounded to a power of 2). We show these details next
to each processor, and for reference include the percentage of
runtime for a single inference. The totals, described further in
section 5, are the total MACs in ResNet-50, total DSPs used
by the design and total inference time. The result is that the
runtime is balanced between two processors, 1x1 and 3x3, as
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Fig. 8. Overview of architecture for ResNet example.

expected from Fig. 4. These can be used simultaneously by
processing two inputs at once, as described in [17].

This section described the optimizations needed to trans-
form a DNN DFG into a synthesizable circuit. We performed
experimental analysis of the design choices summarized in
Fig. 1, including operation granularity (fusion), hardware
specialization, algorithm transformations, data format, and
memory-level parallelism. Next, we measure the performance
of various DNNs mapped to hardware using this toolchain.

V. EXPERIMENTS

We consider 4 benchmark TensorFlow DNNs from various
multimedia applications in Table II. These were chosen to
exercise a wide variation in the design space. ResNet-50
is a complex graph containing a wide variety of layers as
Section 4 showed. Djinn-ASR is a speech-to-text cloud service
MLP [19] which contains fully-connected (FC) layers. Unlike
CNNs which process images, Djinn-ASR has small activations
but a large model. TensorFlow CIFAR is the CNN used by
TensorFlow’s tutorial for the CIFAR-10 dataset. LeNet is a
small CNN chosen because its weights and activations can
fit entirely on-chip. These DNNs and datasets are commonly
evaluated in FPGA DNN papers [9], [14], [20].

We ran these DNNs on the Amazon EC2 F1.2xlarge FPGA
instance, which contains a Xilinx UltraScale+ 16nm VU9P
FPGA. The only other tool available which ran DNNs on the
F1 was Xilinx’s ML-Suite (v1.3) [21]. As we will discuss, our
toolchain can compile TensorFlow models that gave ML-Suite
errors. First however, we compare speed performance.

Table II compares single-input (batch-1) latency of these
DNNs. Microsoft argues batch-1 latency to be the most valu-
able metric for DNN data-center workloads [3]. We measure
performance of these DNNs for both our tool, which is an
academic research tool, and Xilinx’s ML-Suite, which is a
commercial tool. ML-Suite is state-of-the-art, achieving same
or superior performance to GPUs [22] and running certain
memory-bound layers on the CPU using optimized BLAS [21].

We match ML-Suite on all but ResNet, for which we
are currently 5.7x slower. This is because of two major
differences: (1) ML-Suite runs DSPs at 500 MHz, while we
currently target the default 125 MHz for the F1, and (2) we
use 32-bit fixed point (10/22) and match the exact output of
TensorFlow, while ML-Suite uses 8-bit precision. Implement-
ing these optimizations in our toolchain would result in 4x
and 7.4x speedup respectively (discussed further below).

Low precision causes problems however for ML-Suite. The
only reasonable accuracy we could achieve from it was using



TABLE II
PERFORMANCE AND RESOURCE UTILIZATION OF VARIOUS TENSORFLOW DNNS RUNNING ON VU9P OF EC2 F1.2XLARGE.

TensorFlow Benchmarks Xilinx ML-Suite Ours
DNN Dataset #Weights #MAC Latency (ms) Latency (ms) LUT Reg DSP BRAM URAM
ResNet-50 ImageNet 25.5M 3.9G 38.1 216 (8bit: 28.9) 51.3% 21.9% 87.8% 51.9% 41.4%
Djinn-ASR Kaldi 25.4M 25.4M 10.7 10.0 15.1% 6.54% 14.1% 16.3% 0.00%
TF CIFAR CIFAR-10 1.06M 19.5M 1.20 1.39 25.4% 10.9% 44.6% 37.0% 28.5%
LeNet MNIST 430k 2.29M 1.01 0.656 16.3% 8.44% 26.7% 18.9% 3.13%

their pre-compiled ResNet-50 Caffe model (Caffe is an older
framework). When trying to compile TensorFlow through ML-
Suite, we followed the documentation and exhaustively tried
settings for both TensorFlow’s official ResNets as well as a
Xilinx-provided ResNet converted to TensorFlow from Caffe,
and the highest Top-5 ImageNet validation accuracy we could
achieve was 12.1%, which indicates a bug in the TensorFlow
compilation. Though our tool uses higher precision, it matches
the output of a CPU or GPU (93.2%). Overall, only our tool
could reasonably run the TensorFlow model on the F1. ML-
Suite could achieve acceptable accuracy (91.5%) with their
pre-compiled ResNet example made from Caffe, although for
this we also had to search configurations and only one (8-
bit, “medium” kernel configuration) worked. The rest also
produced unusable accuracy. The speed of this pre-compiled
ML-Suite Caffe example is 12.8 ms. This is faster than the
TensorFlow ResNet compiled through ML-Suite, and now has
a gap of 16.8x with our tool. With the speedups mentioned
above from frequency/precision, our ResNet would have com-
petitive performance. We note though that ML-Suite’s pre-
compiled Caffe would still fail e.g. the recent DAWNBench
inference acceleration benchmarks [23], which require 93%
Top-5 ImageNet validation accuracy.

Table II also shows utilization for each benchmark. For
ResNet, the limiting resource is DSPs and ResNet is compute-
bound. We experiment with changing the datatype to 8-bit and
DSP utilization decreases by 7.47x. From this we project an
8-bit latency of ∼28.9ms if quantization were applied, which
is a common technique [3], [21], [24]. Prior work reports
similar scaling when lowering precision [15], [18], [25]. We
also run at the default 125 MHz, but higher frequencies are
available for the F1. While Spatial does not yet support this
for general applications due to routing across stacked dies of
the VU9P, our DNN-specific toolchain could achieve higher
frequencies by constraining layer processors to separate 2D
logic regions, which is also a known optimization [21]. ML-
Suite’s higher frequency comes at the cost of higher power
consumption however. We ran continuous batch-1 inference
as in [3], [25], and measured power using the F1’s power
metrics. At 125 MHz we consume 17W. With batch size set to
1, ML-Suite’s ResNet example consumes 42W. As a reference
we compare to a 12nm NVIDIA V100 GPU on the EC2
P3 instances (recommended by Amazon for deep learning),
which cost $3.06/hr (vs. $1.65/hr for F1). Its continuous
TensorFlow ResNet-50 batch-1 inference latency is 5.54ms
and it consumes 110W, measured using nvidia-smi.

Other benchmarks do not hit resource limits and can be
further parallelized. Djinn-ASR is bandwidth-bound, so more
parallelization would not help. Its consists of 7 FC layers and

the design contained a single FC/Bias/Sigmoid fused operation
processor. TF CIFAR contains 2 Conv layers (5x5) and 3 FC
layers, with Conv followed by pooling. 5x5 Conv and pooling
increase locality in rows/columns and data was stored in row-
major. The design contained two fused operation processors,
Conv/Bias/ReLU/Pool and FC/Bias/ReLU. LeNet contains 2
Conv/Bias/ReLU/Pool followed by 2 FC/Bias/ReLU opera-
tions and used the same processor types as TF CIFAR.

VI. RELATED WORK AND CONCLUSIONS

Ours is the first open tool which uses a modern DNN frame-
work like TensorFlow (TF) as a starting point and either (1)
targets public hardware like Amazon F1 or (2) compiles DNNs
reaching state-of-the-art accuracy on an FPGA (cloud or not).
[26] presents a survey of tools targeting FPGAs from DNN
frameworks, noting that very few are open source. Moreover,
nearly all use older frameworks like Caffe [20], [25], [27]–
[29], which are rarely still used in the DNN community. [18],
[30] discuss TF but are closed-source. [31] is open-source
and uses TF, but runs only small MLPs and convolutions.
ML-Suite [21] is closed-source and had incorrect TF results.
Often tools also do not report accuracy, even when using low
precision, and many support only older DNNs like VGG16.
[32] is open-source and used MXNet as an input, but the
DNN presented is ResNet-18 which has low accuracy like
VGG16 [8]. DNN tools for cloud FPGAs include ML-Suite
and [15], [33]. ML-Suite compiles TF while [15], [33] use
Caffe. [15] mentions TF but not in its release, and unlike
ML-Suite neither of [15], [33] had complete instructions or
examples to compile and run models on F1. [33] used low
precision but accuracy was omitted, and ML-Suite’s Caffe
ResNet is faster on the F1. [15] achieves high performance
on the F1 using 1-bit precision, but runs small DNNs.

By performing the optimizations outlined in this work, we
enable FPGA designs to be explored from high-level DNNs.
We studied design tradeoffs that showed the importance of spe-
cialized hardware and memory-system flexibility, highlighting
where FPGAs excel. We hope our toolchain can be useful for
researchers to explore FPGA accelerators for DNNs so that
FPGAs can continue playing a role in this exciting domain.
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